DOI: 10.7641/CTA.2017.60188

一类不确定运动系统的空间迭代学习控制

刘娇龙¹, 董新民^{1†}, 薛建平¹, 王海涛²

(1. 空军工程大学 航空航天工程学院,陕西西安 710038; 2. 哈尔滨飞行学院,黑龙江哈尔滨 150000)

摘要:本文讨论了一类在有限空间区间内重复运行的不确定运动系统的跟踪控制问题.通过引入空间状态微分 算子和空间复合能量函数,提出了一种空间周期的自适应迭代学习控制算法.首先利用空间状态微分算子,将系统 从时间域转化到空间域形式.然后基于空间复合能量函数设计了控制器,利用含限幅作用的参数自适应律逼近系 统中的不确定性,同时引入鲁棒项共同抑制非参数不确定性的影响.通过严格的数学分析,证明了在标准初始条件 和随机有界初始误差两种情况下的跟踪误差收敛性.最后通过列车仿真进一步验证了该算法的有效性.

关键词: 迭代学习控制; 空间运动系统; 复合能量函数; 系统不确定性; 初始状态误差

中图分类号: TP273 文献标识码: A

Spatial iterative learning control for a class of uncertain motion systems

LIU Jiao-long¹, DONG Xin-min^{1†}, XUE Jian-ping¹, WANG Hai-tao²

(1. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an Shaanxi 710038, China;

2. Air Force Harbin Flight Academy, Harbin Heilongjiang 150000, China)

Abstract: In this paper, the tracking control problem for a class of uncertain motion systems which are iteratively running in the spatial domain is discussed. By introducing a spatial state differentiator operator and spatial composite energy function, a spatial period adaptive iterative learning control algorithm is proposed. First, the spatial state differentiator is utilized to transform the motion systems from the time formulation to the spatial formulation. Then, the controller is designed based on the spatial composite energy function. The system uncertainties are learned by the adapting law with projection operator, and an additional robust item is introduced to work concurrently with the learning mechanism to tackle the non-parametric uncertainties. With rigorous mathematical analysis, the convergence properties of tracking error are derived under the identical initial condition and random initial condition within a bound. Finally, a numerical example of a train tracking control is further provided to illustrate the effectiveness of the proposed algorithm.

Key words: iterative learning control; spatial motion systems; composite energy function; system uncertainties; initial state error

1 引言(Introduction)

当系统在有限时间区间内重复进行同一种操作时, 迭代学习控制(iterative learning control, ILC)是一种 适用的控制技术.迭代学习控制通过重复运行不断修 正控制输入,对各种与迭代次数无关的干扰信号形成 完全抑制作用,使得系统输出在不断迭代过程中逐渐 实现对期望轨迹的完全跟踪.由于结构简单,对模型 精度要求低等特点,它受到越来越多的关注与应 用^[1-5].经典的迭代学习控制基于压缩映射原理,着力 于解决非线性系统的轨迹跟踪问题.然而,经典迭代 学习控制局限于全局Lipschitz连续的动力学系统,令 它的适用范围大打折扣.同时,基于压缩映射原理 的经典迭代学习控制也很难和现有基于Lyapunov的 控制方法相融合,使得其与当今控制理论格格不入. 为了解决这些限制,基于复合能量函数(composite energy function, CEF)的新迭代学习控制被提出^[6].复 合能量函数本质上是一种Lyapunov-like函数,它的提 出和应用,使得迭代学习控制能很好的与鲁棒控制、 自适应控制等方法相结合.同时,由于在控制器设计 时引入动力系统的局部Lipschitz项,迭代学习控制突 破了动力学系统必须是全局Lipschitz连续的约束.在 CEF理论框架下,具有参数不确定性^[6]、非参数不确 定性^[7-8]、输入不确定性^[9]以及状态或输出受限^[10]等 系统的学习控制问题得到有效解决.

收稿日期: 2016-04-04; 录用日期: 2016-11-16.

[†]通信作者. E-mail: dongxinmin@139.com; Tel.: +86 29-84787400.

本文责任编委:徐胜元.

国家自然科学基金项目(61473307, 61304120)资助.

Supported by National Natural Science Foundation of China (61473307, 61304120).

现有的迭代学习控制普遍基于系统在时间域上重 复这一前提,即系统反复的在时间区间[0,T]内执行 跟踪任务.因此,系统的状态、内部不确定性、外部干 扰,都在时间域[0,T]上具有重复性.然而,在很多实 际的系统中,系统的这种重复性/周期性并不存在于时 间区间,而存在于空间区间.例如,火车或地铁总是反 复的从A站开往B站.系统在每次任务过程中经过的 空间位置相同,但经历的时间却不一定相等.另外,有 很多运动系统不确定性或外部干扰都是空间位置或 系统状态的函数,而非时间的函数. 文献[11]中,卫星 所受到的外部干扰被建模成空间位置的函数. 文献 [12]在研究火车所受空气阻力时指出,火车经过隧道 时受到阻力主要来自车头所受的压力,而压力是火车 位置和速度的函数. 文献[13-14]研究了空中加油对 接控制,受油机在接近加油机并不断尝试对接的过程, 可以视为其相对加油机在空间域上做重复的运动;另 外,受油机所受的尾流气动影响,显然是受油机与加 油机相对位置的函数. 这些运动都具有一个共同的性 质,即空间坐标上具有重复特性,而系统的不确定性 或干扰都是空间位置和状态的函数.如何将已有基于 时间的迭代学习控制,拓展到基于空间的迭代学习控 制,使该理论能够适用于诸如上述的更多的实际系统, 无疑具有很大的理论价值和实际应用意义.

近年来,基于空间周期的学习控制受到越来越多的关注. 文献[15]基于运动系统空间位置,研究了初始状态控制终端状态的迭代学习算法. 文献[16]研究了三维抛射运动的迭代学习控制. 抛射体的终端状态根据空间位置来定义,并在空间域上提出了迭代学习算法. 文献[17–19]在研究电机转速控制时,对于系统中基于位置或速度的未知干扰,采用状态周期重复学习控制进行自适应补偿. 文献[20]研究了旋转机械系统在具有基于位置的单周期、多周期干扰时,如何利用空间周期自适应学习控制进行转速控制. 文中的系统周期体现在空间域上,收敛性分析也基于空间域进行. 文献[21]研究了汽车二维运动的空间学习算法. 文中的期望轨迹在y轴具有周期性,而学习控制算法根据上一周期空间坐标下的误差来更新下一周期对应坐标处的控制输入,最终达到完美跟踪性能.

