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Abstract: For a stochastic differential equation epidemic model of multi-group susceptical infective and removal (SIR)

type, we define the basic reproduction number RS
0 and show that it is a sharp threshold for the dynamics of the stochastic

multi-group SIR model which determines whether the epidemic occurs or not. Our analytic results of stochastic stabilization

applies a new viable measure to disease control. Furthermore, we investigate the global asymptotic behaviour of the disease.

Finally we give numerical simulation to illustrate our analytical results.
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1 Introduction
Epidemic models have been proposed for model-

ing the spread process of infectious diseases, they de-

scribe the transmission dynamics of an infectious dis-

ease in a host population. Multigroup model is a special

type of epidemic model which describes infectious dis-

eases transmission in heterogeneous host populations,

such as meals, mumps, gonorrhea, HIV/AIDS, West-

Nile virus and vector borne diseases such as Malaria.

Groups can be separated by different factors: region

graphical, gender, differences and so on. One of the ear-

liest works on multi-group models is the seminal paper

by Lajmanovich and Yorke[1] on a class of multi-group

SIS model for the transmission dynamics of Gonorrhea,

they established a complete analysis of the global dy-

namics. The global stability of the unique equilibrium is

proved by using a complete analysis of the global Lya-

punov function. Subsequently, much research has been

done on multi-group models, such as[2], Beretta and Ca-

passo developed a graph theoretic method to analysis

the global stability of a multi-group SIR model. This

effective tool has been used in many papers[3−8]. But

how to establish the Lyapunov functions still be a chal-

lenging problem. Li et al.[9] derives the following multi-

group SIR model:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S′
k = Ak − dskSk −

n∑
j=1

βkjSkIj ,

I ′k =
n∑

j=1

βkjSkIj − (dIk + εk + γk)Ik,

R′
k = γkIk − dRkRk,

(1)

where k = 1, 2, · · · , n, the model describes the spread

of an infectious disease in a heterogeneous population,

which is partitioned into n homogeneous group. Each

group k is further compartmentalized into Sk, Ik and

Rk, here Sk, Ik and Rk denote the susceptible, infec-

tive and recovered population at time t respectively. All

parameters in the above model are summarized in the

following list:

βij : transmission coefficient between compart-

ments Si and Ij ,

dSk; d
I
k; d

R
k : nature death rates of S, I , R compart-
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ments in the k-th group, respectively,

Ak: influx of individuals into the k-th group,

γi: recovery rate of infectious individuals in the i-th
group,

εk: disease-caused death rate in the k-th group.

All parameter values are assumed to be nonnega-

tive and dSk, dIk, dRk , Ak > 0 for all k. Guo et al.[9]

established the whole dynamic behaviour of the dis-

ease which determined by the basic reproduction num-

ber R0.

In the real large-scale biological systems, there are

always subject to environment noise. It is therefore nec-

essary to develop stochastic models. To account for

variability of the environment and stochasticity in the

disease transmission process, as well as uncertainty in

measurement of model parameters, There are general-

ly two approaches to derive a SDE model[10−24]. To

describe demographic stochasticity, Allen[10] discussed

the approach of deriving stochastic differential equa-

tions from the forward Kolmogorov equation of con-

tinuous time Markov chain models. To incorporate s-

tochasticity in measurement and estimation of model

parameters, noise terms have been introduced into de-

terministic models as perturbations to model parame-

ters. Tornatore et al.[16] studied a SDE model of SIR

type by perturbing the transmission coefficient β. Lya-

punov functions were used to prove that the disease-free

equilibrium is asymptotically stable. This stability con-

dition is only sufficient since simulations show that the

disease-free equilibrium can be stable when this condi-

tion is not satisfied. Gray et al.[18] studied a stochastic

SIS model and derived stability conditions by consid-

ering Lyapunov function log I(t). Note that the total

population N(t) remains a constant. Ji et al.[20] consid-

ered a multi-group stochastic SIR model by perturbing

death rates. Lyapunov functions were used to investi-

gate asymptotic behaviors near the disease-free equilib-

rium. Recently, Zhao et al.[25] investigated a stochastic

SIS model and found out a threshold of the stochastic

model in case the white noises are small. It remain-

s an open question find an appropriate form of a sharp

threshold parameter for the dynamics of SDE epidemic

models that plays the role of R0 for ODE models.

