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摘要:航迹融合是多无人机系统进行协同侦察,巡逻和目标跟踪领域中的一个重要问题.本文根据不同信息反馈配置
给出了局部航迹之间的协方差的精确计算,并据此提出一种精确、具有可扩展性并且适用于任意通信频率的航迹融合
算法. 此外,本文通过求解对应的离散代数Riccati方程求取融合估计的稳态误差协方差,并以此进行融合性能分析.最
后,本文利用Monte Carlo仿真比较理论和实际结果,实验结果验证了该融合算法的有效性.
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Exact algorithms for track-to-track fusion by multiple UAVs
and performance evaluation
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Abstract: Track-to-track fusion is an important topic for cooperative surveillance, reconnaissance and target tracking
by multiple unmanned aerial vehicles (UAVs). In this paper, the accurate cross-covariances between the local estimates
are obtained from various information feedback configurations, which gives rise to the scalable and consistent algorithms
for track-to-track fusion (T2TF) at an arbitrary communication rate. Furthermore, the steady-state error covariance of the
fused estimate is obtained by solving the corresponding discrete algebraic Riccati equation for performance analysis. In
addition, the theoretical results are compared with those from the extensive Monte Carlo simulation, which validates the
effectiveness of the proposed fusion algorithms.
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1 Introduction
For the problem of cooperative tracking of a

moving target by multiple unmanned aerial vehicles
(UAVs)[1], where each UAV is able to track the tar-
get with active or passive sensors equipped on it, the
optimal result of data fusion is from the centralized
measurement fusion (CMF)[2], where all the measure-
ments are sent from the UAVs to the fusion center
(FC). The FC could be collocated with a leader UAV,
otherwise it is a remote station. For CMF, the FC
uses a centralized Kalman filter[3] to estimate the tar-
get track, however it is not practical due to its high
communication requirements. An alternative man-
ner for sensor fusion is to adopt the track-to-track
fusion (T2TF)[4], where the FC fuses the local esti-
mated tracks instead of the raw measurements. Com-
pared with CMF, the major advantage of T2TF is that

it could effectively reduce the frequency of commu-
nication and perform at a lower rate[5]. The problem
of track-to-track correlation due to the common pro-
cess noise has been observed in [6], and the T2TF
accounting for the correlated tracks has been devel-
oped in [7] by making use of a static linear estimation
model[8]. In [9] the author has proved that the result
from [7] is approximate and only optimal in the max-
imum likelihood (ML) sense. The information matrix
filter (IMF)[10] is another type of the T2TF algorithm,
unlike the one-scan algorithm developed in [7], the
IMF is multi-scanned, which means that it also fus-
es tracks from the previous fusion steps. Besides, the
fuser does not require the cross-covariances between
the local tracks, which is well known to be difficult to
calculate[11]. However, it is to be noted that the IMF is
optimal only at the full communication rate[12]. The

Received 30 April 2015; accepted 19 July 2015.
†Corresponding author. E-mail: klu@buaa.edu.cn; Tel.: +86 18611242591.
Supported by National Natural Science Foundation of China (61273349, 61175109, 61203223), and the Aviation Science Foundation of China
(2013ZA18001, 2014ZA18004).



No. 10 LU Ke-lin et al: Exact algorithms for track-to-track fusion by multiple UAVs and performance evaluation 1393

major challenge in T2TF problems lies in the treat-
ment of the correlations between the local tracks to
be fused, otherwise the derived fusion algorithms[13]

might be not consistent.
Despite all the above research efforts, there has

been very limited studies on the simultaneous fusion
of multiple tracks, thus it remains an open topic of re-
search to provide a solution for the cooperative track-
ing problem by multiple UAVs. Although it has been
mentioned in [14] that there is no theoretical limit on
the number of local tracks to fuse, from which the
derived result still only applies to the two-track case.
For these reasons, developing scalable and consistent
T2TF algorithms is the focus of this paper. Our ma-
jor contributions include exact calculation of cross-
covariances between multiple local tracks and the cor-
responding performance evaluation via the theoretical
analysis and extensive Monte Carlo simulations.
2 Problem formulation