现有的空间学习控制研究,主要是在重复学习控制框架下,对系统中基于空间位置的参数型不确定性进行学习补偿.然而,对于在空间域[0,*s*_p]上迭代运行的实际运动系统,如何充分利用空间周期特性进行空间迭代学习控制,还鲜有报道.基于此,本文考虑在空间区间[0,*s*_p]上重复执行同一操作的运动系统,提出了基于复合能量函数的空间迭代学习控制算法.通过严格的理论证明和实际的列车运行算例证明了算法的有效性.文章的主要创新点及工作在于:1)引入空间状态微分算子变换,提出空间域形式的复合能量函数,将已有的时间周期迭代学习控制拓展到空间周期

迭代学习控制; 2) 解决了基于空间位置的参数型不确 定性以及基于空间位置和运动速度的非参数不确定 性的学习抑制问题; 3) 证明了所提出的控制律能够有 效应对初始状态存在随机误差的情况.

本文组织结构如下:第2节详细阐述了本文所研究 系统的基本定义、需要的合理假设以及收敛性分析所 需的相关引理;第3节给出了空间迭代学习控制算法, 并对系统参数的有界性和控制误差的收敛性进行了 数学证明;第4节给出了实际验证例子;第5节总结了 全文工作.

2 问题描述(Problem formulation)

考虑如下运动系统:

$$\begin{cases} \frac{\mathrm{d}x_i}{\mathrm{d}t} = v_i, \\ \frac{\mathrm{d}v_i}{\mathrm{d}t} = \boldsymbol{\theta}^{\mathrm{T}}(x_i)\boldsymbol{\xi}(v_i, x_i) + b(v_i, x_i) + u_i(t), \end{cases}$$
(1)

其中: $i \in \mathbb{N}^+$ 为迭代次数, $x_i n v_i \beta$ 别代表系统位置 和速度. 在每次迭代过程, $x_i \in [0, s_p]$, s_p 是系统在终 点处的空间位移. $\theta^T(x_i)\xi(v_i, x_i)$ 是系统中的参数化 不确定性部分, 其中: $\theta(x_i) \in \mathbb{R}^m$ 是未知的与系统位置 相关的连续向量函数, $\xi(v_i, x_i) \in \mathbb{R}^m$ 是已知的基于 系统状态的连续向量函数. $b(v_i, x_i) \in \mathbb{R}$ 是系统中的 非参数化不确定性部分, 满足局部Lipschitz连续, 即 $|b(v_i, x) - b(v_d, x)| \leq \beta(x, v_i, v_d) |v_i - v_d|, \forall v_i, v_d \in \mathbb{R}^+$, 其中 $\beta(x, v_i, v_d)$ 为已知的非负连续函数. $u_i(t)$ 是 系统的输入, $u_i(t) > 0$ 时表示加速, $mu_i(t) < 0$ 时表 示制动.

为了便于阐述本文提出的基于空间的迭代学习控制算法,首先给出如下假设和定义.

假设1 运动系统速度在整个运行过程中朝一 个方向前进,且速度v > 0.

注1 实际上,很多系统正常运行时都满足此假设.如 启动后的火车、地铁,定直平飞的飞机,绕地球轨道旋转的卫 星等等.当运动系统在启动和停止时,可以选择在速度接 近0时切换到其他控制器上.

定义1 系统的运行总距离,即空间状态*s*定义如下:

$$s = \int_0^t \frac{|\mathrm{d}x|}{\mathrm{d}\tau} \mathrm{d}\tau = \int_0^t |v(\tau)| \mathrm{d}\tau = \int_0^t v(\tau) \mathrm{d}\tau.$$
 (2)

注 2 根据假设1和定义1可知, s随着时间t增加而单 调递增, 两者具有双射关系, s = f(t)存在反函数 $t = f^{-1}(s)$. 又有x(0) = 0, 所以s = x. 因此, v(t)可以表示为关于s的函数 $v(f^{-1}(s))$, 同时系统(1)中的参数都能以s为自变量进行描述. 下文中, 将以s代替系统每次迭代过程中的空间位置 x_i .

定义 2 考虑运动系统在空间状态s域重复运行, 即每次迭代中 $s \in [0, s_p]$. s_p 为系统每次运动的总路 程, 定义如下:

$$s_{\rm p} = \int_0^{T_i} v_i(\tau) \,\mathrm{d}\tau,\tag{3}$$

其中 T_i 为系统第i次运行过程中,从位置0运动到 s_p 所用的总时间.

注 3 需要注意的是,本文所考虑的*T_i*可能是迭代变化的.系统的周期性存在于的空间状态*s*域,而非时间*t*域.为了充分利用系统在空间上的周期性,抑制基于空间状态*s*与速度*v*的不确定性干扰,采用空间状态微分算子将系统(1)变化为基于*s*的空间形式.

定义3 定义关于空间状态的微分算子如下:

$$\nabla \stackrel{\Delta}{=} \frac{\mathrm{d}}{\mathrm{d}s} = \frac{1}{v} \frac{\mathrm{d}}{\mathrm{d}t}.$$
 (4)

基于以上假设和定义,利用微分算子(4)可将系统(1)转化为基于空间状态s的微分形式:

$$\nabla v_i = \frac{1}{v_i(s)} (\boldsymbol{\theta}^{\mathrm{T}}(s)\boldsymbol{\xi}(v_i,s) + b(v_i,s) + u_i(s)),$$

$$s \in [0, s_{\mathrm{p}}].$$
(5)

期望跟踪信号为

$$\begin{cases} \frac{\mathrm{d}x_{\mathrm{d}}}{\mathrm{d}t} = v_{\mathrm{d}}, \\ \frac{\mathrm{d}v_{\mathrm{d}}}{\mathrm{d}t} = h_{\mathrm{d}}(v_{\mathrm{d}}, x_{\mathrm{d}}), \end{cases}$$
(6)

其中h(v_d, x_d)是关于速度v和位置x的光滑连续函数.

同样的,利用算子⊽可以得到期望跟踪信号的空 间域表达式

$$\nabla v_{\rm d} = \frac{h_{\rm d}}{v_{\rm d}}.\tag{7}$$

对应地, $v_d(s)$ 可通过 $\nabla v_d \alpha s$ 域积分而得. 此时, 系统 变量转化为空间域上的速度v(s), 对应的跟踪误差定 义在空间s域上

$$e_{v,i}(s) = v_i(s) - v_d(s).$$
 (8)

考虑到系统从速度为0开始启动时采用其他控制 律可能带来初始跟踪误差,因此当s = 0时,考虑两种 初始位置误差情况:一是 $e_{v,i}(0) = 0$,即满足标准初 始条件;二是 $e_{v,i}(0) = rand(i) \cdot C$,其中:rand(i) \in [-1,1], C是误差界限,即初始误差在有界范围内随机 变化.

为了方便下文的控制律设计与收敛性证明,给出以下引理.

