# 可持续闭环供应链网络设计的多目标模糊规划问题

# 张 鑫<sup>†</sup>,赵 刚,李伯棠

(上海海事大学 交通运输学院, 上海 201306)

摘要:为解决不确定条件下可持续闭环供应链网络设计的问题,以成本和环境影响最小、社会影响最大为目标, 建立带有模糊参数的多目标闭环供应链网络规划模型.首先采用Me测度处理相关模糊目标和参数,并运用加权增 广Epsilon-约束方法解决多目标问题,在此基础上设计一种基于[0,1]随机数的双层编码遗传鲸鱼(GA-WOA)混合算 法进行求解,然后构造多个不同规模算例,将混合算法求解结果与CPLEX、遗传算法的求解结果进行对比,结果证 明该编码方式和混合算法具有合理性.最后针对模型的多个参数变化进行分析,以验证所建模型的可行性.

关键词: 可持续性; 供应链; 网络设计; 模糊规划; 遗传算法; 鲸鱼优化算法

引用格式: 张鑫, 赵刚, 李伯棠. 可持续闭环供应链网络设计的多目标模糊规划问题. 控制理论与应用, 2020, 37(3): 513 – 527

DOI: 10.7641/CTA.2019.80955

# Multi-objective fuzzy programming for sustainable closed-loop supply chain network design

ZHANG Xin<sup>†</sup>, ZHAO Gang, LI Bo-tang

(College of Transport & Communications, Shanghai Maritime University, Shanghai 201306, China)

**Abstract:** In order to solve the problem of sustainable closed-loop supply chain network design under uncertainty, a multi-objective closed-loop supply chain network optimization model with fuzzy parameters was established with the objective of minimizing cost and environmental impact and maximizing social impact. Firstly, Me fuzzy measure is used to cope with the fuzzy objectives and parameters, then the weighted augmented Epsilon-constrained method is employed to solve the multi-objective problem. On this basis, a genetic-whale (GA–WOA) hybrid algorithm based on [0,1] random number is designed to solve the problem, afterward, several different scale examples are constructed, then the results of the hybrid algorithm are reasonable. Finally, variations of multiple parameters of the model are analyzed to verify the feasibility of the model.

Key words: sustainability; supply chains; network design; fuzzy planning; genetic algorithm; whale optimization algorithm

**Citation:** ZHANG Xin, ZHAO gang, LI Botang. Multi-objective fuzzy programming for sustainable closed-loop supply chain network design. *Control Theory & Applications*, 2020, 37(3): 513 – 527

# 1 引言

随着全球化和工业化进程的不断加快,环境污染、生态破坏和社会问题已受到世界各国的广泛关注<sup>[1-4]</sup>.2015年联合国发展峰会通过了《2030年可持续发展议程》,该议程系统规划了到2030年可持续发展的17个全球性目标,涉及经济发展、社会进步和环境保护等诸多方面<sup>[5]</sup>.中国政府在2017年对这些目标的落实情况进行总结分析,并明确了未来实现可持续发展的工作重心,即在经济、环境和社会领域平衡推

进落实工作<sup>[6]</sup>.供应链作为劳动密集型的网链结构, 也是能源消耗和环境污染的重要来源之一.近年来, 公众和政府十分重视供应链企业的可持续发展问题, 要求企业在实际生产中降低环境污染,并承担相应的 社会责任,使得传统供应链管理逐渐向可持续供应链 管理的方向转变.

供应链网络设计(supply chain network design, SC-ND)是供应链管理中极为重要的战略层决策.近年来, 学术界将SCND与可持续发展战略相结合, 以期实现

Supported by Shanghai Maritime University Graduate Student Top Innovation Talent Training Project (2019YBR016).

收稿日期: 2018-12-04; 录用日期: 2019-07-18.

<sup>&</sup>lt;sup>†</sup>通信作者. E-mail: xinzhangandy@163.com; Tel.: +86 18217526790. 本文责任编委: 张化光.

上海海事大学研究生拔尖创新人才培养项目(2019YBR016)资助.

经济、环境和社会三者的均衡发展<sup>[7-8]</sup>. Pérez-Fortes 等<sup>[9]</sup>设计了考虑可持续3个主要目标的生物质能源系 统多目标混合整数规划模型; Varsei等<sup>[10]</sup>提出了葡萄 酒供应链网络设计的通用模型,并通过引入社会影响 系数来探究可行方案的社会影响; Chaabane等<sup>[11]</sup>采 用生命周期评估(life cycle assessment, LCA)原则整 合供应链的各个环节,设计考虑经济和环境影响的多 目标混合整数规划模型,分析了不同环境政策对供应 链战略的影响; Sahebjannia等<sup>[12]</sup>研究了考虑可持续 性发展战略的轮胎闭环供应链网络设计问题,并开发 多种混合元启发式算法进行求解分析; Allaou等<sup>[13]</sup>探 究了农产品-食品可持续闭环供应链设计问题,并提 出了一种基于两阶段的求解方法.

实际的供应链网络设计中,客户需求、运输费用以 及设施的固定成本等参数都难以确定,影响了供应链 决策的有效性以及运营的可靠性<sup>[14-15]</sup>.为此,多数学 者采用随机规划方法进行处理<sup>[16-17]</sup>.但随着产业升 级以及全球化生产的推进,难以获得足够的历史数据, 从而无法构建准确的参数分布函数;同时随机规划的 计算复杂性较高,在实际应用中具有一定的局限性<sup>[18]</sup>. 鉴于此,一些学者采用模糊规划方法解决参数的不确 定性问题,并取得了较好的成效<sup>[19-20]</sup>.但是考虑到传 统的模糊测度无法准确反映决策者态度的变化,本文 采用文献[21]提出的Me测度处理模糊参数.