The above epidemic models are deterministic mod-

els based on the assumption that stochastic factors

would be ignored. But the real biological systems

are always perturbed by various types of environmen-

t noise. To be more accurate description of epidemic

model, we establish a stochastic multi-group SIR mod-

el. We also find out a threshold RS
0 which is the expand

of the deterministic threshold R0.

Based on the fact that the transmission coefficient β
is the most sensitive parameter[10], we perturb the trans-

mission coefficient of the deterministic multi-group SIR

model (1) by replacing βkk to βkk+σkḂ(t) where B(t)
is a standard brownian motion with B(0) = 0. Then we

formulate a stochastic multi-group SIR model as fol-

lows: ⎧⎪⎨
⎪⎩
dSk = sk(t)dt− σkSkIkdB(t),

dIk = i1(t)dt+ σkSkIkdB(t),

dRk = (γkIk − dRkRk)dt,

(2)

where

sk(t) = Ak − dskSk −
n∑

j=1

βkjSkIj ,

ik(t) =
n∑

j=1

βkjSkIj − (dIk + εk + γk)Ik,

k = 1, 2, · · · , n.
Adding the three equations in (2) gives

d(Sk + Ik +Rk) =

(Ak − dSkSk − (dIk + εk)Ik − dRkRk)dt �
(Ak − d∗k(Sk + Ik +Rk))dt,

where

d∗k = min{dSk, dIk + εk, d
R
k }.

Hence we obtain

lim sup
t→∞

(Sk + Ik +Rk) �
Ak

d∗k
.

Moreover, there is only one equilibrium: the disease-

free equilibrium P0 = (S0
1 , 0, 0, · · · , S0

n, 0, 0), where

S0
k =

Ak

dSk
, k = 1, 2, · · · , n. The main results of this

paper is defined the sharp threshold RS
0 which deter-

mines the dynamic behaviour of our stochastic multi-

group SIR model (2). Here RS
0 = ρ(MS

0 ) denotes the

spectral radius of the matrix

MS
0 =

⎛
⎜⎜⎝ βkjS

0
k

dIi + εk + γk +
(S0

kσk)
2

2

⎞
⎟⎟⎠

1�k,j�n

.

In Section 2, we prove the global existence of the

positive solution, then we derive the stability of the

disease-free equilibrium, a new threshold RS
0 different

from the deterministic R0 is found which determines

the dynamics of the disease. The global stability of the

disease-free equilibrium will be investigated in Section

4. At last we give some numerical examples, they will

help us to illustrate our main results.

Throughout the article, unless otherwise specified,

we will employ the following notions. Let (Ω, F ,
{Ft}t�0, P) be a complete probability space with a fil-

tration {Ft}t�0 satisfying the usual conditions (i.e., it

is right continuous and F0 contains all P -null sets). We

use a∨b to denote max(a, b), a∧b to denote min(a, b)
and a.s. to mean almost surely.
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2 Sharp threshold theorem
As an epidemic model, we need to guarantee the

existence and uniqueness of the positive global solution

for the stochastic multigroup SIR epidemic model (2).

The standard existence and uniqueness conditions is no

longer viable as the functions of system (2) do not sat-

isfy the linear growth condition, so the solution may ex-

plode at a finite time[23]. To solve this problem, we use

the lyapunov analysis method to prove the global exis-

tence of the positive solution.

Theorem 1 If B = (βij)n×n is irreducible, then

for any initial value of model (2), there exists a u-

nique solution x(t) = (S1(t), I1(t), R1(t), · · · , Sn(t),
In(t), Rn(t)) ∈ R

3n
+ , and it satisfies

P{x(t)|x(t) ∈ R
3n
+ } = 1.

Proof Since the coefficients of the equation are

locally Lipschitz continuous, there is a unique local

solution on t ∈ [0, τe), where τe is the explosion

time (see Mao[23]). Considering the implicit solution

of Sk(t), Ik(t), Rk(t), k = 1, 2, · · · , n, the solu-

tions are exponential functions, so we can conclude

Sk(t), Ik(t), Rk(t) are positive on t ∈ [0, τe). To prove

the global existence of the solution we need to show that

τe = ∞ almost surely. We choose a sufficiently large

number m0 such that S(0), I(0), R(0) all lie in the in-

terval (0,m0). For each integer m > m0, we define the

stopping time

τm = inf{t ∈ [0, τe) :

max{Sk(t) + Ik(t) +Rk(t)} � m,

k = 1, 2, · · · , n},
where inf ∅ = ∞. Set τ∞ = lim

k→∞
τk whence τ∞ < τe.