引理 1[22]

$$(\theta_j - \hat{\theta}_j)^2 \ge (\theta_j - \boldsymbol{P}_{\theta}(\hat{\theta}_j))^2, \qquad (9)$$

其中: $\hat{\theta}_j = \hat{\theta}_j(s)$ 表示对第j个参数 θ_j 的估计值; $P_{\theta}(\hat{\theta}_j)$ 表示 $\hat{\theta}_j$ 的限幅函数, 定义如下:

$$\boldsymbol{P}_{\theta}(\hat{\theta}_{j}) \triangleq \begin{cases} \hat{\theta}_{j}, & |\hat{\theta}_{j}| \leqslant \theta_{j}^{*}, \\ \operatorname{sgn}(\hat{\theta}_{j})\theta_{j}^{*}, & |\hat{\theta}_{j}| > \theta_{j}^{*}, \end{cases}$$
(10)

其中: $sgn(\cdot)$ 为符号函数, $\hat{\theta}_i^* \to \hat{\theta}_j$ 的上限值. 进一步, 对

于向量 $\boldsymbol{\theta} \in \mathbb{R}^m$,有

 $(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_i)^{\mathrm{T}} \Gamma(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_i) \ge (\boldsymbol{\theta} - \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_i))^{\mathrm{T}} \Gamma(\boldsymbol{\theta} - \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_i)),$ (11)
其中: $\Gamma \in \mathbb{R}^{m \times m}$ 为对角元素皆大于0的对角矩阵, $\hat{\boldsymbol{\theta}}_i$ 是 $\boldsymbol{\theta}$ 的估计值.

引理 2^[7] 对于向量*a*, *b*, *c*和矩阵*D*, 下式成立:
$$(a - b)^{T}D(a - b) - (a - c)^{T}D(a - c) =$$

 $[2(a - b) + (b - c)]^{T}D(c - b).$ (12)

特别地,对于标量a, b, c, 上式可以表示为

$$(a-b)^{2} - (a-c)^{2} = [2(a-b) + (b-c)](c-b).$$
 (13)

在下文中,将使用到关于误差的 L^2 范数,定义为 $||e_{v,i}||_{s_p} \triangleq (\int_0^{s_p} (e_{v,i}/v_i)^2 ds)^{1/2}$. 控制律设计和收敛 性分析都在s域进行. 为了简化表示, s将在不易产生 混淆的情况下省略掉.

3 主要结果(Main results)

本节针对在空间域 $[0, s_p]$ 内重复执行跟踪任务的运动系统(1),设计空间迭代学习控制律,使得当 $i \rightarrow \infty$ 时,系统输出在空间s域内完全跟踪期望轨迹.在空间s域设计学习控制算法为

$$u_i = -\hat{\boldsymbol{\theta}}_i \boldsymbol{\xi}_i - \hat{b}_i + v_i \frac{h_d}{v_d} - K_1 \frac{e_{\mathbf{v},i}}{v_i} - \beta_i e_{\mathbf{v},i}, \quad (14)$$

$$\hat{\boldsymbol{\theta}}_{i} = \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_{i-1}) + \Gamma \frac{e_{\mathrm{v},i}}{v_{i}} \boldsymbol{\xi}_{i}, \ \hat{\boldsymbol{\theta}}_{0} = 0, \tag{15}$$

$$\hat{b}_i = P_{\rm b}(\hat{b}_{i-1}) + K_2 \frac{e_{{\rm v},i}}{v_i}, \ \hat{b}_0 = 0, \tag{16}$$

其中: K_1 为正的反馈增益系数; K_2 为正的参数学习系 数; $\Gamma = \text{diag}\{\gamma_1, \gamma_2, \cdots, \gamma_m\}$ 是表示学习增益系数 的对角矩阵, $\gamma_j > 0, j = 1, 2, \cdots, m; \hat{\theta}_i \triangleq \hat{\theta}_i(s) \pi \hat{b}_i \triangleq$ $\hat{b}(v_i, s)$ 分别是在空间位置s处对参数 $\theta(s) \pi b(v_i, s)$ 的第*i*次估计值; $u_i \triangleq u_i(s), e_{v,i} \triangleq e_{v,i}(s), v_i \triangleq v_i(s),$ $\boldsymbol{\xi}_i \triangleq \boldsymbol{\xi}(v_i, s), \frac{h_d}{v_d} \triangleq \frac{h_d}{v_d}(s), \beta_i \triangleq \beta(s, v_i, v_d).$ 如引理 1, $\boldsymbol{P}_{\theta} \pi \boldsymbol{P}_{\text{b}}$ 代表限幅函数, 对 \boldsymbol{P}_{θ} 有

$$\boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\theta}) = [\boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\theta}_1) \ \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\theta}_2) \ \cdots \ \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\theta}_m)]^{\mathrm{T}}.$$
 (17)

注 4 由假设1可知v > 0,因此控制律(14)-(16)中包 含了 v_i 的倒数是可行的.另外,本文考虑期望速度 $v_d(s) > 0$. 当控制过程出现较大误差而导致速度 v_i 减小至趋于0时,控制 律中的 $e_{v,i}/v_i$ 项为负且幅值迅速增大.由式(14)各组成项可 知,这将使控制量 u_i 迅速增大,使运动系统速度 v_i 增加而远离 零点.

注 5 从式(33)可以看出, 限幅函数的引入能够保证任 意次迭代过程中系统所有变量的有界性. 对于限幅函数的上 界值, 可通过多种方法进行估计. 首先, 可以通过以往的控制 经验进行估计; 其次, 在实际系统中, 不确定性或外部干扰总 是有界的, 可以通过硬件的约束或者简单的建模来获取这个 界限;最后,可以通过选择足够大的数值来作为上界值,而这 并不会影响控制器的性能.

注6 在控制律(14)的设计中,采用因果的学习律对参数不确定性和非参数不确定性分别进行估计.对于不确定参数6,由于已知部分系统信息ξ,因此可以充分利用已知信息进行参数自适应律(15)的设计;而对于非参数不确定性b,由于系统信息完全未知,因此在参数自适应律(16)的基础上,必须额外引入一个鲁棒控制项β_ie_{v,i}.

定理1 在假设1和控制律(14)作用下,运动系 统(1)具有如下性质:

性质1 当初始误差 $e_{v,i}(0) = 0$ 时,系统所有变量在状态域 $[0, s_p]$ 内有界,系统在整个空间区间 $[0, s_p]$ 上, 有 $e_{v,i}(s) \rightarrow 0(i \rightarrow \infty)$.