闭环供应链网络设计问题是一个NP-hard问题,随着问题规模和系统复杂度的增加,传统的精确算法不再适用,需要采用启发式算法求解<sup>[22]</sup>.遗传算法(genetic algorithm, GA)是一种通过模拟自然进化过程搜索最优解的方法,在求解网络设计问题中具有较好的效果<sup>[23]</sup>,但传统的遗传算法存在调整参数多、易早熟、局部收敛等问题<sup>[24]</sup>.鲸鱼算法(whale optimization algorithm, WOA)具有操作简单、调整参数少、跳出局部最优能力强等特点<sup>[25–26]</sup>,已被成功应用于工业设计<sup>[27]</sup>、最优控制<sup>[28]</sup>、流水作业调度问题<sup>[29]</sup>等领域.鉴于GA的缺点,本文将WOA和GA结合,提出一种混合GA-WOA算法,以提高算法的求解效率.

另外,对于网络优化问题解的表示,多数研究文献 普遍采用普通基于优先级的编码<sup>[30-32]</sup>.由于类编码 方式不能直接用于GA-WOA算法.因而本文在参考 优先级编码的基础上提出一种基于[0,1]随机数的双 层编码方式.

综上,现有文献主要从经济和环境两个角度进行 供应链网络设计,较少考虑社会因素的影响.同时,已 有文献运用模糊规划方法解决闭环供应链网络设计 中的参数不确定性,但这仅处理了目标函数的模糊性, 并且传统模糊测度的建模灵活性相对不足<sup>[20]</sup>.鉴于 此,本文将综合考虑可持续闭环供应链设计的3个目 标,探究目标和约束均具有模糊参数的可持续闭环供 应链网络设计问题.首先,构建带有模糊参数的多目标混合整数规划模型,然后采用Me测度处理模糊目标和参数,并运用增广Epsilon-约束方法解决多目标优化问题,最后,设计一种基于[0,1]随机数的双层编码GA-WOA混合算法,该算法能够加快搜索速度且具有较强的跳出局部最优解的能力.本文所得结果将为供应链企业实现可持续发展战略提供决策参考.

# 2 问题描述

图1为可持续性闭环供应链网络,该闭环供应链由 正向物流和逆向物流组成.其中正向物流中采购的不 同零件从供应商运送到工厂,生产的成品被运输到配 送中心,配送中心根据接到的客户订单予以配送;逆 向物流中配送中心回收客户使用后的可循环再利用 的废旧产品,经过初步处理后运送到拆解中心予以拆 解,对拆解后可再利用的零件运输到工厂进行再生产, 不可再利用的零件运送到填埋地予以填埋.为节约成 本,配送中心兼具产品回收功能;工厂综合处理产品 的制造和再制造.



图 1 可持续闭环供应链网络结构

Fig. 1 Sustainable closed-loop supply chain network structure

为方便计算,将二氧化碳排放量作为供应链环境 影响的衡量指标.系统的二氧化碳来源主要如下:各 设施处理产品(零件)时的碳排放、产品(零件)在各设 施间运输的碳排放和建设各设施的碳排放.采用建造 各设施提供的工作机会和在运营过程中由于工作环 境差异造成的工人的平均误工天数等参数来衡量供 应链的社会影响<sup>[33]</sup>.同时,运用LR模糊数对实际生产 中客户需求、运营成本、设施处理能力等不确定参数 进行处理.

在上述条件下,本文需要确定各类型设施的建造 数量、位置和设施间的产品(零件)的流向、流量,并分 析多个参数对所构建供应链网络的影响.

## 3 模型建立

#### 3.1 模型假设与符号说明

为了研究方便,做如下假设:1)考虑具有多种零件某种产品,产品再制造后销售到同样的客户区;2) 各设施的候选位置已知并且处理能力有限;3)产品的 回收率和报废零件的填埋率已知;4)生产单位产品所 需各零件的数目一定,并且拆解后能得到相同数目的 各种零件.

为建立数学模型,定义如下符号:

1) 集合: *I*为供应商的集合,  $i \in I$ ; *J*为工厂的集 合,  $j \in J$ ; *K*为配送中心的集合,  $k \in K$ ; *L*为客户区 的集合,  $l \in L$ ; *M*为拆解中心的集合,  $m \in M$ ; *P*为 填埋点的集合,  $p \in P$ ; *F*为零件种类的集合,  $f \in F$ .

2) 参数: ã<sub>if</sub>为供应商i的f类零件模糊供应能力;  $\tilde{b}_i$ 为工厂i的模糊处理能力;  $\tilde{S}c_k$ 为配送中心k正向和 逆向物流的模糊总能力; ẽ<sub>m</sub>为拆解中心m模糊处理能 力; A<sub>n</sub>为填埋点p的模糊处理能力; pd<sub>k</sub>为配送中心 k逆向能力占总能力的百分比;  $\tilde{p}c_l$ 为客户区l的模糊回 收率; plmf为拆解中心m的f类零件的填埋率; dl为客 户区l的模糊需求量; $\tilde{s}_{iif}$ 为工厂j使用从供应商i运送 的f类零件的模糊单位成本(包扩零件采购成本和运 输成本);  $\tilde{t}_{ik}$ ,  $\tilde{u}_{kl}$ ,  $\tilde{v}_{km}$ ,  $\tilde{w}_{mif}$ ,  $Ru_{lk}$ ,  $Rp_{mpf}$ 分别为物 品从工厂j到配送中心k,从配送中心k到客户区l,从 配送中心k到拆解中心m,从拆解中心m到工厂j的f 类零件,从客户区l到配送中心k和从拆解中心m到 填埋点p的f类零件的模糊单位运输成本;  $\tilde{c}_i, \tilde{g}_k, h_m$ ,  $Q_p$ 分别为工厂j, 配送中心k, 拆解中心m和填埋点p的模糊固定运营成本; $\tilde{\varphi}_f$ 为填埋每单位f类零件的模 糊操作成本;  $n_f$ 为制造每单位产品需要的 f 类零件的 数目和拆解每单位产品能得到的f类零件的数目; COI<sub>ijf</sub>, COM<sub>mif</sub>, COP<sub>mpf</sub>分别为每单位从供应 商i运送到工厂j,从拆解中心m到工厂j和从拆解中 心m到填埋点p的f类零件的碳排量;  $COJ_{jk}$ ,  $COK_{kl}$ ,  $COKM_{km}, COL_{lk}$ 分别为每单位从工厂j到配送中 心k,从配送中心k到客户区l,从配送中心k到拆解中 心m,从客户区l到配送中心k的每单位产品的碳排量;  $CPJ_i, CPK_k, CPM_m$ 分别为工厂j、配送中心k、 拆解中心m操作每单位产品的碳排量; CPP 为填埋 点p操作每单位零件的碳排量.  $CQJ_i, CQK_k, CQ$ - $M_m, CQP_p$ 为分别为建造工厂j、配送中心k、拆解中 心m和填埋点p的碳排量;  $DAJ_i$ ,  $DAK_k$ ,  $DAM_m$ ,  $DAP_n$ 分别为开设工厂j、配送中心k、拆解中心m和 填埋点p所产生的工作机会数;  $DBJ_i$ ,  $DBK_k$ , DB- $M_m, DBP_p$ 分别为开设工厂j、配送中心k、拆解中 心m和填埋点m时由于工作损害而造成的每个工人 的平均工作损失天数.