Consider a scenario with N UAVs tracking a
moving target, where each UAV estimates the target
track with its local estimator. Assume that each UAV
is allowed to send its latest estimation to the FC with
an identical interval T . The UAV may or may not
receive the feedback from the FC according to dif-
ferent information feedback configurations. In this
paper, the out-of-sequence problem[15] is omitted for
the sake of brevity, that is, the communication links
between the UAVs and FC is assumed without delay
and no data loss. At the FC, let x̂c, Pc represent the
fused track, and Psisj represent the cross-covariance
between the local tracks, then the fusion of the local
tracks at step k is formulated as follows:

[x̂c(k|k), Pc(k|k)] =
f({x̂si(k|k)}, {Psi(k|k)}, {Psisj (k|k)}), (1)

where si, sj = 1, · · · , N and si ̸= sj . Note that once
an UAV si receives a feedback from the FC, its lo-
cal track is updated to x̂∗si(k|k) and P ∗

si(k|k), and the
cross-covariances stored in the FC are also updated to
P ∗
sisj (k|k) accordingly. Various patterns of informa-

tion feedback configurations will be considered in the
next section, including no feedback, partial feedback
and full feedback.
3 T2TF algorithms for different information

feedback configurations
Assume that the local tracks {x̂si(k|k)},

{Psi(k|k)} and the cross-covariances {Psisj (k|k)}
are available at FC, the optimal fusion in the maxi-
mum likelihood (ML)[2] sense can be performed ac-

cording to the following formulas:

x̂c = (ITNP−1
N IN )−1ITNP−1

N X̂N , (2)

Pc = (ITNP−1
N IN )−1, (3)

where I is an n × n identity matrix, IN = [I

I · · · I] is an Nn× n matrix, X̂N = [x̂1 x̂2 · · ·
x̂N ]T and PN is an Nn×Nn matrix with the follow-
ing blocks:

PN =


P1 P12 · · · P1N

P21 P2 · · · P2N
...

...
...

PN1 PN2 · · · PN

 . (4)

Assume that the previous fusion is performed at
time step l, then we have

x̃∗si(l|l) = x̂∗si(l|l)− x(l), (5)

where x(l) represents the true state of the target. It
can be further derived that

x̃si(l + 1|l + 1)= (I −Ksi(l + 1)H)Ax̃si(l|l)−
(I −Ksi(l + 1)H)w(l) +

Ksi(l + 1)vsi(l + 1), (6)

where Ksi is the Kalman filter gain for the sith local
estimator, H is the observation matrix and A is the
state transition matrix. The following formula will be
used to update the filter residual, which is obtained by
using (6) recursively for all the local tracks from the
time step l to k:

x̃si(k|k) =W e
si(d, l)x̃

∗
si(l|l) +

d∑
i=1

W v
si(i, d, l)w(l + i− 1) +

d∑
i=1

Ww
si (i, d, l)vsi(l + i), (7)

where d = k − l and the weights are derived as

W e
si(i, d, l) =

d∑
i=1

(I −Ksi(l + i)H)A,

W v
si(i, d, l) =
−(I −Ksi(l + i)H), d− i = 0,

−
d−i∏
j=1

((I −Ksi(l + d− j + 1)H)A)×

(I −Ksi(l + i)H), d− i > 1,

Ww
si (i, d, l) =
Ksi(l + i), d− i = 0,
d−i∏
j=1

((I −Ksi(l + d− j + 1)H)A)Ksi(l + i),

d− i > 1.

Then the cross-covariance between any two local
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tracks can be calculated with (7) as

Psisj (k|k) = W e
si(d, l)P

∗
sisj (l|l)(W

e
sj (d, l))

T +

d∑
i=1

W v
si(i, d, l)Q(W v

sj (i, d, l))
T, (8)

where Q is the covariance of the process noise.
For different information feedback configura-

tions, the exact calculation of cross-covariances is
given in the following.

For the configuration of no feedback, we have

x̂∗si(k|k) = x̂si(k|k), (9)

P ∗
si(k|k) = Psi(k|k), (10)

P ∗
sisj (k|k) = Psisj (k|k), (11)

where Psisj is given as (8).
For the configuration of full feedback, we have

x̂∗si(k|k) = x̂c(k|k), (12)

P ∗
si(k|k) = Pc(k|k), (13)

P ∗
sisj (k|k) = Pc(k|k), (14)

where x̂c and Pc are given as (2) and (3).
For the configuration of partial feedback, it re-

quires to account for four different cases, which are
shown as follows:

Case 1 Both UAV si and UAV sj receive the
feedback from FC.

Case 2 Neither UAV si nor UAV sj receives the
feedback from FC.