性质 2 当初始误差 $e_{v,i}(0) = \operatorname{rand}(i) \cdot C$,系统 所有变量在状态域 $[0, s_p]$ 内有界.同时,存在 $\{e_{v,i}\}$ 的 子集 $\{e_{v,i_j}\}$,对于任意 $\delta > 0$,当 $i_j \to \infty$ 时,有 $\|e_{v,i}\|_{s_p}$ $\leqslant \varepsilon$.其中 $\varepsilon = \sqrt{(C^2 + \delta)/2K_1}$.

注 7 在随机初始误差的情况下,迭代学习控制无法 获得渐近收敛的控制性能.性质2指出,随着迭代次数增加, 跟踪误差的L² 范数在绝大多数情况下小于界限ε,仅在有限 次数下会超出这个界限.从下文的证明中可以得出,误差 限ε与初始误差界限C成正比,与反馈增益K₁成反比.这表明 反馈系数越大,对于抑制初始随机误差有更好的效果.但在实 际过程中K₁的选择也受到物理性能的约束.

证 为了分析控制律的收敛性能,设计基于空间*s* 域的复合能量函数

$$E_i(s) = \frac{1}{2}e_{\mathbf{v},i}^2(s) + \frac{1}{2}\int_0^s \tilde{\boldsymbol{\theta}}_i^{\mathrm{T}} \Gamma^{-1} \tilde{\boldsymbol{\theta}}_i \mathrm{d}\tau + \frac{1}{2K_2}\int_0^s \tilde{b}_i^2 \mathrm{d}\tau, \quad (18)$$

其中: $\tilde{\boldsymbol{\theta}}_i \triangleq \boldsymbol{\theta}(s) - \hat{\boldsymbol{\theta}}_i(s)$ 是参数不确定项的估计误差, $\tilde{b}_i = b_{\rm d} - \hat{b}_i$ 是非参数不确定项的估计值 $\hat{b}(v_i, s)$ 与期 望值 $b_{\rm d} = b(v_{\rm d}, s)$ 的误差. 这里,将式(18)中CEF右边 3 项分别表示为 $E_i^1(s) = (1/2)e_{v,i}^2(s), E_i^2(s) = 1/2$ $\int_0^s \tilde{\boldsymbol{\theta}}_i^{\rm T} \Gamma^{-1} \tilde{\boldsymbol{\theta}}_i \mathrm{d}\tau, E_i^3(s) = (1/2K_2) \int_0^s \tilde{b}_i^2 \mathrm{d}\tau.$

本文的收敛性分析将在空间域s进行,并借鉴基于时间复合能量函数的收敛性证明思路.首先,给出 CEF在空间域上的迭代差分形式并推导其递减特性; 然后,证明CEF的有界性;最后,得出在两种初始误差 情况下的跟踪误差收敛性能.

1) CEF差分. 考虑相邻两次迭代过程的CEF差分:

$$\begin{split} \Delta E_i(s) &= E_i(s) - E_{i-1}(s) = \\ \frac{1}{2} e_{\mathbf{v},i}^2(s) - \frac{1}{2} e_{\mathbf{v},i-1}^2(s) + \\ \frac{1}{2} \int_0^s \tilde{\boldsymbol{\theta}}_i^{\mathrm{T}} \Gamma^{-1} \tilde{\boldsymbol{\theta}}_i \mathrm{d}\tau - \frac{1}{2} \int_0^s \tilde{\boldsymbol{\theta}}_{i-1}^{\mathrm{T}} \Gamma^{-1} \tilde{\boldsymbol{\theta}}_{i-1} \mathrm{d}\tau + \end{split}$$

$$\frac{1}{2K_2} \int_0^s \tilde{b}_i^2 d\tau - \frac{1}{2K_2} \int_0^s \tilde{b}_{i-1}^2 d\tau = \Delta E_i^1(s) + \Delta E_i^2(s) + \Delta E_i^3(s). \quad (19)$$

$$\Re \mp \Delta E_i^1(s), \not\equiv \frac{1}{2} e_{v,i}^2(s) - \frac{1}{2} e_{v,i-1}^2(s) = \int_0^s e_{v,i}(\tau) \nabla e_{v,i}(\tau) d\tau + \frac{1}{2} e_{v,i}^2(0) - \frac{1}{2} e_{v,i-1}^2(s),$$

其中 $\nabla e_{v,i}$ 是 $e_{v,i}$ 关于状态s的导数,代入式(5)和式(7),可表示为

$$\nabla e_{\mathbf{v},i} = \nabla (v_i - v_d) =$$

$$\nabla v_i - \nabla v_d =$$

$$\frac{1}{v_i} (\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\xi}_i + b_i + u_i) - \frac{h_d}{v_d}.$$
(21)

代入控制律(14), 可进一步得到

根据假设1,以及未知项 $b(v_i, x_i)$ 满足局部Lip-schitz连续,有

$$\begin{split} \frac{(b_i - b_{\mathrm{d}})e_{\mathrm{v},i}}{v_i} \leqslant \\ |\frac{(b_i - b_{\mathrm{d}})e_{\mathrm{v},i}}{v_i}| &= \frac{|b_i - b_{\mathrm{d}}| \cdot |e_{\mathrm{v},i}|}{v_i} \leqslant \end{split}$$

(20)

$$\frac{\beta_i |v_i - v_{\rm d}| \cdot |e_{\rm v,i}|}{v_i} = \frac{\beta_i e_{\rm v,i}^2}{v_i}.$$
(24)

将式(24)代入式(23),可得

$$\Delta E_{i}^{1}(s) \leq \int_{0}^{s} \frac{\tilde{\theta}_{i}^{T} \boldsymbol{\xi}_{i} e_{v,i}}{v_{i}} d\tau + \int_{0}^{s} \frac{\tilde{b}_{i} e_{v,i}}{v_{i}} d\tau - K_{1} \int_{0}^{s} \frac{e_{v,i}^{2}}{v_{i}^{2}} d\tau + \frac{1}{2} e_{v,i}^{2}(0) - \frac{1}{2} e_{v,i-1}^{2}(s).$$
(25)

对于 $\Delta E_i^2(s)$,利用引理1和引理2,并代入参数学 习律(15),可以得到

$$-(K_{1} + \frac{K_{2}}{2}) \int_{0}^{s} (\frac{e_{\mathbf{v},i}}{v_{i}})^{2} d\tau + \frac{1}{2} e_{\mathbf{v},i}^{2}(0) - \frac{1}{2} \int_{0}^{s} \frac{e_{\mathbf{v},i}^{2}}{v_{i}^{2}} \boldsymbol{\xi}_{i}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{\xi}_{i} d\tau - \frac{1}{2} e_{\mathbf{v},i-1}^{2}(s) \leqslant -K_{1} \int_{0}^{s} (\frac{e_{\mathbf{v},i}}{v_{i}})^{2} d\tau + \frac{1}{2} e_{\mathbf{v},i}^{2}(0) - \frac{1}{2} e_{\mathbf{v},i-1}^{2}(s), \quad (28)$$

