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Abstract: A distributed optimization problem is investigated for continuous-time multi-agent systems with flocking
behavior of a nonlinear continuous function. This paper aims at showing that the velocities and positions of all agents can
be the same asymptotically and the velocity is optimal, thus minimizing the sum of local cost functions. In this study, each
cost function can only be known to its corresponding agent. Firstly, the paper makes some assumptions about the local
cost function; Secondly, a distributed control rule and updating laws are designed, in which each agent depends only on
its own velocity and neighbor’s velocity. Then, the stability of the multi-agent systems is proved and the agents can avoid
inter-agent collision while minimizing the sum of local cost functions. Finally, using a simulation case to illustrate the
obtained analytical results.
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1 Introduction

In recent years, distributed optimization has drawn
great attention of scholars in the field of control, includ-
ing consensus-based flocking, distributed optimization,
etc!'~71. Minimizing the function which is composed of
the sum of local cost functions is the purpose of dis-
tributed optimization in distributed manner.

Previous researches focused on the distributed op-
timization problems and most of them were about
discrete-time algorithms. For example, Nedic et al. 8
gave a discrete-time sub-gradient optimization rule
where each agent is restricted to lie in different con-
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vex sets. References [9-10] analyzed distributed opti-
mization problems with inequality-equality constrains
or other discrete-time rules in order to ensure that all a-
gents converge to the optimal point. At present, the dis-
tributed optimization problem has aroused many schol-
ars’ interests in continuous-time algorithm. Wang and
Elial'!! proposed a novel distributed continuous-time
rule for distributed convex optimization by introduc-
ing a dynamic integrator. Based on the work!'!!, Refs.
[12-13] studied continuous-time distributed optimiza-
tion problem by strengthening conditions. Lin et al.['%!
studied a convex optimization problem of continuous-
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time multi-agent system for non-uniform gradient gain,
finite-time convergence, etc. Distributed optimization
rule based on the edge and the adaptive design method
based on nodes are proposed in [15]. Wang et al.l!f]
obtained finite-time consensus theoretically via the pro-
posed non-smooth but continuous forms of distributed
coordination controllers. The goal of reference [17] is
to extend adaptive control with multiple models to the
class of systems where the unknown parameters change
rapidly and frequently. The distributed optimization
problem was studied for high-order integrator dynamics
in [18]. Although many articles have studied distributed
optimization, many problems need to be solved, such as
adaptive distributed optimization. A good adaptive con-
troller can readjust its characteristics under the chang-
ing environment. On one hand, it is beneficial to the
stable operation of the system. On the other hand, it can
enhance the system’s efficiency. The relevant scholars
have shown great interest in the research of the flocking
problems for multi-agent systems.

Recently, flocking in nonlinear systems has been
further studied. Referecnces [19-20] showed that glob-
al Lipchitz condition works and all followers knew the
information of the virtual leader in nonlinear systems.
Yang et al.l>!! studied distributed velocity optimization
of time-varying functions with flocking behavior. It is
worth noting that internal structure and other factors
are changing in the working process of actual system.
These factors might have a negative influence on the
system. If we don’t take the influence of these factors
into account, the adaptability of the system in practical
engineering is uncertain. Considering the actual situa-
tion, the study of distributed optimization with adaptive
flocking of multi-agent systems is necessary in theory
and practice.

The innovation of this paper comes as follows: we
design an adaptive distributed optimization algorithm
for adaptive flocking of multi-agent system to study
how a group of agents can achieve optimization cooper-
atively. This idea can be seen as the extension of flock-
ing. In the distributed optimization algorithm, there is
no pre-given trajectory or leader, which is different from
the consensus tracking problems.

Here is the structure of the paper. We give some
notations, concepts and the preliminaries in Section 2.
An adaptive distributed controller is designed for multi-
agent system with flocking behavior. Then the system’s
stability and the optimization are achieved in Section 3.
The results we have obtained are illustrated by a nu-
merical case in Section 4. Finally, the full text content
is summarized.

2 Notations and preliminaries

Here are some notations that will be used in this ar-
ticle. Denote 1,, = (1 1 H* 0, =00

0)T. A" is the transpose matrix of A and 2" rep-
resents the transpose vector of . And the unit matrix
isI, € R, N ={1,2,--- ,N}. AR B is de-
fined as the Kronecker product of matrix A and B. Let
|||, denote the p-norm of € R". The gradient and
Hessian of function g are Vg and H, respectively.