Case 3 UAV si receives the feedback but UAV
sj receives no feedback from FC.

Case 4 UAV si receives no feedback but UAV
sj receives the feedback from FC.

It is straightforward that (11) and (14) could be
used to calculate the updated cross-covariance P ∗

sisj
for Case 1 and Case 2 respectively. The formulas for
the rest two cases are derived as follows:

Theorem 1 If UAV si receives the feedback but
UAV sj receives no feedback from FC, then

P ∗
sisj (k|k)=(ITNP−1

N IN )−1(ITNP−1
N )


P1sj

P2sj
...

PNsj

 .

(15)

Proof The fused error is defined as

x̃c = x̂c − x. (16)

By Substituting (2) into (16) it gives that

x̃c = (ITNP−1
N IN )−1ITNP−1

N X̂N − x =

(ITNP−1
N IN )−1ITNP−1

N X̂N −
(ITNP−1

N IN )−1(ITNP−1
N IN )x =

(ITNP−1
N IN )−1(ITNP−1

N X̂N − ITNP−1
N INx) =

(ITNP−1
N IN )−1(ITNP−1

N )(X̂N − INx) =

(ITNP−1
N IN )−1(ITNPN−1)X̃N , (17)

where

X̃N =


x̃1
x̃2
...

x̃N

 . (18)

Let

P ∗
sisj (k|k) = Cov(x̃∗si , x̃

∗
sj ). (19)

Recall that for Case 3 we have

x̂∗si(k|k) = x̂c(k|k), (20)

and

x̂∗sj (k|k) = x̂sj (k|k). (21)

By substituing (20) and (21) into (19) it gives that

P ∗
sisj (k|k) =

E((ITNP−1
N IN )−1(ITNP−1

N )X̃N x̃Tsj ) =

(ITNP−1
N IN )−1(ITNP−1

N )E(X̃N x̃Tsj ) =

(ITNP−1
N IN )−1(ITNP−1

N )E




x̃1
x̃2
...

x̃N

 x̃Tsj

 =

(ITNP−1
N IN )−1(ITNP−1

N )


E(x̃1x̃

T
sj )

E(x̃2x̃
T
sj )

...
E(x̃N x̃Tsj )

 =

(ITNP−1
N IN )−1(ITNP−1

N )


P1sj

P2sj
...

PNsj

 . (22)

The proof is completed.
Theorem 2 If UAV si receives no feedback but

UAV sj receives the feedback from FC, then

P ∗
sisj (k|k) =


P1si

P2si
...

PNsi


T

(ITNP−1
N )T ×

[(ITNP−1
N IN )−1]T. (23)

Proof

P ∗
sisj (k|k) = Cov(x̃∗si , x̃

∗
sj ) = E(x̃∗si(x̃

∗
sj )

T) =

E((x̃∗sj (x̃
∗
si)

T)T) = (E(x̃∗sj (x̃
∗
si)

T))T =

(Cov(x̃∗sj , x̃
∗
si))

T = (P ∗
sjsi(k|k))

T. (24)
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By applying Theorem 1 it gives that

P ∗
sisj (k|k) = (P ∗

sjsi(k|k))
T =

P1si

P2si
...

PNsi


T

(ITNP−1
N )T × [(ITNP−1

N IN )−1]T. (25)

The proof is completed.
4 Steady-state performance prediction

In this section, the theoretical performance of the
developed fusion algorithms are evaluated in terms of
the steady-state mean square error (MSE) covariance,
namely,

Ω = lim
k→∞

E(x̃c(k|k)x̃Tc (k|k)) = E(x̃cx̃
T
c ), (26)

where x̃c is given in (16). Let the dynamic system
follow the model as

x(k) = Ax(k − 1) + w(k − 1), (27)

where x = (x, ẋ)T. And the observation system is
modeled as

zsi(k) = Hx(k) + vsi(k), (28)

where vsi(k) ∼ N(0, Rsi). Define Ksi(k) as the lo-
cal Kalman gain, x̂si(k|k − 1) as the local prior state
estimate and Psi(k|k−1) as the prior filter covariance
at time step k. In steady state, let

Ksi = lim
k→∞

Psi(k|k − 1), (29)

P̄si = lim
k→∞

Psi(k|k − 1), (30)

Psi = lim
k→∞

Psi(k|k), (31)

Psisj = lim
k→∞

Psisj (k|k), (32)

Pc = lim
k→∞

Pc(k|k). (33)

4.1 Two-track case
The performance of the fusion algorithms is first

evaluated for the two-track case. After that, the re-
sults will be expanded for arbitrary number of local
tracks in the next subsection.