其中 $\int_{0}^{s} \tilde{\boldsymbol{\theta}}_{i}^{\mathrm{T}} \boldsymbol{\xi}_{i} e_{\mathrm{v},i} / v_{i} \mathrm{d}\tau \, \pi \int_{0}^{s} \tilde{b}_{i} e_{\mathrm{v},i} / v_{i} \mathrm{d}\tau \, \mathrm{\pi cd}(25)$ -(27)相互抵消. 2) $E_i(s)$ 的有界性. 在第i次迭代时, $E_i(s)$ 关于s的导数为 $\nabla E_i(s) = \nabla E_i^1 + \nabla E_i^2 + \nabla E_i^3.$ (29)对于 \(\nabla E_i^1\), 代入式(15)-(16)(22)和式(24), 可得 $\nabla E_i^1 = e_{\mathbf{v},i} \nabla e_{\mathbf{v},i} =$ $e_{\mathbf{v},i}(\frac{\tilde{\boldsymbol{\theta}}_i^{\mathrm{T}}\boldsymbol{\xi}_i}{v} + \frac{b_i - b_{\mathrm{d}}}{v} + \frac{\tilde{b}_i}{v} - K_1 \frac{e_{\mathbf{v},i}}{v^2} - \frac{\beta_i e_{\mathbf{v},i}}{v}) =$ $\frac{\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{\xi}_{i}}{v_{i}}e_{\mathrm{v},i}-\frac{\boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\xi}_{i}}{v_{i}}e_{\mathrm{v},i}-\frac{\boldsymbol{\xi}_{i}^{\mathrm{T}}\boldsymbol{\Gamma}^{\mathrm{T}}\boldsymbol{\xi}_{i}}{v_{i}^{2}}e_{\mathrm{v},i}^{2}+$ $\frac{b_i - b_{\rm d}}{v_i} e_{{\rm v},i} - \frac{\beta_i}{v_i} e_{{\rm v},i}^2 + \frac{b_{\rm d}}{v_i} e_{{\rm v},i} \frac{P_{\rm b}(\hat{b}_{i-1})}{v}e_{{\rm v},i}-K_2\frac{e_{{\rm v},i}^2}{v!}-K_1\frac{e_{{\rm v},i}^2}{v!}\leqslant$ $\frac{\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{\xi}_{i}}{\frac{\partial \boldsymbol{\xi}_{i}}{\partial \boldsymbol{y}_{i}}}e_{\boldsymbol{\mathrm{v}},i}-\frac{\boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\xi}_{i}}{\frac{\partial \boldsymbol{\xi}_{i}}{\partial \boldsymbol{y}_{i}}}e_{\boldsymbol{\mathrm{v}},i}-\frac{\boldsymbol{\xi}_{i}^{\mathrm{T}}\boldsymbol{\Gamma}^{\mathrm{T}}\boldsymbol{\xi}_{i}}{\frac{\partial \boldsymbol{\xi}_{i}}{\partial \boldsymbol{y}_{i}}}e_{\boldsymbol{\mathrm{v}},i}^{2}+$ $\frac{b_{\rm d}}{v_{\rm i}}e_{{\rm v},i} - \frac{P_{\rm b}(\hat{b}_{i-1})}{v_{\rm i}}e_{{\rm v},i} - K_2 \frac{e_{{\rm v},i}^2}{v^2} - K_1 \frac{e_{{\rm v},i}^2}{v^2}.$ (30)对于 ∇E_i^2 ,代入式(15),有 $\nabla E_i^2 = \frac{1}{2} \tilde{\boldsymbol{\theta}}_i^{\mathrm{T}} \Gamma^{-1} \tilde{\boldsymbol{\theta}}_i =$ $\frac{1}{2}(\boldsymbol{\theta}^{\mathrm{T}} - \boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\theta}_{i-1}) - \boldsymbol{\xi}_{i}^{\mathrm{T}}\boldsymbol{\Gamma}^{\mathrm{T}}\frac{\boldsymbol{e}_{\mathrm{v},i}}{\boldsymbol{u}})\boldsymbol{\Gamma}^{-1} \times$ $(\boldsymbol{\theta} - \boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_{i-1}) - \Gamma \frac{e_{\mathbf{v},i}}{v_i} \boldsymbol{\xi}_i) =$ $\frac{1}{2}\boldsymbol{\theta}^{\mathrm{T}}\boldsymbol{\Gamma}^{-1}\boldsymbol{\theta} - \boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\Gamma}^{-1}\boldsymbol{\theta} - \frac{e_{\mathrm{v},i}}{v}\boldsymbol{\xi}_{i}^{\mathrm{T}}\boldsymbol{\theta} +$ $\boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\xi}_{i}\frac{e_{\mathrm{v},i}}{m}+\frac{1}{2}\boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\Gamma}^{-1}\boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_{i-1})+$ $\frac{1}{2}\boldsymbol{\xi}_{i}^{\mathrm{T}}\boldsymbol{\Gamma}\boldsymbol{\xi}_{i}\frac{e_{\mathrm{v},i}^{2}}{e_{\mathrm{v},i}^{2}}.$ (31)对于 ∇E_i^3 ,代入式(16),有 $\nabla E_i^3 = \frac{1}{2K_2}\tilde{b}_i^2 =$ $\frac{1}{2K_{\rm c}}(b_{\rm d} - P_{\rm b}(\hat{b}_{i-1}) - K_2 \frac{e_{\rm v,i}}{n})^2 =$ $\frac{b_{\rm d}^2}{2K_2} + \frac{P_{\rm b}^2(\hat{b}_{i-1})}{2K_2} + \frac{K_2}{2}\frac{e_{{\rm v},i}^2}{v^2} \frac{b_{\rm d}P_{\rm b}(\hat{b}_{i-1})}{K_2} - \frac{b_{\rm d}e_{{\rm v},i}}{v_i} + \frac{e_{{\rm v},i}P_{\rm b}(\hat{b}_{i-1})}{v_i}.$ (32)联立式(29)-(32),可得 $\nabla E_i \leqslant \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\Gamma}^{-1} \boldsymbol{\theta} - \boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}} (\hat{\boldsymbol{\theta}}_{i-1}) \boldsymbol{\Gamma}^{-1} \boldsymbol{\theta} +$ $\frac{1}{2}\boldsymbol{P}_{\boldsymbol{\theta}}^{\mathrm{T}}(\hat{\boldsymbol{\theta}}_{i-1})\boldsymbol{\Gamma}^{-1}\boldsymbol{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}_{i-1}) + \frac{b_{\mathrm{d}}^{2}}{2K_{\mathrm{c}}}$

$$\frac{b_{\rm d}P_{\rm b}(\hat{b}_{i-1})}{K_2} + \frac{P_{\rm b}^2(\hat{b}_{i-1})}{2K_2} - K_1 \frac{e_{\rm v,i}^2}{v_i^2}, \quad (33)$$