If we can show that τ∞ = ∞ a.s., then we can conclude

that τe = ∞ a.s. for all t � 0.

We use the method by contradiction, if this state-

ment is false, then there are a pair of constants T > 0
and ε ∈ (0, 1) such that P{τ∞ � T} > ε, hence there

is an integer m1 � m0 such that P{τm � T} � ε for

all m � m1.

Define a function V (S1, I1, R1, · · · , Sn, In, Rn) =
n∑

k=1

(Sk + Ik +Rk), using the Itô formula, for any t ∈
[0, T ] and m � m1, we have

EV (S1(t ∧ τm), I1(t ∧ τm), R1(t ∧ τm), · · · ,
Sn(t ∧ τm), In(t ∧ τm), Rn(t ∧ τm)) =

V (S1(0), I1(0), R1(0), · · · , Sn(0), In(0), Rn(0))+

E
� t∧τm

0
LV (S1(s), I1(s), R1(s), · · · , Sn(s),

In(s), Rn(s))ds,

where the operator LV is defined by

L V =
n∑

k=1

[Ak − dSkSk − (dIk + εk)Ik − dRkRk] �

n∑
k=1

Ak = A.

Therefore, if t � T , we have

EV (S1(t ∧ τm), I1(t ∧ τm), R1(t ∧ τm), · · · ,
Sn(t ∧ τm), In(t ∧ τm), Rn(t ∧ τm)) =

V (S1(0), I1(0), R1(0), · · · ,
Sn(0), In(0), Rn(0)) +AT.

Set Ωm = {τm � T}, for m � m1, then we know

P (Ωm) > 0. For every ω ∈ Ωm, max{Sk(t)+Ik(t)+
Rk(t) � m, k = 1, 2, · · · , n}, hence

V (S1(0), I1(0), R1(0), · · · ,
Sn(0), In(0), Rn(0)) +AT �
E[IΩm

(ω)V (S1(t ∧ τm), I1(t ∧ τm), R1(t ∧ τm), · · · ,
Sn(t ∧ τm), In(t ∧ τm), Rn(t ∧ τm))] �
εmax{Sk(t) + Ik(t) +Rk(t), k = 1, 2, · · · , n} �
εm,

Letting m → ∞ leads to the contradiction ∞ >
V (S(0), I(0), R(0)) + AT � ∞, so we have τ∞ =
∞ a.s., whence the proof is completed.

Next, we will show the sharp threshold theorem for

the multi-group SIR model (2). The main idea of find-

ing the sharp threshold comes from the linearized sys-

tem around the disease-free equilibrium.

Theorem 2 Assume that B = (βij)n×n is irre-

ducible, σkS
0
k = σ, k = 1, 2, · · · , n.

1) If RS
0 < 1, the disease-free equilibrium P0 is

almost sure asymptotically stable, which means the dis-

ease will die out almost surely.

2) If RS
0 > 1, the disease-free equilibrium P0 is

unstable.

Proof Considering the following linearized sys-

tem of model (2) at the disease-free equilibrium:⎧⎪⎨
⎪⎩
duk = Uk(t)dt− σkS

0
kvkdB(t),

dvk = Vk(t)dt+ σkS
0
kvkdB(t),

dwk = (γkvk − dRkwk)dt,

(3)

where

Uk(t) = −dSkuk −
n∑

j=1

βkjS
0
kvj ,

vk(t) =
n∑

j=1

βkjS
0
kvj − (dIk + εk + γk)vk.

Let V (t) = (v1(t), v2(t), · · · , vn(t)), we rewrite the

second equation of model (3) as

dV (t) = FV (t)dt) +GV (t)dB(t), (4)

where

F =

⎡
⎢⎣

F11 · · · β1nS
0
1

...
. . .

...