In generally, G = (V,¢) is an undirected graph
which is composed of a series of nodes V = {1,2,
-+, N} and a set of links €. If ¢ and j can be joined
through a link (4, 7), then denote by (i,j) € . N; =
{j € V : (j,i) € ¢} stands for neighbor set of n-
ode ¢. If each pair of nodes in G has a link connect-
ed to each other, we say that the graph G is connected.
A = [a;;] € R™" is a weighted adjacent matrix of
the graph G, which meets the conditions: 1) a;; = 0;
2) Qi; = Qj; > O, if (Z,]) SHIFON 3) Ai; = 0, if
(1,7) ¢ e. The degree matrix of the graph G is \ =

N
diag{di,ds, - - > aj
J=1,j#i

for ¢ € N. D is the correlation matrix related to the

-+ ,dn} € R™" where d; =

graph G. Let L = A\ — A be a symmetric Laplacian ma-
trix and L = DD?T. The eigenvalues of L are defined
as A\ (L), Aa(L), - -+, An(L), then the well-known re-
sult is given for 0 = A\ (L) < Ao(L) < -+ < An(L)
when the graph G is connected. The graph G is con-
nected if and only if A\;(L) = 0 with the associated
eigenvector 1y = (1 1 1), and all the rest are

positive eigenvalues!??!.

Lemma 12! Considering a continuous diff-
erentiable convex function g(s) : R® — R. Then
x € R" is a global minimum of g(s) if and only if

9g(s)
lim
s—z 0§

Definition 12?!
vex if and only if

(01 = v2)(Vg(v1) = Vg(v2)) > alfvy — oo

for Yuy, vy € R, v; # vq. If g(v) is o-strongly con-
vex and twice differentiable on x, then H (z) > o 1,.

=0.

g(v) is o-strongly (o > 0) con-

Lemma 2! The second smallest eigenvalue
A2(L) of the Laplacian matrix L associated with
the undirected connected graph G satisfies Ao(L) =

) xTLx

min  ———.
eT1n=0,0#0 xTx

We consider a group of V(N > 2) agents described
by

{xp—(t) = ui(t),

Ui(t) = f(vi(t)) +ui(t), i =1,2,--- , N,
where z; € R", v; € R" represent the position vec-
tor and velocity vector of the agent 7, respectively. And

u; € R” is the controller of the agent ¢, continuous
function f(v;) is non-linear part of the system.

e))
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The goal of this paper is to devise a controller u;
for (1) that enables all agents to achieve the optimal
state using local interactive information, in order to
solve the following convex optimization problem:

N
min E gi(s)a ERS Rna (2)
=1

where g;(s) : R™ — R is a local cost function and it
can only be known by agent ¢ and satisfies the following
assumption.

Assumption 1  The function g;(s) : R* — R is
convex, differentiable and satisfies

gi(s) = s A;s, 3)

N

where Y A; = B is positive definite and reversible
i=1

matrix.

The above problem is transformed into minimizing

N
function Y g;(v;), that is,
i=1

N
min Y g;(v;), s.t. v; = v;. %)
vER™ i=1

The following assumption is given to achieve the
goal.

Assumption 2 Each function g;(v;) has a non-
empty optimal solution set, that is, there exists v; € R"
satisfies that g;(v}) is minimum.

Definition 2  The potential function V;; is a dif-
ferentiable non-negative function of ||z; — x;|| which
satisfies the following:

1) Vi; = Vj; has a unique minimum in ||z; — ;|| =
d,;, where d;; is a desired distance between agents 7 and
jand R > mz}x d;j;

2

2) Vij = o0,if [|z; — x;]| = 0;

oV,
———Y =0, |(0)—z;(0)] >R,
a(|lzi—2;]) ’
H.’L’i—l'j” 2 R7
I av, :(0)—z,(0)]
—— Y 500, ||z:(0)—z;(0)]| < R,
o(|zi—,]) ’
lzi—2;|| = R.

Definition 3 (Flocking!>*!) A group of mobile a-
gents is said to (asymptotically) flock, when all agents
attain the same velocity vector, distance between the
agents is stabilized and no collision between them oc-
curs.

Definition 4 (Dynamic graphs®*!) We call G(t)
= (V, E(t)) a dynamic graph consisting of a set of ver-
tices V= {1,2,--- , N} indexed by the set of agents
and a time varying set of links E(t) = {(i,7)]i,7 €
V'}, such that for any 0 < r < R.

1) if 0 < ||z;(t) — x;(t)|| < 7, then (3, ) € E(t);

2) if r < ||z;(t) — z;(t)|| < R, from Fig. 1, when

time ¢, to t1, then (i,7) & E(t); when time ¢, to to,
then (4, j) is a new edge being added to E(t);

—x;(t)

3) if R < [Jay(t)

,then (i,7) & E(t).

Fig. 1 The switching process of dynamic graphs according to
Definition 4

Undirected dynamic graph G(t) meets that (7, j) €
E(t) and (j,47) € E(t), which is critical in the article.
Moreover, the graph is connected in this paper.

Definition 5 (Graph Connectivity) ~We say that a
dynamic graph G(t) is connected at time ¢ if there ex-
ists a path, that is, any two vertices can form continuous
edges in G(t).