其中式中的 $\theta^{T} \boldsymbol{\xi}_{i} e_{v,i} / v_{i}, b_{d} e_{v,i} / v_{i}, P_{\theta}^{T}(\hat{\boldsymbol{\theta}}_{i-1}) \boldsymbol{\xi}_{i} e_{v,i} / v_{i}, P_{b}(\hat{b}_{i-1}) e_{v,i} / v_{i}$ 被相互抵消.由于 $\theta n b_{d}$ 是连续函数,因此在有限状态区间[0, s_{p}]内必然有界.另外, $P_{b}(\hat{b}_{i-1}) n P_{\theta}(\hat{\boldsymbol{\theta}}_{i-1})$ 显然是有界的.因此,总存在一个足够大的 $e_{v,i}$,使得 $\nabla E_{i}(s) < 0$.又因为 $E_{i}(0)$ 有界,所以 $E_{i}(s)$ 有界.根据 $E_{i}(s)$ 的构造(18),可得到 $e_{v,i}, \tilde{\boldsymbol{\theta}}_{i}$ 和 \tilde{b}_{i} 的有界性,进而可得 $v_{i}, \hat{\boldsymbol{\theta}}_{i}, \hat{b}_{i}$ 以及 u_{i} 的有界性.

3) 误差收敛特性.

反复应用式(28),可得到CEF在 $i \rightarrow \infty$ 时的表达 式为

$$\lim_{i \to \infty} E_i(s) =$$

$$E_1(s) + \lim_{i \to \infty} \sum_{j=1}^i \Delta E_j(s) \leqslant$$

$$E_1(s) - \lim_{i \to \infty} K_1 \sum_{j=1}^i \int_0^s \left(\frac{e_{\mathbf{v},j}}{v_j}\right)^2 \mathrm{d}\tau +$$

$$\lim_{i \to \infty} \frac{1}{2} \sum_{j=1}^i e_{\mathbf{v},j}^2(0).$$
(34)

当
$$e_{\mathbf{v},j}(0) = 0$$
时, 式(34)可以表示为
$$\lim_{i \to \infty} E_i(s) + \lim_{i \to \infty} K_1 \sum_{j=1}^i \int_0^s \left(\frac{e_{\mathbf{v},j}}{v_j}\right)^2 \mathrm{d}\tau \leqslant E_1(s).$$
(35)

由 于 $E_1(s)$ 和 $E_i(s)$ 是 有 界 的,因 此 $\lim_{i\to\infty} \frac{1}{2} \sum_{j=1}^{i-1} e_{v,j}^2(s)$ 存在且有界.进而可直接得到 $\lim_{i\to\infty} e_{v,i}^2(s) = 0$ 以及 $\lim_{i\to\infty} e_{v,i}(s) = 0, s \in [0, s_p]$.从而 完成定理1中的性质1证明.

当 $e_{v,i}(0) = rand(i) \cdot C$ 时,不能得到误差的一致收敛特性.但可以得到定理1中性质2的收敛特性.采用类似文献[22]中的反证法进行证明.

假设存在正整数N,对于任意i > N,都有 $||e_{v,i}||_{s_p}$ > ε .

ドモ
此时, 令
$$s = s_{\rm p}$$
, 则式(34)可以表示为

$$\lim_{i \to \infty} E_i(s_{\rm p}) \leqslant$$

$$E_1(s_{\rm p}) - \lim_{i \to \infty} K_1 \sum_{j=1}^i \int_0^{s_{\rm p}} (\frac{e_{{\rm v},j}}{v_j})^2 d\tau + \lim_{i \to \infty} \frac{1}{2} iC^2 =$$

$$E_1(s_{\rm p}) - K_1 \sum_{j=1}^N \int_0^{s_{\rm p}} (\frac{e_{{\rm v},j}}{v_j})^2 d\tau + \frac{1}{2} NC^2 -$$

$$\lim_{i \to \infty} K_1 \sum_{j=N+1}^i \int_0^{s_{\rm p}} (\frac{e_{{\rm v},j}}{v_j})^2 d\tau + \lim_{i \to \infty} \frac{1}{2} (i-N)C^2 \leqslant$$

$$B - \lim_{i \to \infty} K_1 (i-N)\varepsilon^2 + \lim_{i \to \infty} \frac{1}{2} (i-N)C^2 =$$

$$B + \lim_{i \to \infty} (i-N)(\frac{1}{2}C^2 - K_1\varepsilon^2), \qquad (36)$$
其中 $B = E_1(s_{\rm p}) - K_1 \sum_{j=1}^N \int_0^{s_{\rm p}} (e_{{\rm v},j}/v_j)^2 d\tau + \frac{1}{2}NC^2,$

显 然 *B* 是 有 界 的. 那 么 对 于 任 意 $\delta > 0$, 取 $\varepsilon = \sqrt{(C^2 + \delta)/(2K_1)}$, 代入式(36), 有

$$\lim_{i \to \infty} E_i(s_p) \leqslant B + \lim_{i \to \infty} (i - N) (\frac{1}{2}C^2 - K_1 \varepsilon^2) = B - \lim_{i \to \infty} \frac{1}{2} (i - N) \delta.$$
(37)

当*i* → ∞时,式(37)等号右边表达式将趋于-∞, 从而与 $E_i(s_p)$ 为正数相矛盾.因此,必然存在 $\{e_{v,i}\}$ 的 子序列 $\{e_{v,i_j}\}$,对于任意 $\delta > 0$,都有 $||e_{v,i_j}||_{s_p} \leq \varepsilon$,其 中 $\varepsilon = \sqrt{(C^2 + \delta)/(2K_1)}$.从而完成了定理1中性质2 的证明.

注8 在考虑随机有界初始误差的情况时,这里证明 了采用本文设计的控制律能够实现跟踪误差在绝大多数迭代 次数时的收敛性能.对于更好的解决存在初始误差的情况,文 献[23-24]等方法都可以被使用,这里不再赘述.

注9 本文在空间域上,沿用了经典时间域迭代学习 控制的证明思路,完成了空间迭代学习控制的证明.从证明 过程可以看出,当运动系统在空间轨迹具有重复特性时,利用 空间状态的转换算子、学习算法和复合能量函数,能够很好 的处理基于空间位置和系统状态的不确定性干扰,提升控制 系统的跟踪性能.而对于此类系统,传统的时间域ILC是无法 直接应用的.