3) 决策变量: OJ<sub>j</sub>为0~1变量, 若选择工厂j取1, 否则取0; OK<sub>k</sub>为0~1变量, 若选择配送中心k取1, 否 则取0; OM<sub>m</sub>为0~1变量, 若选择拆解中心m取1, 否 则取0; OP<sub>p</sub>为0~1变量, 若选择填埋点p取1, 否则取 0; x<sub>ijp</sub>, y<sub>jk</sub>, z<sub>kl</sub>, o<sub>km</sub>, Rd<sub>mjf</sub>, Rz<sub>lk</sub>, Rt<sub>mpf</sub>分别为从 供应商i到工厂j的f 类零件运量, 从工厂j到配送中 心k、从配送中心k到客户区l、从配送中心k到拆解中 心m的产品运量、从拆解中心m到工厂j的f 类零件运 量,从客户区l到配送中心k的产品运量和从拆解中 心m到填埋点p的f类零件运量.

## 3.2 混合整数模糊规划模型

求解模糊规划问题通常要构建期望值模型、机会约束规划模型和相关机会规划模型<sup>134]</sup>.其中:期望值 模型较为简单,并不增加模型的复杂度;机会约束模 型能够根据决策者的态度来限定约束的置信水平,然 后采用多种模糊测度处理;相关机会约束模型过于注 重置信水平,求解结果较为保守.鉴于此,本文采用基 于Me测度的期望值方法和机会约束方法分别处理目 标函数和约束条件,构造对应的模糊规划模型,并用 LR三角模糊数处理模糊参数.

根据以上描述,本文综合考虑可持续供应链的3个 目标,构建如下具有期望目标和机会约束的多目标模 糊规划模型M1.

目标1 期望总成本最小.供应链网络设计问题 的首要目标是降低运营总成本,根据问题描述,供应 链期望总成本由生产成本、运输成本、固定运营成本 和填埋成本构成,故模糊目标1如下:

$$\min \mathbf{E}[W_{1}] = \sum_{i \in I} \sum_{j \in J} \sum_{f \in F} \mathbf{E}[\tilde{s}_{ijf}] x_{ijf} + \sum_{\substack{j \in F \\ k \in K}} \sum_{k \in K} \mathbf{E}[\tilde{t}_{jk}] y_{jk} + \sum_{\substack{K \in K \\ k \in L}} \sum_{l \in L} \mathbf{E}[\tilde{u}_{kl}] z_{kl} + \sum_{\substack{K \in K \\ m \in M}} \sum_{j \in J} \sum_{f \in F} \mathbf{E}[\tilde{w}_{mjf}] R d_{mjf} + \sum_{\substack{K \in K \\ l \in L}} \sum_{k \in K} \mathbf{E}[\tilde{R}u_{lk}] R z_{lk} + \sum_{\substack{I \in L \\ k \in K}} \sum_{p \in P} \sum_{f \in F} \mathbf{E}[\tilde{R}p_{mpf}] R t_{mpf} + \sum_{\substack{J \in J \\ j \in J}} \mathbf{E}[\tilde{c}_{j}] O J_{j} + \sum_{k \in K} \mathbf{E}[\tilde{g}_{k}] O K_{k} + \sum_{\substack{M \in M \\ m \in M}} \mathbf{E}[\tilde{h}_{m}] O M_{m} + \sum_{\substack{P \in P \\ p \in P}} \sum_{m \in M} \sum_{f \in F} \mathbf{E}[\tilde{\varphi}_{f}] R t_{mpf}.$$
(1)

目标 2 环境影响.本文用碳排量表示,主要包括 在各设施间运输产品(零件)时、在各设施操作产品(零 件)时以及建造各设施时的碳排量,故目标2如下:

$$\min W_2 = \sum_{l \in L} \sum_{j \in J} \sum_{f \in F} COI_{ijf} x_{ijf} + \sum_{j \in J} \sum_{k \in K} COJ_{jk} y_{jk} + \sum_{k \in K} \sum_{l \in L} COK_{kl} z_{kl} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{k \in K} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M} COKM_{km} o_{km} + \sum_{m \in M} \sum_{m \in M$$

$$\sum_{m \in M} \sum_{j \in J} \sum_{f \in F} COM_{mjf} Rd_{mjf} + \sum_{\substack{\sum \\ l \in L}} \sum_{k \in K} COL_{lk} Rz_{lk} + \sum_{\substack{m \in M}} \sum_{p \in P} \sum_{f \in F} COP_{mpf} Rt_{mpf} + \sum_{\substack{j \in J}} \sum_{k \in K} CPJ_j y_{jk} + \sum_{\substack{\sum \\ k \in K}} \sum_{l \in L} CPK_k (z_{kl} + Rz_{lk}) + \sum_{\substack{k \in K}} \sum_{m \in M} CPM_m o_{km} + \sum_{\substack{m \in M}} \sum_{p \in P} \sum_{f \in F} CPP_p Rt_{mpf} + \sum_{\substack{j \in L}} \sum_{\substack{m \in M}} \sum_{p} (CQJ_j OJ_j + CQK_k OK_k + CQM_m OM_m + CQP_p OP_p).$$
(2)