Suppose that there are two local tracks, then the
fusion rule, namely (2) and (3) could be rewritten as[7]

x̂c = x̂1 +K12(x̂2 − x̂1), (34)

Pc = P1 −K12(P1 − P21), (35)

where

K12 = (P1 − P12)(P1 + P2 − P12 − P21)
−1.

(36)

By substituting (34) into (16), the fused error is de-
rived as

x̃c = (I −K12)x̃1 +K12x̃2. (37)

By substituting (37) into (26) it gives that

Ω = (I −K12)P1(I −K12)
T +

(I −K12)P12(K12)
T +

K12P21(I −K12)
T +K12P2(K12)

T. (38)

In the following, Ω is derived for the information
feedback configuration of no feedback and full feed-
back. The results for partial feedback is omitted for
the sake of brevity, since the number of UAVs which
are supposed to receive the feedback may be varying
for the partial feedback configuration, besides it has
been proved that its performance is between the other
two configurations[14].
4.1.1 No feedback

Suppose that there is no feedback from the FC,
then the following steady-state Kalman filter equation
is obtained for all the local estimators,

P̄si = APsiA
T +Q, (39)

Ksi = P̄siH
T(HP̄siH

T +Rsi)
−1, (40)

Psi = (I −KsiH)P̄si . (41)

By substituting (39) and (40) into (41) it gives that

(I − (APsiA
T +Q)HT(H(APsiA

T +Q)×
HT +Rsi)

−1H)×
(APsiA

T +Q)− Psi = 0. (42)

Then Psi can be obtained by solving the above
algebraic Riccati equation. After that P̄si and Ksi

can be calculated with (39) and (40) respectively. Be-
sides, for the cross-covariance we have

P12=W e
1P12(W

e
2 )

T+
d∑

i=1
W v

1 (i)Q(W v
2 (i))

T. (43)

Hence P12 can be obtained in a similar manner
by solving (43) given Ksi . And finally we can obtain
K12 and Ω with (36) and (38) respectively.
4.1.2 Full feedback

Suppose that the fusion is performed at the time
step k − d, then the following equations are obtained
at the time step k − d+ 1,

Psi(k − d+ 1|k − d) =

AP ∗
si(k − d|k − d)AT +Q =

APsi(k − d|k − d)AT +Q, (44)

Psi(k − d+ 1|k − d|1) =
(I −Ksi(k − d+ 1)H)Psi(k − d+ 1|k − d), (45)

where

Ksi(k − d+ 1) =

Psi(k − d+ 1|k − d)HT ×
(HPsi(k − d+ 1|k − d)×HT +Rsi)

−1. (46)
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Since the next fusion happens at time step k, here
we can update Psi(·|·) recursively from time step
k − d+ 2 to k. In this manner, a function is obtained
to determine the relation between P̄si and Pc as

P̄si = f(Pc). (47)

For example, if d = 2, then in steady-state

P̄si = A(I − (APcA
T +Q)HT(H(APcA

T +Q)×
HT +Rsi)

−1H)(APcA
T +Q)AT +Q.

(48)

For the cross-covariance P12, according to (8) we
have

P12 = W e
1Pc(W

e
2 )

T +
d∑

i=1
W v

1 (i)Q(W v
2 (i))

T. (49)

Now Pc could be obtained by solving the simul-
taneous equations (35)–(36) (40)–(41)(47)(49). After
that P̄i, Ki, Pi, P12, K12 and Ω could be obtained
with (36)(38)(40)–(41)(48)–(49) respectively.
4.2 Multi-track case

For the multi-track case, by substituting (17) into
(26) it gives that

Ω = KNPNKT
N , (50)

where

KN = (ITNP−1
N IN )−1(ITNP−1

N ). (51)

Recall that PN is given in (4), it can be seen that
each element of PN , including Psi and Psisj , can be
obtained by using the similar method that we used for
the two-track case. Note that it requires to replace
(35) with (3) for the multi-track case.
5 Simulations and discussions

To evaluate the performance of the proposed fu-
sion algorithms, we consider a tracking scenario with
one target, four UAVs and a remote fusion center. A
1D constant velocity model for the target is given as