3 Main results

In this section, we presented a distributed adaptive
algorithm with flocking behavior. Then we prove that
the velocities of the agents reach consensus and the ve-
locities of the agents are optimal while minimizing the

N
function > g;(v;).
=1
N N
U; = —(PQ)_l Z aijvli‘/ij - Z aij(vi - Uj)_
j=1 Jj=1

N
d; > aingn(Uz‘ - Uj) + @i,
j=1

. N
di=e} (P®IN)k; Y aysgn(v; — v;),
j=1

(&)
where
¢ = —H;(v:)Vgi(v:).
The coefficients d; > 0 and k; > 0, sgn(-) is the
signum function. It need to be pointed out that ¢; re-
lies just on the velocity of agent ¢. V;; is defined in

Definition 2. V,,V;; corresponds to a vector in the
direction of the negative gradient of V;;. Let V =

[T vt TN, d=[dy dy -+ dn]T. Wealso
1

define P = IN - NlNlNT ev(t) == (P (%9 IN)V
denotes a consistent error vector. Obviously, zero as
a simple eigenvalue of P, the right eigenvector corre-
sponding to O is 1y, and the other eigenvalues are 1
with the multiplicity N — 1. Then ey (t) = 0 is equiv-
alent to v; = v;.

Theorem 1 By taking the controller (5), if czz >
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[(P® Iy)F|

A2(L)
described in (1) asymptotically approach the same and
collision is avoided.

, the velocities of all agents in the group

Proof The system (1) with controller (5) can be
written as

X=V,
V=—-(L®Iy)V-
d™(D ® Iy)sgn((DT @ In)V)—
A%
&, Om ©
(P~2) : + F,
OV,
jen; Oxy
where
Fi = f(vi) + ¢i,
F=[F"FES - FY".
From ey (t) = (P ® In)V, rewriting (6) as
ex = ey,
év=—(L®Iy)ey—
d"(D ® Iy)sgn((D* @ Iy)ey)—
A%y
jen, O (7)
(P'® Iy) : +
OV,
JEN; Ory
(P® Iy)F.
Definite the following function:
1 X 1
Ve=15 2 Z a;;Vij + eVGV +
2 =2 1= 2
1 ( —d; )
P ®

where czz is an arbitrary large constant.
The genera]ized time derivative of V is as follows:

1
2 Z:l Z azg‘/zg +€V€V+
i=1j=

Mdz )

From (7), we obtain
eyéy = —ey (L@ Iy)ey —
eyd" (D @ Iy)sgn((DT @ Iy)ey) —
A%y
jen, O
vt : + ey (P @ Iy)F,
OVn;

JEN; axN

Moreover,

-
Il

—
x>

S

v;

<
Il
—

< IM=

& M=
£
=

In)sgn(vi —v;) =

M=
M=

a;;d;e, (P ® Iy)sgn(v; —v;) —

&
Il
-

<.
Il

5.0
e
M=

i
H =
—~~ .

aljev (P ® IN)Sgn( - Uj) =

Il
—

e‘T/d D ® Iy)sgn((DT @ Iy)ey) —
d;|(D" @ Iy)ev||r-
Thus, we have
Vo=—el (L@ Iy)ey + €L (P @ Iy)F —
d;|(D" @ Iy)ev|h <
—ey (L@ In)ey + [|(P & In)F|:2llev ]z —

di\JeL(DD™ ® Iy)ey <
—ep (L@ In)ey + [|(P & In)F|llev |2 —

dir/ 2o (L)|lev > =

—ev (L@ Iy)ey + ([[(P @ In)F|2 —

diy/ X (L)) lev]l2 <

—ey (L ® Iy)ey.

(P ® In) Fll2
Xa(L)

—e (L ® Iy)ey. It is known from the characteristics

of L to get V; < 0 which shows that V; > 0 is mono-
tonically decreasing. So the boundness of ey, d; can
be seen. Further V;;,eyy € L. can be derived. By
integrating both side of VG < —eg(L ® Iy)ey, we
can see that ey € L,. By using the Barbalat’s lem-
ma, we get e,y — 0 which is equivalent to the all
agents’ velocities become consensus as ¢ — 00, i.e.

. 1 X .
Jim (0,(1) — - 32 vi() = fim ev,(£) = 0.
v; = 0fori,j =1,2,

Clearly, if d; > , then V5 <

Because v; —
can get

, N, we
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d

&Hl‘i —aj|* = 2(z; — ;)" (v —

’Uj) == 0,

which shows that the distance is invariant. Hence, all

agents become consensus and the collision is avoided.
QED.

Remark 1 [(P®IN)F|2

The assumption d; > =212 v
A2(L)

in Theorem 1 is regarded as a bound on the dlfference between
the agents’ internal signals. If || f (v;)]], || Vg;| and || gl I, Vi
are bounded, then || F'||2 is bounded.