**目标 3** 社会影响.考虑两个指标: 1) 创造就业机 会的数量; 2) 因工作伤害而造成的平均损失工作天数. 故目标3如下:

$$\max W_{3} = \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} \sum_{p \in P} (DAJ_{j}OJ_{j} + DAK_{k}OK_{k} + DAM_{m}OM_{m} + DAP_{p}OP_{p}) - \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} \sum_{p \in P} (DBJ_{j}OJ_{j} + DBK_{k}OK_{k} + DBM_{m}OM_{m} + DBP_{p}OP_{p}).$$
(3)

根据假设条件,模型的约束条件如下:

$$\operatorname{Me}\{\sum_{j\in J} x_{ijf} \leqslant \widetilde{a}_{if}\} \geqslant \omega_{if}^{1},\tag{4}$$

$$\operatorname{Me}\left\{\sum_{k\in K} y_{jk} \leqslant \widetilde{b}_j O J_j\right\} \geqslant \omega_j^2,\tag{5}$$

$$\operatorname{Me}\left\{\sum_{l\in L} z_{kl} + \sum_{m\in M} o_{km} \leqslant \widetilde{S}c_k O K_k\right\} \geqslant \omega_k^3, \qquad (6)$$

$$\operatorname{Me}\{\sum_{m\in M} o_{km} \leqslant pd_k \widetilde{S}c_k OK_k\} \geqslant \omega_k^4, \tag{7}$$

$$\operatorname{Me}\left\{\sum_{j\in J} Rd_{mjf} + n_f pl_{mf} \sum_{k\in K} o_{km} \leqslant \right.$$

$$n_f \tilde{e}_m OM_m \} \geqslant \omega_{mf}^5, \tag{8}$$

$$\operatorname{Me}\left\{\sum_{m\in M}\sum_{f\in F}Rt_{mpf}\leqslant A_pOP_p\right\}\geqslant \omega_p^6,\tag{9}$$

$$\sum_{j\in J} y_{jk} = \sum_{l\in L} z_{kl},\tag{10}$$

$$\sum_{i \in I} x_{ijf} + \sum_{m \in M} Rd_{mjf} = n_f \sum_{k \in K} y_{jk}, \tag{11}$$

$$\sum_{l \in L} Rz_{lk} = \sum_{m \in M} o_{km},\tag{12}$$

$$n_f \sum_{k \in K} o_{km} = \sum_{j \in J} Rd_{mjf} + n_f p l_{mf} \sum_{k \in K} o_{km}, \quad (13)$$

$$\sum_{p \in P} Rt_{mpf} = n_f p l_{mf} \sum_{k \in K} o_{km},\tag{14}$$

$$\operatorname{Me}\left\{\sum_{k\in K} Rz_{lk} \geqslant \widetilde{p}c_l \sum_{k\in K} z_{kl}\right\} \geqslant \omega_l^7,\tag{15}$$

$$\operatorname{Me}\{\sum_{k\in K} z_{kl} \ge \widetilde{d}_l\} \ge \omega_l^8,\tag{16}$$

$$OJ_j, OK_k, OM_m, OP_p \in \{0, 1\},$$
 (17)

$$x_{ijf}, y_{jk}, z_{kl}, o_{km}, Rd_{mjf}, Rz_{lk}, Rt_{mpf} \in N \cup \{0\},$$
(18)

其中:  $\forall i \in I, \forall F \in F, \forall j \in J, \forall k \in K, \forall m \in M, \forall p \in P, \forall l \in L. 式(4)-(9)表示各物流节点能力约束的$  $Me测度置信水平不小于<math>\omega_{if}^1, \omega_j^2, \omega_k^3, \omega_k^4, \omega_m^5, \omega_p^6 \in [0, 1]; 式(10)-(14)表示各节点的流平衡约束; 式15)表示对于每个配送中心,根据模糊回收率回收的产品量$ 不超过客户区运到配送中心的产品量的Me测度置信 $水平不小于<math>\omega_l^7 \in [0, 1]; 式(16)表示各客户区需求完$  $全被满足的Me测度置信水平不小于<math>\omega_l^8 \in [0, 1]; 式$ (17)-(18)分别表示对应的决策变量为0~1变量和非 负整数.

## 4 模型的分析处理

为求解模型,首先采用基于Me测度的期望值算子和机会约束算子分别处理模糊目标和约束条件,将模糊目标和约束转化成对应的清晰对等式,然后运用加权增广Epsilon-约束方法将多目标模型转化为单目标模型.