βnnS
0
n · · · Fnn

⎤
⎥⎦ ,
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G =

⎡
⎢⎢⎢⎣
σ1S

0
1

σ2S
0
2

. . .

σnS
0
n

⎤
⎥⎥⎥⎦ ,

where

F11 = β11S
0
1 − dI1 − ε1 − γ1,

Fnn = βn1S
0
n − dIn − εn − γn.

Since σkS
0
k = σ, the matrices F and G commute, then

the explicit solution of the linearized system (4) can be

computed as

V (t) = V (0) exp[(F − 1

2
G2)t+GB(t)], (5)

where

F − 1

2
G2 =

⎡
⎢⎣
Q11 · · · Q1n

...
. . .

...

Qn1 · · · Qnn

⎤
⎥⎦ ,

Q11 = β11S
0
1 − dI1 − ε1 − γ1 − (S0

1σ1)
2

2
,

Q1n = β1nS
0
1 ,

Qn1 = βn1S
0
n,

Qnn = βnnS
0
n − dIn − εn − γn − (S0

nσn)
2

2
.

According to the definition of RS
0 , if RS

0 < 1, all the

eigenvalues of F − 1

2
G2 have negative real parts. Then

there are a pair of positive constants C and λ such that

‖ exp[(F − 1

2
G2)t]‖ � Ce−λt.

It then follows from (5) that

|V (t)| � C|V (0)| exp [−λt+ ‖G‖|B(t)|] . (6)

Using the strong law of large numbers states that

lim
t→∞

B(t)

t
= 0 a.s. we obtain

lim sup
t→∞

1

t
log|V (t)| � −λ a.s..

In other words, the trivial solution of equation (4) is al-

most surely exponentially stable. Next, we give esti-

mate for uk(t) and wk(t). Using the Itô formula, we

derive that

wk(t) = e−dR
k t
[
Rk(0) +

� t

0
γkvke

dR
k udu

]
. (7)

Substituting (6) into (7) we get

wk(t) �

e−dR
k t[Rk(0) +

� t

0
γke

(dR
k −λ)udu] =

Rk(0)e
−dR

k t +
γk

dRk +−λ
e−λt − γk

dRk +−λ
e−dR

k t,

therefore

lim sup
t→∞

1

t
log |wk(t)| = −dRk ∨ −λ < 0.

Similarly we gain the assertion for uk(t) that

lim sup
t→∞

1

t
log |uk(t)| = −λ ∨ −dRk ∨ −dSk < 0.

In this way we proved that (3) is exponentially sta-

ble. According to the Oseledec multiplicative ergodic

theorem[11], the necessary and sufficient condition for

the almost sure asymptotic stability of the trivial solu-

tion is the largest lyapunov exponent of the linearized

system is negative.

Remark 1 It is useful to observe that either for the

classical deterministic model or the stochastic model, there is

a threshold which reflects the prevalent or extinction of the

epidemic, but the thresholds are different between them, the

stochastic threshold RS
0 is smaller then the deterministic one.

In other words, the conditions for I(t) to become extinct in

the SDE epidemic model are weaker than those in the classical

deterministic epidemic model, which gives a new method on

disease control: stochastic stabilization.

Actually, stochastic epidemic models have been

studied by many authors[9−32]. Most of the results

concentrate on the sufficient conditions of the stabil-

ity using Lyapunov function method for the stochas-

tic models, and they establish the results based on the

corresponding deterministic model’s R0. For stochas-

tic multigroup epidemic model, Yang et al.[23] consid-

ered a multi-group SEIR epidemic model, they stud-

ied the extinction and recurrence of the model based on

the related deterministic model’s reproduction number

R0. Ji et al.[29−30] discussed stochastic multigroup SIR

models, they investigated the model’s asymptotic be-

havior by using Lyapunov function. Their results also

based on the related deterministic model’s reproduction

number R0. There are few references investigate the

stochastic model’s own threshold RS
0 . Gray et al.[18]

established a stochastic SIS model and found out the

sufficient and necessary condition for the disease-free

equilibrium and the condition of the persistence of the

disease. Jiang et al.[15,20] studied a stochastic SIS model

and a stochastic SIR model, they found out the threshold

of the model under small stochastic perturbation. Zhang

et al.[24] studied a stochastic predator-prey model, they

discussed the asymptotical behaviour of the model by

using Lyapunov analysis models. For our results, we

give a method to calculate stochastic epidemic model’s

sharp threshold(the basic reproduction number).