Theorem 2  Suppose that H,;(v;) = H;(v;),
Vi, j € N. For system (1) with controller (5) the prob-
lem (4) is solved if the function is designed as f(v;) =

flvi where matrix A satisfies
BTA-0o'B"B <0. (10)

Proof It is proved that the system is stable in The-
orem 1. Next let us prove the optimization.

By denoting v*(t) = 1 f: v;(t), we have
N =1
do*(t) 1 X ., .
dr N;Ui(t) -
1 N
N 72(]%%) + N¢;) =
% ;(f(vz) - NHi_l(Uz')VQi(Uz‘» =
1 X . B
N Z;(Avl ]\ff.[Z (Ui)Aivi) =

A — Z Hiil(vi)Ai)’Ui.

i=1

—~

Therefore, we can obtain

N N
8292‘(1)*) G;gi(v*) v
T e W T

(g:l Aiv*)T(A - Zi_v:l Hi_l(v*)Ai)U* =

N
By > A, = B, we can get
=1

8;2\]:1 gi(v*)

_ *\T TA_
= ()T (BT A

o 'BTB)v* <.

N
Note that > g;(v
i=1

*(t)) is lower bounded according to

8291( "(t))

Assumption 2. lim

t— 00 av ( )

o 'BTB < 0 and LaSalle’s invariance prin-

= 0 is got by
BTA -

ciple. Then it follows from Lemma 1 that v*(¢) min-

N
imizes the differentiable convex function Y g;(v;(t))
i=1
QED.
Corollary 1  Under controller (5), if the nonlin-
ear continuous function is designed as f(v;) = 0, all
agents in the system (1) converge to the same velocity

and collision between agents is avoided. Moreover, the
problem (2) is solved.

ast — oo.

Proof From Theorem 1, we know that all a-
gents’ velocities and the distance are invariant in the
stable state.

1 N
By denoting v*(t) = N >~ v;(t), one has
i=1
do*(t) 1 X ., .
@ v =
1 N N
N Z No; = — Z H; ('UZ)ng(Uz) =
=1 =1
- Z H, ™ (v) Ay,
Then, we can get
N N
9% gi(v*) 9% gi(v*) *
i=1 i=1 rdv

o Tar W T
(i:Zl Aiv*)T(*;Hi_l(v*)AiU*) =

N
(> A" (=o' Bv*) =
=1
— (") (e *BTB)v* < 0.
It follows by Theorem 1 that v*(¢) minimizes the

N
differentiable convex function Y g;(v;(t)) as t — oo.

i=1
QED.
4 Numerical simulations
In this section, we give an example with five a-
gents. Assume that link range R = 5, which means
that two agents are adjacent when their distance is less
than R. The agent’s task is to minimize the function

Z gi(vi(t),t), where v;(t) = (v, (t) v,,(¢))T is the
coordlnate of agent 7 in 2D plane.

In the example, we use controller (5) for the system
(1), the nonlinear function is designed by

f(vi) = A'Ui,

where

A— —0.051 0.01i

0.01 +0.02i —0.04i

We randomly choose the initial velocity of each a-
gent and mark it with dots. The initial status of the
agent is shown in Fig. 2. The full line between the t-
wo dots in the figure represents the path of the adjacent
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agent, while the arrow represents the velocity of the
agent. The final stable state configuration is shown in
Fig. 3. The error between the different velocity com-
ponents and the optimal velocity is described in Fig. 4,
and the error curves of different velocity components
are represented by different lines. From the graph, we
can see that the velocities of all agents converge to the
optimal velocity.

2.5

20

0.5F

0.0 1 1 1 1 1 1 1 1 1 ]
02 04 06 08 1.012 14 1.6 1.8 2.0 22
X

Fig. 2 Initial configuration of agents

251

101
0.8
06 Yi Yy
0.4
0.2 1™
0.0f

-0.2

—0al

-0.6}

,0.8 1 1 i i 1 I
0 1 2 3 4 5 6

t/s

*

Errors between v, and v

Fig. 4 Errors between agents’ and the optimal velocity

5 Conclusions

In this paper, we analyze a distributed optimization
problem for adaptive flocking of multi-agent systems.
A novel multi-agent adaptive controller is presented to
achieve the goal proposed in this paper. First, it proves

that the agents can asymptotically achieve flocking be-
havior, that is, the agents can avoid collision when they
have same velocity and invariant distance. Furthermore,
it shows that all agents’ velocities are asymptotically
optimal while minimizing the total cost function. Fi-
nally, in order to be recognized for the theoretical re-
sults we obtained, we use a simulation case to veri-
fy the above results. Our further study will focus on
the adaptive flocking of non-linear multi-agent systems
with time delay.
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