#### 4.1 清晰等价模型

当前文献中将模糊规划模型清晰化的模糊测度主要有可能性测度(Pos)、必要性测度(Nec)和可信性测度(Cr).可能性测度表示决策者态度极度乐观,认为存在模糊参数的不确定性事件发生的可能性最大;必要性测度表明决策者极为悲观,代表了不确定事件发生的最小可能性;可信性测度是两者的平均值,表示不确定事件发生的确定性程度<sup>[35-36]</sup>.但在实践中,由于经验和判断不同,不同决策者的态度通常会在乐观-悲观两个极端之间波动.为解决此问题,Xu和Zhou<sup>[21]</sup>扩展了可信性测度,提出Me测度反映不同决策者在模糊环境下乐观-悲观态度的变化,实现模糊变量在乐观-悲观态度变化区间内的灵活取值,避免极端态度<sup>[37]</sup>. Me测度定义如下:

设 $\Theta$ 为一非空集,  $P(\Theta)$ 为 $\Theta$ 的幂集, 对任意集合  $A \in P(\Theta)$ , 非负数 Pos{A} 为其可能性测度,  $(\Theta, P(\Theta),$ Pos)为一可能性空间, 设 $\xi$ 为此可能性空间中一模糊 变量, 那么可能性测度(Pos)的隶属函数为

$$\mu(x) = \operatorname{Pos}\{\theta \in \Theta | \xi(\theta) = x\}, \ x \in \mathbb{R}.$$
 (19)

集合A的必要性测度为

$$Nec(A) = 1 - Pos\{A^{C}\}.$$
 (20)

集合A的Me测度为

$$Me(A) = Nec\{A\} + \lambda(Pos\{A\} - Nec\{A\}),$$
 (21)  
其中 $\lambda \in (0, 1)$ 为表示决策者综合态度的乐观–悲观参数.

考虑一般多目标规划模型  
$$\begin{cases} \max \left[ f_1(x,\xi) \ f_2(x,\xi) \ \cdots \ f_m(x,\xi) \right], \\ \text{s.t.} \begin{cases} g_r(x,\xi) \leqslant 0, \ r = 1, 2, \cdots, p, \\ x \in X. \end{cases}$$
(22)

其中ξ为由模糊变量组成的向量.

根据Me测度理论,分别采用期望值和机会约束算 子处理式(22)的目标函数和约束条件,将式(22)转化 为带有Me测度的表达式

$$\max \left[ \operatorname{E}\left[\sum_{j=1}^{n} \widetilde{c}_{1j} x_{j}\right] \operatorname{E}\left[\sum_{j=1}^{n} \widetilde{c}_{2j} x_{j}\right] \cdots \right]$$

$$\operatorname{E}\left[\sum_{j=1}^{n} \widetilde{c}_{mj} x_{j}\right],$$
s.t. 
$$\begin{cases} \operatorname{Me}\left\{\sum_{j=1}^{n} \widetilde{a}_{rj} x_{j} \ge \widetilde{b}_{r}\right\} \ge \delta_{r}, \\ r = 1, 2, \cdots, p, \\ x_{j} \ge 0, \ j = 1, 2, \cdots, n. \end{cases}$$

$$(23)$$

其对应的等价下界估计模型(lower approximation model, LAM)和上界估计模型(upper approximation model, UAM)如下:

$$\text{LAM}: \begin{cases} \max \sum_{j=1}^{n} \left(\frac{1-\lambda}{2} \cdot (c_{ij} - \alpha_{ij}^{c}) + \frac{c_{ij}}{2} + \frac{\lambda}{2} \cdot (c_{ij} + \beta_{ij}^{c})\right) \cdot x_{j}, \\ \text{s.t.} \begin{cases} a_{r}^{T} x - \delta_{r} \alpha_{r}^{aT} x \ge b_{r} + (1-\delta_{r}) \beta_{r}^{b}, \\ x_{j} \ge 0, \end{cases} \end{cases}$$

$$(24)$$

$$\text{UAM}: \begin{cases} \max \sum_{j=1}^{n} \left( \frac{1-\lambda}{2} \cdot (c_{ij} - \alpha_{ij}^{c}) + \frac{c_{ij}}{2} + \frac{\lambda}{2} \cdot (c_{ij} + \beta_{ij}^{c}) \right) \cdot x_{j}, \\ \text{s.t.} \begin{cases} a_{r}^{T} x + (1-\delta_{r}) \beta_{r}^{aT} x \geqslant \\ b_{r} - (1-\delta_{r}) \alpha_{r}^{b}, \\ x_{j} \geqslant 0, \end{cases} \end{cases}$$
(25)

其中:  $i=1,2,\cdots,m, r=1,2,\cdots,p, j=1,2,\cdots,$   $n. \tilde{c}_{ij} = (c_{ij}, \alpha^{c}_{ij}, \beta^{c}_{ij})$ 为一LR三角模糊变量<sup>[38-39]</sup>,  $c_{ij}, \alpha^{c}_{ij}, \beta^{c}_{ij}$ 分别为 $\tilde{c}_{ij}$ 的名义值、左右扰动比率, 同理定 义 $\tilde{a}_{rj} = (a_{rj}, \alpha^{a}_{rj}, \beta^{a}_{rj})$ 和 $\tilde{b}_{r} = (b_{r}, \alpha^{b}_{r}, \beta^{b}_{r}).$ 

据此,模型M1的清晰等价模型M2如下:

LAM:

$$\min E[W_1] = \sum_{i \in I} \sum_{j \in J} \sum_{f \in F} \left( \frac{1 - \lambda}{2} (s_{ijf} - \alpha_{ijf}^s) + \frac{s_{ijf}}{2} + \frac{\lambda}{2} (s_{ijf} + \beta_{ijf}^s) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{k \in K} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \sum_{j \in J} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) \right) x_{ijf} + \sum_{j \in J} \left( \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} - \alpha_{jk}^t) + \frac{1 - \lambda}{2} (t_{jk} -$$