4 仿真算例(Simulation examples)

考虑城轨列车[25-26]运动系统动力学模型如下:

$$\begin{cases} \frac{\mathrm{d}s}{\mathrm{d}t} = v, \\ \frac{\mathrm{d}v}{\mathrm{d}t} = 10^{-3} \mathrm{g}[u - k_1 - k_2 v - k_3 v^2 - (38)] \\ i(s) - \frac{600}{R(s)}], \end{cases}$$

其中: g = 9.8 m/s²为重力加速度, k_1 为滚动机械阻 力, k_2 是其他机械阻力系数, k_3 表示外部空气阻力系 数. 实际列车运行过程中,系数 k_1 , k_2 , k_3 将会受到轨 道机械特性,隧道强气流等影响,会根据列车位置s的 变化而变化,通常采用经验公式进行估算.如CRH3型 列车的 $k_1 = 0.53$, $k_2 = 0.00392$, $k_3 = 0.000114$. i(s)为线路坡度附加阻力,用坡度的千分位数表示; 600/R(s)为线路弯道附加阻力,R(s)为弯道半径,单 位为m. $u = F_t - F_b$ 为作用在列车单位重量上牵引 力 F_t 和制动力 F_b 的合力,实际情况下两者不同时作用 于列车.对应式(1),

$$\begin{aligned} \theta_1 &= [-k_1 - i - 600/R], \ \theta_2 &= -k_2, \ \boldsymbol{\theta} = [\theta_1, \theta_2]^{\mathrm{T}}, \\ \xi_1 &= 10^{-3} \mathrm{g}, \ \xi_2 = 10^{-3} \mathrm{g} \times v, \ \boldsymbol{\xi} = [\xi_1, \xi_2]^{\mathrm{T}}, \\ b &= k_3 v^2 \times 10^{-3} \mathrm{g}. \end{aligned}$$

 $u = 10^{-3}$ g($F_t - F_b$), 在牵引、制动和惰性工况下分 别对应10⁻³g F_t , 10⁻³g F_b 和0.为了验证本文提出的 控制算法, 给出 θ_1 , 10³ × θ_2 , 10⁴ × k_3 的数值如图1所 示.

非参数不确定性b满足局部Lipschitz连续,即 $|b(v_1,s) - b(v_2,s)| \leq \beta(s,v_1,v_2)|v_1 - v_2|$,其中 $\beta(s,v_1,v_2) = 3 \times 10^{-6}(v_1 + v_2)$.

期望跟踪轨迹 $s \in [0, 1500], v_d(0) = 2, \nabla v_d \cup s$ 的函数形式给出如下:

$$\nabla v_{\rm d}(s) = \begin{cases} 0.1, & 0 \leqslant s \leqslant 200, \\ -s/800 + 0.35, & 200 < s \leqslant 280, \\ 0, & 280 < s \leqslant 1350, \\ -s/500 + 2.7, & 1350 < s \leqslant 1400, \\ -0.1, & 1400 < s \leqslant 1500. \end{cases}$$

对于此类系统, 传统的ILC无法直接使用. 这里采 用本文的方法, 首先考虑 $e_{v,i}(0) = 0$ 的情况, 并使用 最大跟踪误差绝对值 $|e_{\max,i}|$ 来评判跟踪性能. 控制 律(14)-(16)中 $\Gamma = \text{diag}\{6,8\}, K_1 = 5, K_2 = 5.$ 图2 给出了 $|e_{\max,i}|$ 跟踪误差沿迭代轴收敛规律. 可以看出, 随着不断的学习, $|e_{\max,i}|$ 快速的收敛至0. 图3给出了 历次迭代过程中跟踪轨迹与期望轨迹图, 其中虚线代 表期望轨迹, 实线代表历次实际跟踪轨迹. 可见, 在迭 代开始时, 实际跟踪轨迹与期望轨迹相差较大; 而随 着迭代次数增加, 未知参数 θ 和b被逐渐学习, 实际跟 踪曲线也会逐渐逼近期望轨迹. 经过20次的学习后, 实际轨迹已经充分逼近期望轨迹.

图 2 $e_{v,i}(0) = 0$ 时,最大跟踪误差 $|e_{\max,i}|$ 随迭代次数 收敛特性

考虑 $e_{v,i}(0) = rand(i) \cdot 0.5$ 的情况,此时采用 $||e_{v,i}||_{s_p}$ 来评判跟踪性能,控制律参数同上. 仿真结果 如图4-5所示. 从图4可以看出, $||e_{v,i}||_{s_p}$ 随着迭代次数 增加而收敛至较低值. 图5给出了第20次实际轨迹和 期望轨迹, 实线和虚线分别代表 v_{20} 和 v_d . 从图5可见, 虽然存在随机初始误差, 但是实际轨迹能在短距离内 迅速跟踪上期望轨迹.

图 4 $e_{v,i}(0) = \operatorname{rand}(i) \cdot 0.5$ 时, $||e_{v,i}||_{s_p}$ 随迭代次数收敛特性 Fig. 4 The convergence of $||e_{v,i}||_{s_p}$ versus iteration number when $e_{v,i}(0) = \operatorname{rand}(i) \cdot 0.5$

图 5 $e_{v,i}(0) = \operatorname{rand}(i) \cdot 0.5$ 时, 第20次迭代的轨迹跟踪效果 Fig. 5 The trajectory tracking performance in 20th iteration when $e_{v,i}(0) = \operatorname{rand}(i) \cdot 0.5$

从仿真结果可见,当存在初始随机误差的情况时, 采用所设计的控制律,能够使控制误差随着迭代次数 增加几乎始终保持在较低水平;另外,初始误差带来 的影响也仅存在于初始跟踪阶段的短距离范围内.

5 结论(Conclusions)

本文针对一类在空间区间重复运动的系统,提出 了空间迭代学习控制算法.该算法克服了传统ILC必 须具有时间周期的问题,对如何将时间周期ILC拓展 到空间周期ILC进行了一定的探讨.该算法以系统空 间位置作为周期指标,考虑了基于空间位置的参数型 不确定性和基于空间位置和速度的非参数不确定性, 并研究了初始误差为0以及初始误差在有界范围内随 机变化两种情况.引入了基于空间状态的微分算子, 将系统从时间域形式转化为空间域形式.在此基础上, 设计了空间的复合能量函数和迭代学习控制律,并通 过理论证明和仿真实例验证了算法的有效性.今后, 将进一步研究如何将该算法拓展到空间的多输入多 输出系统中.

参考文献(References):

492.)