3 Stability of equilibria and global dynamics
Using the linearized system (3), we have found out

the sharp threshold of model (2), and have given the

local stability results for the disease-free equilibrium.

Next, we will investigate the global dynamics of our s-

tochastic model (2).

Theorem 3 Assume B = (βij) is irreducible,

and σ2
k � dSkβkk

Ak

. If RS
0 < 1, then the disease-free
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equilibrium P0 = (S0
1 , 0, 0, · · · , S0

n, 0, 0) is asymptot-

ic stable in the large.

Proof We assume S = (S1, S2, · · · , Sn), S0 =
(S0

1 , S
0
2 , · · · , S0

n) and

M(S) =

⎛
⎜⎜⎝ βkjS

dIk + εk + γk +
(σkS)

2

2

⎞
⎟⎟⎠

1�k, j�n

,

then RS
0 = ρ(M(S0)).

Let (ω1, ω2, · · · , ωn) is the eigenvector of M(S0)
corresponding to ρ(M(S0)), then

(ω1, ω2, · · · , ωn)ρ(M(S0)) =

(ω1, ω2, · · · , ωn)M(S0),

where ωk > 0, k = 1, 2, · · · , n. Since B = (βij) is

irreducible then we have M(S) and M0 are also irre-

ducible. Considering the Lyapunov function

V (I1, I2, · · · , In) =
n∑

k=1

ωk

dIk + εk + γk +
1
2
(σkS0

k)
2
Iak ,

where a < 1 is a constant which will be determined

later. Using Itô formula we obtain

L V =
n∑

k=1

ωk

dIk + εk + γk +
(σkS

0
k)

2

2

a(Ik)
a−1

[
n∑

j=1

βkjSkIj − (dIk + εk + γk)Ik]+

n∑
k=1

ωk

dIk+εk+γk+
(σkS

0
k)

2

2

1

2
a(a− 1)Ia−2

k σ2
kS

2
kI

2
k =

n∑
k=1

aIa−1
k ωk

dIk + εk + γk +
(σkS

0
k)

2

2

×

[
n∑

j=1

βkjSkIj−(dIk+εk+γk)Ik+
1

2
(a−1)σ2

kS
2
kIk] =

n∑
k=1

aIa−1
k ωk

dIk + εk + γk +
(σkS

0
k)

2

2

×

[
n∑

j=1

βkjSkIj − (dIk + εk + γk+

1

2
σ2
kS

2
k)Ik +

1

2
aσ2

kS
2
kIk].

As Sk + Ik + Rk � Ak

dk
and Sk, Ik, Rk > 0 for k =

1, 2, · · · , n, we have Ik � Ak

dk
. Let

A

d
= max{Ak

dk
,

k = 1, 2, · · · , n}, then for every k = 1, 2, · · · , n, we

have Ik � A

d
. The above infinitesimal operator can be

rewritten as

L V �
aAa−1

da−1

n∑
k=1

ωk

dIk + εk + γk +
(σkS

0
k)

2

2

[
n∑

j=1

βkjSkIj−

(dIk + εk + γk +
1

2
σ2
kS

2
k)Ik]+

aAa−1

da−1

n∑
k=1

ωk

dIk + εk + γk +
(σkS

0
k)

2

2

1

2
aσ2

kS
2
kIk.

According to the condition σ2
k � dSkβkk

Ak

, we obtain

n∑
j=1

βkjSkIj − 1

2
σ2
kS

2
kIk +

1

2
aσ2

kS
2
kIk �

n∑
j=1

βkjS
0
kIj −

1

2
σ2
k(S

0
k)

2Ik +
1

2
aσ2

k(S
0
k)

2Ik,

it then leads to

L V �
aAa−1

da−1

n∑
k=1

ωk

dIk + εk + γk +
(σkS

0
k)

2

2

×

[
n∑

j=1

βkjS
0
kIj − (dIk + εk + γk +

1

2
σ2
k(S

0
k)

2)Ik]+

aAa−1

da−1

n∑
k=1

ωk

dIk+εk+γk+
(σkS

0
k)

2

2

1

2
aσ2

k(S
0
k)

2Ik =

aAa−1

da−1

n∑
k=1

ωk[
n∑

j=1

βkjS
0
kIj

dIk+εk+γk+
(σkS

0
k)

2

2

− Ik]+

aAa−1

da−1

n∑
k=1

ωk

2(dIk+εk+γk+
(σkS

0
k)

2

2
)

aσ2
k(S

0
k)

2Ik.