$$\frac{t_{jk}}{2} + \frac{\lambda}{2}(t_{jk} + \beta_{jk}^{t}))y_{jk} + \sum_{k \in K} \sum_{l \in L} \left(\frac{1-\lambda}{2}(u_{kl} - \alpha_{kl}^{u}) + \frac{u_{kl}}{2} + \frac{\lambda}{2}(u_{kl} + \beta_{kl}^{u}))z_{kl} + \sum_{k \in K} \sum_{m \in M} \left(\frac{1-\lambda}{2}(v_{km} - \alpha_{km}^{v}) + \frac{v_{km}}{2} + \frac{\lambda}{2}(v_{km} + \beta_{km}^{v}))o_{km} + \sum_{m \in M} \sum_{j \in J} \sum_{f \in F} \left(\frac{1-\lambda}{2}(w_{mjf} - \alpha_{mjf}^{w})\right) + \frac{w_{mjf}}{2} + \frac{\lambda}{2}(w_{mjf} + \beta_{mjf}^{w}))Rd_{mjf} + \sum_{l \in L} \sum_{k \in K} \left(\frac{1-\lambda}{2}(Ru_{lk} - \alpha_{lk}^{Ru}) + \frac{Ru_{lk}}{2} + \frac{\lambda}{2}(Ru_{lk} + \beta_{lk}^{Ru}))Rz_{lk} + \sum_{m \in M} \sum_{p \in P} \sum_{f \in F} \left(\frac{1-\lambda}{2}(Rp_{mpf} - \alpha_{mpf}^{Rp}) + \frac{Rp_{mpf}}{2} + \frac{\lambda}{2}(Rp_{mpf} + \beta_{mpf}^{Rp}))Rt_{mpf} + \sum_{j \in J} \left(\frac{1-\lambda}{2}(c_{mpf} - \alpha_{mj}^{c}) + \frac{c_{mpf}}{2} + \frac{\lambda}{2}(g_{k} + \beta_{k}^{c}))OJ_{j} + \sum_{k \in K} \left(\frac{1-\lambda}{2}(g_{k} - \alpha_{k}^{c}) + \frac{g_{k}}{2} + \frac{\lambda}{2}(g_{k} + \beta_{k}^{c}))OK_{k} + \sum_{m \in M} \left(\frac{1-\lambda}{2}(q_{p} - \alpha_{m}^{c}) + \frac{h_{m}}{2} + \frac{\lambda}{2}(h_{m} + \beta_{m}^{h}))OM_{m} + \sum_{p \in P} \left(\frac{1-\lambda}{2}(Q_{p} - \alpha_{p}^{Q}) + \frac{Q_{p}}{2} + \frac{\lambda}{2}(Q_{p} + \beta_{p}^{Q}))OP_{p} + \sum_{p \in P} \sum_{m \in M} \sum_{f \in F} \left(\frac{1-\lambda}{2}(\varphi_{f} - \alpha_{p}^{q}) + \frac{\varphi_{f}}{2} + \frac{\lambda}{2}(\varphi_{f} + \beta_{f}^{q}))Rt_{mpf}. \quad (26)$$

目标函数同式(2)-(3).

s.t. 
$$\sum_{j \in J} x_{ijf} \leqslant a_{if} - \omega_{if}^1 \alpha_{if}^a$$
, (27)

$$\sum_{k \in K} y_{jk} \leqslant (b_j - \omega_j^2 \alpha_j^{\mathrm{b}}) OJ_j,$$
(28)

$$\sum_{l \in L} z_{kl} + \sum_{m \in M} o_{km} \leqslant (Sc_k - \omega_k^3 \alpha_k^{\mathrm{Sc}}) OK_k, \quad (29)$$

$$\sum_{m \in M} o_{km} \leqslant (Sc_k - \omega_k^4 \alpha_k^{\rm Sc}) p d_k O K_k, \tag{30}$$

$$\sum_{j \in J} Rd_{mjf} + n_f p l_{mf} \sum_{k \in K} o_{km} \leqslant$$

$$(e_m - \omega_{mf}^{\circ} \alpha_m^{\circ}) n_f O M_m, \qquad (31)$$

$$\sum_{m \in M} \sum_{f \in F} R_{2m} \ge (nc_r + (1 - \omega^7)\beta^{\rm pc}) \sum_{r} z_r,$$

$$\sum_{k \in K} \Lambda z_{lk} \ge (pc_l + (1 - \omega_l)\beta_l) \sum_{k \in K} z_{kl},$$
(33)

$$\sum_{k \in K} z_{kl} \ge d_l + (1 - \omega_l^8) \beta_l^{\mathrm{d}},\tag{34}$$

式(10)-(14)(17)-(18),

其中:  $\forall i \in I, \forall f \in F, \forall j \in J, \forall k \in K, \forall m \in M, \forall p$  $\in P, \forall l \in L.$ 

### UAM:

 $\overline{\nabla}$ 

#### Min E[W1]

目标函数同式(2)-(3).

s.t. 
$$\sum_{j \in J} x_{ijf} \leqslant a_{if} + (1 - \omega_{if}^1)\beta_{if}^{a}, \qquad (35)$$

$$\sum_{k \in K} y_{jk} \leqslant (b_j + (1 - \omega_j^2)\beta_j^{\mathrm{b}})OJ_j, \tag{36}$$

$$\sum_{l \in L} z_{kl} + \sum_{m \in M} o_{km} \leqslant \left(Sc_k + (1 - \omega_k^3)\beta_k^{\mathrm{Sc}}\right)OK_k,$$
(37)

$$\sum_{m \in M} o_{km} \leqslant (Sc_k + (1 - \omega_k^4)\beta_k^{\rm Sc})pd_kOK_k, \quad (38)$$
$$\sum Rd_{mif} + n_f pl_{mf} \sum o_{km} \leqslant$$

$$\sum_{j \in J} \sum_{k \in K} \sum_{k \in K} \sum_{k \in K} \sum_{m \in K} \sum_{m \in K} \sum_{k \in K} \sum_{m \in K} \sum_{k \in K} \sum_{m \in K} \sum_{m \in K} \sum_{k \in K} \sum_{m \in K} \sum_{m$$

$$\sum_{n \in M} \sum_{f \in F} Rt_{mpf} \leqslant (A_p + (1 - \omega_p^6)\beta_p^A)OP_p,$$
(40)

$$\sum_{k \in K} R z_{lk} \ge \left( p c_l - \left( 1 - \omega_l^7 \right) \alpha_l^{\text{pc}} \right) \sum_{k \in K} z_{kl}, \qquad (41)$$

$$\sum_{e \in K} z_{kl} \ge d_l - (1 - \omega_l^8) \alpha_l^{\mathrm{d}},\tag{42}$$