- ABIDI K, XU J X. Iterative learning control for sampled-data systems: from theory to practice [J]. *IEEE Transactions on Industrial Electronics*, 2011, 58(7): 3002 – 3015.
- [2] HEHN M, D'ANDREA R. A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers [J]. *Mechatronics*, 2014, 24(8): 954 – 965.
- XU J X. A survey on iterative learning control for nonlinear systems
 [J]. International Journal of Control, 2011, 84(7): 1275 1294.
- [4] ZHAO Zhong, GAO Ying, LIU Zhili. Novel open-closed-loop iterative learning control in networked control systems [J]. *Control Theory & Applications*, 2013, 30(10): 1335 1341.
 (赵众, 高颖, 刘志立. 网络控制系统中一种新形式的开闭环迭代学 习控制 [J]. 控制理论与应用, 2013, 30(10): 1335 1341.)
- [5] LI Zhifu, HU Yueming, GUO Qiwei, et al. Robust monotonically convergent feedback-forward iterative learning control for uncertain linear discrete systems [J]. *Control Theory & Applications*, 2014, 31(4): 485 – 492. (李致富, 胡跃明, 郭琪伟, 等. 不确定离散线性系统的鲁棒单调反 馈-前馈迭代学习控制 [J]. 控制理论与应用, 2014, 31(4): 485 –
- [6] XU J X, TAN Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties [J]. *IEEE Transactions on Automatic Control*, 2002, 47(11): 1940 – 1945.
- [7] XU J X, JIN X, HUANG D. Composite energy function-based iterative learning control for systems with nonparametric uncertainties [J]. *International Journal of Adaptive Control and Signal Processing*, 2014, 28(1): 1 – 13.
- [8] QI Liqiang, SUN Mingxuan, GUAN Haiwa. Finite-time iterative learning control for systems with nonparametric uncertainties [J]. Acta Automatica Sinica, 2014, 40(7): 1320 1327.
 (齐丽强, 孙明轩, 管海娃. 非参数不确定系统的有限时间迭代学习 控制 [J]. 自动化学报, 2014, 40(7): 1320 1327.)
- [9] TAN Y, DAI H, HUANG D, et al. Unified iterative learning control schemes for nonlinear dynamic systems with nonlinear input uncertainties [J]. *Automatica*, 2012, 48(12): 3173 – 3182.
- [10] XU J X, JIN X. State-constrained iterative learning control for a class of MIMO systems [J]. *IEEE Transactions on Automatic Control*, 2013, 58(5): 1322 – 1327.
- [11] HULL R, HAM C, JOHNSON R. Systematic design of attitude control systems for a satellite in a circular orbit with guaranteed performance and stability [C] //Proceedings of AIAA/USU Conference on Small Satellite. Logan, UT, USA: AIAA, 2000.

- [12] RAGHUNATHAN A S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train [J]. *Progess in Aerospace*, 2002, 38(6/7): 469 – 514.
- [13] WANG J, HOVAKIMYAN N, CAO C. Verifiable adaptive flight control: unmanned combat aerial vehicle and aerial refueling [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 75 – 87.
- [14] LEE J H, SEVIL H E, DOGAN A, et al. Estimation of receiver aircraft states and wind vectors in aerial refueling [J]. *Journal of Guidance, Control, and Dynamics*, 2014, 37(1): 265 – 276.
- [15] XU J X, HUANG D. Initial state iterative learning for final state control in motion systems [J]. *Automatica*, 2008, 44(12): 3162 – 3169.
- [16] LIU J L, DONG X M, XUE J P, et al. Initial states iterative learning for three-dimensional ballistic endpoint control [J]. *Memetic Computing*, 2017, 9(1): 31 – 41.
- [17] AHN H, CHEN Y. Periodic adaptive learning control for velocitydependent disturbance compensation [C] //Proceedings of 2009 IEEE International Conference on Control and Automation. Christchurch, New Zealand: IEEE, 2009: 1122 – 1127.
- [18] AHN H, CHEN Y. State-dependent friction force compensation using periodic adaptive learning control [J]. *Mechatronics*, 2009, 19(6): 896 – 904.
- [19] MOORE K L, GHOSH M, CHEN Y Q. Spatial-based iterative learning control for motion control applications [J]. *Meccanica*, 2007, 42(2): 167 – 175.
- [20] XU J X, HUANG D. Spatial periodic adaptive control for rotary machine systems [J]. *IEEE Transactions on Automatic Control*, 2008, 53(10): 2402 – 2408.
- [21] CONSOLINI L, VERRELLI C M. Learning control in spatial coordinates for the path-following of autonomous vehicles [J]. *Automatica*, 2014, 50(7): 1867 – 1874.
- [22] XU J X, YAN R. On initial conditions in iterative learning control [J]. IEEE Transactions on Automatic Control, 2005, 50(9): 1349 – 1354.
- [23] SUN Mingxuan, YAN Qiuzhen. Error tracking of iterative learning control systems [J]. Acta Automatica Sinica, 2013, 39(3): 251 – 262. (孙明轩, 严求真. 迭代学习控制系统的误差跟踪设计方法 [J]. 自动 化学报, 2013, 39(3): 251 – 262.)
- [24] RUAN Xiao'e, ZHAO Jianyong. Pulse compensated iterative learning control to nonlinear systems with initial state uncertainty [J]. Control Theory & Applications, 2012, 29(8): 993 1000.
 (阮小娥,赵建永. 具有初始状态不确定性的非线性系统脉冲补偿迭代学习控制 [J]. 控制理论与应用, 2012, 29(8): 993 1000.)
- [25] ZHONG Lusheng, LI Bing, GONG Jinhong, et al. Maximum likelihood identification of nonlinear model for high-speed train [J]. Acta Automatica Sinica, 2014, 40(12): 2950 2958.
 (東路生,李兵,龚锦红,等. 高速列车非线性模型的极大似然辨识 [J]. 自动化学报, 2014, 40(12): 2950 2958.)
- [26] MENG Jianjun, CHEN Xiaoqiang, XU Ruxun, et al. Traction calculation analysis and simulation of urban rail train on multi-particle model [J]. *Journal of System Simulation*, 2015, 27(3): 603 619.
 (孟建军,陈晓强, 胥如迅, 等. 基于多质点的城轨列车牵引计算分析 与仿真 [J]. 系统仿真学报, 2015, 27(3): 603 619.)

作者简介:

刘娇龙 (1988-), 男, 博士研究生, 目前研究方向为迭代学习控

制、飞行控制, E-mail: kgd_ljl@163.com;

董新民 (1963-), 男, 教授, 博士生导师, 目前研究方向为飞行控

制、控制分配、机器视觉, E-mail: dongxinmin@139.com;

薛建平 (1967--), 男, 副教授, 硕士生导师, 目前研究方向为计算 机控制, E-mail: xiankgy@163.com;

王海涛 (1986--), 男, 博士, 讲师, 目前研究方向为飞行控制、空中加油, E-mail: wanghaitao198638@163.com.