Let I = (I1, I2, · · · , In), then

L V �
aAa−1

da−1

n∑
k=1

ωk·

[
n∑

j=1

βkjS
0
kIj

dIk + εk + γk +
(σkS

0
k)

2

2

− Ik]+

aAa−1

da−1

n∑
k=1

ωk

2(dIk+εk+γk+
(σkS

0
k)

2

2
)

aσ2
k(S

0
k)

2Ik=

aAa−1

da−1
(ω1, ω2, · · · , ωn)[M(S0)I − I]+

aAa−1

da−1

n∑
k=1

ωk

2(dIk+εk+γk+
(σkS

0
k)

2

2
)

aσ2
k(S

0
k)

2Ik=

[ρ(M(S0))− 1](ω1, ω2, · · · , ωn)I+

aAa−1

da−1

n∑
k=1

ωk

2(dIk + εk + γk +
(σkS

0
k)

2

2
)

aσ2
k(S

0
k)

2Ik.
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Let a is a small enough positive constant, then we final-

ly obtain

L V � [ρ(M(S0))− 1](ω1, ω2, · · · , ωn)I,

which means

lim
t→∞

I(t) = 0 a.s..

So Ik(t) tends to zero in the large for k = 1, 2, · · · , n.

Next we need to prove lim
t→∞

Sk(t) = 0 and lim
t→∞

Rk(t)

= 0. As lim
t→∞

Ik(t) = 0 a.s., so for every ε > 0, there

exists T > 0, such that t > T , then

Ik(t) � ε.

From the third equation in model (2), the solution of

Rk(t) can be solved as

Rk(t) = e−dR
k t[Rk(0) +

� t

0
ed

R
k sγkIk(s)ds].

By applying the estimation for I(t),

Rk(t) =

e−dR
k t[Rk(0) +

� t

0
ed

R
k sγkIk(s)ds] =

e−dR
k t[Rk(0) +

� T

0
ed

R
k sγkIk(s)ds+� t

T
ed

R
k sγkIk(s)ds] �

e−dR
k t[Rk(0) +

� T

0
ed

R
k sγkIk(s)ds]+

γkεe
−dR

k t
� t

T
ed

R
k sds =

e−dR
k t[Rk(0) +

� T

0
ed

R
k sγkIk(s)ds]+

γkε

dRk
(1− ed

R
k T−dR

k t),

so we can conclude that lim
t→∞

Rk(t) = 0. Using the

same method we can obtain lim
t→∞

Sk(t) = 0. In this

way, we proved that P0 = (S0
1 , 0, 0, · · · , S0

n, 0, 0) is

asymptotic stable in the large.

Remark 2 In Theorem 3.2, we give the global sta-

bility of the disease-free equilibrium. It is worth mention-

ing that based on a group-theoretic approach to the method of

global Lyapunov function, we separate the interaction terms

in the stochastic model (2). Then the multigroup model’s

disease terms Ii(t) can be considered separately. Using

the classical methods by calculating the lyapunov exponents

like references[25,27,30] we obtain the global stability of the

disease-free equilibrium.

4 Numerical simulation
Consider the system (2), when k = 2, it becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1 = f11(t)dt− σ1S1I1dB(t),

dI1 = f12(t)dt+ σ1S1I1dB(t),

dR1 = f13(t)dt,

dS2 = f21(t)dt− σ2S2I2dB(t),

dI2 = f22(t)dt+ σ2S2I2dB(t),

dR2 = f23(t)dt,

(8)

where

f11(t) = A1 − dS1S1 − β11S1I1 − β12S1I2,

f12(t) = β11S1I1 + β12S1I2 − (dI1 + ε1 + γ1)I1,

f13(t) = γ1I1 − dR1 R1,

f21(t) = A2 − dS2S1 − β21S2I1 − β22S2I2,

f22(t) = β21S2I1 + β22S2I2 − (ε2 + dI2 + γ2)I2,

f23(t) = γ2I2 − dR2 R2.

we use the parameter values as follows:

A1 = 100, A2 = 300, dS1 = 2, dS2 = 3,

dI1 = 2, dI2 = 5, dR1 = 3, dR2 = 5,

β11 = 0.1, β12 = 0.2, β21 = 0.1, β22 = 0.1,

ε1 = 1, ε2 = 1, γ1 = 1, γ2 = 1.