式(10)-(14)(17)-(18),

其中:  $\forall i \in I, \forall f \in F, \forall j \in J, \forall k \in K, \forall m \in M, \forall p$  $\in P, \forall l \in L.$ 

转化后清晰等价模型LAM和UAM的机会约束置 信水平满足

$$0.5 \leqslant \omega_{if}^1, \omega_j^2, \omega_k^3, \omega_k^4, \omega_{mf}^5, \omega_p^6, \omega_l^7, \omega_l^8 \leqslant 1.$$
 (43)

## 4.2 多目标处理

本文采用加权增广Epsilon-约束方法<sup>[40-42]</sup>来处理 模型的多目标问题. 一般多目标规划问题的加权增 广Epsilon-约束方法表达形式如下:

$$\min \theta_1 f_1(x) - \delta \times \left(\theta_2 \frac{sl_2}{\gamma_2} + \theta_3 \frac{sl_3}{\gamma_3} + \dots + \theta_p \frac{sl_p}{\gamma_p}\right),\tag{44}$$

$$f_p(x) + sl_p = \varepsilon_p, \ \forall p \in (2, P), \tag{45}$$

$$x \in X, \ sl_p \in \mathbb{R}^+,$$
(46)

其中 $\delta$ 为一个很小的数, 一般取值(10e - 3, 10e - 6),  $\theta_p$ 为决策者所设定的目标权重且 $\sum \theta_p = 1, \gamma_p$ 为第p个目标函数的取值范围, slp为对应目标的松弛(或剩 余)变量.

对于矢量 $\varepsilon_n$ 的取值,首先先采用收益矩阵(payoff table)分别求解p-1个单目标规划问题,得到每个目 标函数的最大值 $f_n^{\max}$ 和最小值和 $f_n^{\min}$ ,然后运用如下 公式计算目标函数p和矢量 $\varepsilon_n$ 的取值范围:

$$\begin{cases} \gamma_p = f_p^{\max} - f_p^{\min}, \\ \varepsilon_p^l = f_p^{\max} - \frac{\gamma_p}{n_p} \times l, \end{cases}$$
(47)

其中:  $\forall p \neq 1, l = 0, 1, \cdots, n_p, l$ 为网格点数,  $\gamma_p$ 为第 p个目标函数取值范围,并被分成n<sub>p</sub>个对等间隔.

根据以上描述,将目标1设为主目标,把多目标问 题LAM和UAM转化为单目标问题:

式(26)(2)-(3) = 式(48)-(50)转换有

$$\min \ \theta_1 f_1(x) - \delta \times (\theta_2 \frac{sl_2}{\gamma_2} + \theta_3 \frac{sl_3}{\gamma_3}), \quad (48)$$

s.t. 
$$W_2 + sl_2 = \varepsilon_2,$$
 (49)

$$W_3 - sl_3 = \varepsilon_3. \tag{50}$$

综上,通过采用Me测度和加权增广Epsilon-约束 方法,将多目标模糊规划模型M1转化为两个相应的 单目标等价模型: LAM以式(48)为目标, 以式(2)-(3) (10)-(14)(17)-(18)(27)-(34)(49)-(50)和式(43)为约束 条件; UAM以式(48)为目标, 以式(2)-(3)(10)-(14)(17) -(18)(35)-(42)(49)-(50)和式(43)为约束条件.

# 5 求解方法

上文中混合整数规划模型的求解是个Np-hard 问题,其中小规模的问题可以采用LINGO,GAMS和 CPLEX等求解器解决,但是随着问题规模的扩大,求 解器往往难以求解,需要采用元启发式算法解决,为 此,本文运用GA-WOA混合算法进行求解,并将结果 与CPLEX和GA求解结果进行比较分析.

#### 5.1 鲸鱼优化算法

鲸鱼优化算法(WOA)是一种模仿座头鲸泡泡网觅 食行为的随机群体智能算法,该算法的数学描述流程 如下:

1) 包围猎物.

设鲸鱼数为N,在d维空间搜索,第i个个体在搜索 空间的位置为 $X_i = (x_i^1, x_i^2, \cdots, x_i^d), i \in (1, N), 猎$ 物所在的位置为对于问题的全局最优解. 位置更新公 式为

$$\vec{X}(t+1) = \vec{X^*}(t) - \vec{A} \cdot |\vec{C} \cdot \vec{X^*}(t) - \vec{X}(t)|,$$
(51)

其中: t为当前迭代次数;  $\vec{X}^*$ 为截止到当前的最优解 的位置向量;  $\vec{X}$ 为当前解的位置向量; "||"和"·"分别 为绝对值和点乘符号;  $\vec{A}$ 和 $\vec{C}$ 为系数向量, 计算公式为

$$\vec{A} = 2\vec{a} \cdot \vec{r}_1 - \vec{a}, \tag{52}$$

$$\vec{C} = 2 \cdot \vec{r}_2, \tag{53}$$

其中:  $\vec{r}_1$ 和 $\vec{r}_2$ 为[0,1]之间的随机向量,  $\vec{a}$ 随着迭代次数的增加从2线性下降到0,  $\vec{a}$ 的计算公式为

$$\vec{a} = 2 - \frac{2t}{T},\tag{54}$$

其中: t为当前迭代次数, T为最大迭代次数. 收缩包 围机制通过式(52)和式(54)随着收敛参数a的减小而 实现.

2) 螺旋气泡网攻击.