ẋ(t) = Fx(t) + Lq(t), (52)

where x = (x, ẋ) and q(t) is a white noise process
with a power spectral density qc. In order to imple-
ment the Kalman filter[8] on each local UAV, the target
model is discretized as in [16] and the measurement
model is given as (28).
5.1 MSE and NEES test

The following set of parameters are used for the
simulation. For the target, let ∆t = 1 s and qc =

1m2/s4. For the sensors, it is assumed that they are
available to obtain the position measurements of the
target with a sampling interval of 1 s and the variances
of the measurement noise are R1 = R2 = R3 =

R4 = R = 1m2. Furthermore, the communication

interval between the UAVs and the FC is set to be
5 s. For the FC, it would send the fused track back
to the UAVs according to a specific information feed-
back configuration. In detail, for the configuration of
no feedback, no UAV receives the feedback; for the
configuration of partial feedback, only UAVs 1 and 2

receive the feedback; and for the configuration of full
feedback, all the four UAVs receive the feedback.

Fig. 1 MSE for the configuration of no feedback

Fig. 2 MSE for the configuration of partial feedback

Fig. 3 MSE for the configuration of full feedback

A 1, 000 runs Monte Carlo simulation is per-
formed to verify the effectiveness of the proposed
fusion algorithm. We use the mean squared error
(MSE)[8]

MSE(k) =
1

1000

1000∑
i=1

(x̃ic(k|k))Tx̃ic(k|k) (53)
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as the performance metric. From Figs.1–3 it can be
seen that the MSE for the fused track is significant-
ly lower than the local tracks for all the three differ-
ent information feedback configurations, which illus-
trates that the fusion algorithms improve the estima-
tion accuracy effectively at each fusion step. With
respect to the estimation consistency, Figs.4–6 show
that the algorithms are consistent since most of the
values are found inside the 95% confidence interval
with the NEES test[16], which proves that the calcula-
tion of the cross-covariances is appropriate.

Fig. 4 NEES test for the configuration of no feedback

Fig. 5 NEES test for the configuration of partial feedback

Fig. 6 NEES test for the configuration of full feedback

5.2 Steady-state performance analysis
The objective of this part is to evaluate the perfor-

mance of the fusion algorithms with varying param-
eters. For the sake of simplicity, we mainly focus on
the configurations of no feedback and full feedback.
In the following, we define the averaged MSE as the
mean of {MSE(k)}nstepk=1 and the difference in rate be-
tween a and b as

∆(a, b) =
|trace(a)− trace(b)|

trace(a)
× 100. (54)

Tables 1 and 2 compare the trace of the predicted
steady-state MSE covariance Ω, the simulated steady-
state filter covariance Pc and the simulated averaged
MSE with varying values of qc, in which qc is the

spectral density of process noise, and R1 = R2 =

R3 = R4 = 10. For the configuration of no feed-
back, it is clear that Ω is in perfect agreement with
Pc. Besides, there is some minor difference between
the simulated averaged MSE and Ω. For the configu-
ration of full feedback, Pc becomes slightly different
from Ω. The difference could be due to the numeri-
cal round off error caused by inverting PN , which is
a high order matrix. There is no such calculation for
the no feedback case. Besides, the difference between
the simulated averaged MSE and Ω is still relatively
small. Note that there is no obvious correlation be-
tween qc and ∆(MSE, Ω). By comparing the result
between the no feedback and full feedback case, it
can be seen that the impact of information feedback
is negative, namely the feedback can lead to a certain
amount of loss in fusion accuracy.

Table 1 Comparison between Ω, Pc and the
simulated averaged MSE with vary-
ing values of qc for the configuration
of no feedback

qc/(m
2 · s−4) trace(Ω) trace(Pc) trace(MSE)

1 3.6671 3.6671 3.6551

20 15.3793 15.3793 15.4045

40 23.4075 23.4075 23.3469

60 30.4756 30.4756 30.4410

80 37.0929 37.0929 37.1751

100 43.4514 43.4514 43.4074

Table 2 Comparison between Ω, Pc and the
simulated averaged MSE with vary-
ing value of qc for the configuration
of full feedback

qc(m
2 · s−4) trace(Ω) trace(Pc) trace(MSE)