Firstly, the matrix B is irreducible. For the determinis-

tic model (1), It’s easy to calculate

R0 = ρ(M0) =

ρ(

[
1.25 2.5
1.4286 0.4762

]
) = 2.7921 > 1,

which means that the disease will persistent. For our

stochastic model (2), our main interest will be focused

on the extinction of the disease: It(1), I2(t). Let σ1 =
σ2 = 0.1, we have

RS
0 = ρ(M0) =

ρ(

[
0.3030 0.6061
0.1754 0.0585

]
) = 0.529 < 1.

According to Theorem 2, the disease-free equilibrium

is stable. We try the initial value I1(0) = 1, I2(0) = 1
which is near the disease-free equilibrium. By our con-

dition, the sample pathes of I1(t), I2(t) for the stochas-

tic model (8) go to zero while the corresponding deter-

ministic model’s I1(t), I2(t) go to the endemic equilib-

rium. The numerical simulations in Fig.1 supports these

results clearly.

Fig. 1 Computer simulation of paths I1(t) for the system (8)

and its corresponding deterministic model
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The condition σ2
1 = 0.01 < S0

1β11 = 5 is satis-

fied, so the disease will extinction globally by Theorem

2.3. We keep the parameter value and start our computer

simulation at the initial value I1(0) = 10, I2(0) = 20,

Fig.2 shows that I1(t), I2(t) also tend to zero.

Fig. 2 Computer simulation of paths I1(t) for the system (8)

and its corresponding deterministic model

Fig.1 and Fig.2 just give the sample path of I1(t),
I2(t) separately. The sample path will change through

every simulation as our stochastic model’s solution is

a stochastic process. To illustrate the extinction of the

disease clearly, we try the statistic data for I1(t) and

I2(t) which would be considered as the distribution

of the solution. In Fig.3, we start our simulation at

I1(0) = 10, I2(0) = 20 and run the simulation 10000

times to get the value of I1(5), I2(5), I1(10), I2(10)
and I1(20), I2(20).

Fig. 3 Computer simulation of paths I1(t) for the system (8)

and its corresponding deterministic model

Moreover, we give the related point set of (I1(20),
I2(20)) in Fig.4. It is clearly that all most every goes to

zero.

Fig. 4 Computer simulation of paths I2(t) for the system (8)

and its corresponding deterministic model

From Fig.3 and Fig.4 we can conclude that the dis-

ease will extinct through the perturb intensity σ1 = 0.1,
σ2 = 0.1, even though the corresponding deterministic

model tends to be persistent. Adding stochastic pertur-

bation can be considered as a method of stabilization on

disease control.

Next, we choose σ1 = 0.2, σ2 = 0, then R0 keeps

the same, but

RS
0 = ρ(M0) = ρ(

[
0.3030 0.6061
1.4286 0.4762

]
)=1.3241>1.

From Theorem 2, the disease will not extinct. Fig.5 il-

lustrates this phenomenon clearly.

Fig. 5 The density function of I1(t)
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Fig. 6 The density function of I2(t)

Fig. 7 The point set of I1(t) and I2(t) at t = 20

Fig. 8 computer simulation of paths I1(t) for the system (8)

Fig. 9 computer simulation of paths I2(t) for the system (8)

5 Conclusions
In this paper, we established a new type stochastic

multi-group SIR model driving by Ito process. Differ-

ent from the traditional method, we define the basic re-

production number RS
0 which determines the extinction

of the disease. We need to point out that the basic re-

production number relates to the stochastic magnitude

σ. Moreover, we generalize the graph-theoretic method

to obtain the global stability of the disease-free equilib-

ria. Of cause, our theoretical results can be realize in

numerical simulation.
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