1 3.7029 3.7127 3.6982

20 15.3781 15.3804 15.3440

40 23.4077 23.4099 23.4858

60 30.4760 30.4775 30.4262

80 37.0932 37.0939 37.2282

100 43.4515 43.4517 43.3295

Tables 3 and 4 compare the trace of Ω, Pc and
the simulated averaged MSE with different number
of UAVs, in which R1 = R2 = R3 = R4 = 1. For
the configuration of no feedback, it can be seen that
Ω and Pc are still in perfect agreement. There is some
minor difference between the simulated avraged MSE
and Ω. For the configuration of full feedback, again,
the difference exists between Pc and Ω. Furthermore,
it is obvious that ∆(Pc, Ω) increases as the number
of UAVs increases. The reason is that the order of
PN is proportional to the number of UAVs, and by in-
verting a higher order matrix it could induce a larger
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error. Besides, the difference between the simulated
averaged MSE and Ω is still small. In both cases, it is
obvious that the fusion accuracy can be improved by
incorporating more UAVs to fuse their local tracks.

Table 3 Comparison between Ω, Pc and the
simulated averaged MSE with diffe-
rent number of UAVs for the configu-
ration of no feedback

N trace(Ω) trace(Pc) trace(MSE)

2 1.2943 1.2943 1.2878

4 1.0459 1.0459 1.0479

6 0.9631 0.9631 0.9606

8 0.9218 0.9218 0.9217

10 0.8969 0.8969 0.8975

Table 4 Comparison between Ω, Pc and the
simulated averaged MSE with diffe-
rent number of UAVs for the configu-
ration of full feedback

N trace(Ω) trace(Pc) trace(MSE)

2 1.2944 1.2947 1.2977

4 1.0462 1.0470 1.0459

6 0.9635 0.9646 0.9672

8 0.9222 0.9233 0.9209

10 0.8974 0.8986 0.9039

5.3 Comparison against existing fusion methods
In this section, the performance of the proposed

multi-UAV T2TF algorithm is compared against two
well-known fusion algorithms, namely the centralized
Kalman filter (CKF) and the Naive fusion. While the
CKF offers the optimal fusion result in the minimum
mean squared error (MMSE) sense, it requires all the
local measurements to be available in FC. The Naive
fusion[17] is the simplest fusion method in which the
correlation between the local estimations is omitted.
Table 5 shows that the accuracy of the proposed fu-
sion algorithm is higher than the Naive fusion, how-
ever it still cannot achieve the performance of CKF. In
addition, although the Naive fusion performs closely
to the proposed fusion algorithm in the sense of ac-
curacy, its fused covariance is much smaller than the
true one, thus it is not a consisten estimator.

Table 5 Comparison between centralized Kalman
filter, Naive fusion and the proposed multi-
UAV T2TF for the configuration of partial
feedback (R1 = R2 = R3 = R4 = 1)

Fusion algorithm Averaged MSE Consistency

Centralized Kalman filter 0.8941 Yes
Naive fusion 1.2486 No

Multi-UAV T2TF 1.2209 Yes

5.4 Discussion of the application of the multi-
UAV T2TF algorithms

While the effectiveness of the proposed multi-
UAV T2TF algorithms have been evaluated in the
above simulations, it’s essential to discuss several po-
tential isssues for its realization to the practical en-
vironment. Firstly, the way this system solves the
T2TF problem requires frequent use of communica-
tion bandwidth between the local UAVs and the FC,
which is less practical due to the bandwidth and pow-
er limitations in reality, hence it is promising to in-
troduce the event-based estimation techniques to re-
duce the communication load. Secondly, local UAVs
might communicate with FC at different rates, which
raises the problem of asynchronous T2TF. In the end,
the treatment of correlation between local estimates
becomes more complicated for the nonlinear estima-
tion problem, while linear fusion only requires the
calculation of the cross-covariances matrix, the exact
correlation between the nonlinear estimates has to be
represented by high-dimensional probability density
functions (PDFs), which is more difficult to store and
keep track of. So it is challenging to find a strategy for
suboptimal representation of the correlation between
the local nonlinear estimates.
6 Conclusions

In this paper, formulas are derived to calculate the
exact cross-covariances between local tracks for var-
ious information configurations in a multiple UAVs
network. Based on the derived formulas, the con-
sistent track-to-track fusion algorithms are developed
which can operate at arbitrary communication rate.
The steady-state fusion performance of the develope-
d algorithms for specific information feedback con-
figurations is predicted by solving the corresponding
discrete algebraic Riccati equations. Extensive Monte
Carlo simulation is conducted to verify the proposed
algorithms.
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