座头鲸以螺旋运动方式不断接近猎物.通过计算 当前解(*X*)和截止当前最优解(*X*\*)之间的距离来实 现螺旋形的路径,建立如下螺旋式方程:

$$\vec{X}(t+1) = \vec{D}' \cdot e^{\mathrm{bl}} \cdot \cos(2\pi l) + \vec{X^*}(t), \quad (55)$$

$$D' = |\vec{X}^{*}(t) - \vec{X}(t)|,$$
 (56)

其中: D'为鲸鱼X和猎物的距离, b为螺旋形状定义的 常量, l为取值在[-1,1]间的随机数. 在模型中, 收缩包 围机制式(51)和螺旋更新机制式(55)的选择概率p都 为50%.

3) 随机搜寻猎物.

鲸鱼除了采用泡泡网捕食行为,还利用随机选择的方法更新位置.当A的值小于1时,执行上节的收缩包围和螺旋更新;不小于1时,执行以下等式:

$$\vec{X}(t+1) = \vec{X}_{\text{rand}}(t) - \vec{A} \cdot |\vec{C} \cdot \vec{X}_{\text{rand}}(t) - \vec{X}(t)|,$$
(57)

其中X<sub>rand</sub>为从当前种群中随机选取的鲸鱼位置向量. 5.2 编码

网络优化问题的初始解是起点|A|(供应商等)到终 点|B|(工厂、客户等)的|A| × |B|的运输矩阵,并对矩 阵内各节点进行资源分配.为确定分配顺序,即优先 分配给哪个终点以及优先由哪个起点运输,参考文献 [30–32]的初始解表达方式,提出一种基于[0,1]随机 数的双层编码方法对模型的决策变量进行编码. 第1层对终点|B|编码,如表1所示.

#### 表1 染色体第1层编码实例说明

| Table 1 | The first | layer of | chromosome | coding | example |
|---------|-----------|----------|------------|--------|---------|
|---------|-----------|----------|------------|--------|---------|

|      | 第1节      | : L  | 第2寸  | 节: $K$             | 第3   | 3节: L     | r    | 第4节   | î: K | 第5节    | : M  | 第    | 6节:.      | J    | 第7节    | f: M |
|------|----------|------|------|--------------------|------|-----------|------|-------|------|--------|------|------|-----------|------|--------|------|
| 1    | 2        | 3    | 1    | 2                  | 1    | 2         | 3    | 1     | 2    | 1      | 2    | 1    | 2         | 3    | 1      | 2    |
| 0.33 | 0.27     | 0.04 | 0.44 | 0.08               | 0.32 | 0.69      | 0.78 | 0.62  | 0.19 | 0.77   | 0.84 | 0.58 | 0.92      | 0.81 | 0.57   | 0.28 |
|      | $z_{kl}$ |      | Į    | $\mathcal{Y}_{jk}$ |      | $Rz_{lk}$ |      | $o_k$ | m    | $Rd_r$ | njf  |      | $x_{ijf}$ |      | $Rt_r$ | npf  |

注: 其中第2行为各节终点的编号, 第3行为其所对应的随机数.

第2层对运输矩阵进行编码. 其构造如表2所示, 以 $z_{kl}$ 为例,构造一个 $|A| \times |B|(2 \times 3)$ 的矩阵,在每 个位置随机生成[0,1]的随机数,形成 $z_{kl}$ 的第2层基 因,同理可知生成 $y_{jk}$ ,  $Rz_{lk}$ ,  $o_{km}$ 的第2层基因,对于  $Rd_{mjf}$ ,  $x_{ijf}$ ,  $Rt_{mpf}$ , 生成f个同类型的矩阵保存到 第2层基因.

表 2 染色体第2层编码实例说明 Table 2 The second layer of chromosome coding example

|   | 1    | 2    | 3    |
|---|------|------|------|
| 1 | 0.35 | 0.91 | 0.61 |
| 2 | 0.42 | 0.77 | 0.22 |

## 5.3 解码

 1) 上节编码后的染色体无法直接求得目标函数
 值,需要对其解码得到相邻节点之间的运输矩阵, 解码步骤如下: 参数输入: *A*为起点的集合; *B*为终点的集合; *x<sub>a</sub>*为起点a的能力,  $\forall a \in A$ ; *y<sub>b</sub>*为终点的需求量,  $\forall b \in B$ ;  $v_b^1$ 为终点的第1层优先级,  $\forall b \in B$ ;  $v_{ab}^2$ 为运输矩阵的第2层优先级,  $\forall a \in A, b \in B$ . 输出: *z<sub>ab</sub>*为起点*a*到终点b的运量.

步骤 1 令
$$z_{ab} = 0, \forall a \in A, b \in B, \stackrel{a}{=} \sum_{b=1}^{B} y_b > 0.$$
  
步骤 2  $b^* = \arg \max\{v_b^1, \forall b \in B\},$   
 $a^* = \arg \max\{v_{a,b^*}^2, a \in A\}.$ 

步骤 3  $z_{a^*b^*} = \min\{x_{a^*}, y_{b^*}\}$ 更新需求量和能力:  $x_{a^*} = x_{a^*} - z_{a^*b^*}, y_{b^*} = y_{b^*} - z_{a^*b^*}$ 

步骤4 若 $x_{a^*} = 0$ 则 $v_{a^*b}^2 = 0$ ,  $\forall b \in B$ , 若 $y_{b^*} = 0$ 则 $v_{b^*}^1 = 0$ 

步骤5 若 $v_b^1 = 0$ ,  $\forall b \in B$ 则输出 $z_{ab}$ , 否则返回步骤2.

**注1** 本节符号与模型符号相互独立,只为说明解码 流程.对于含有零件f的决策变量,对每个f依次执行该步骤,

构造运输矩阵.

以表1-2的编码为例,具体解码步骤如表3所示.

表 3 解码过程跟踪表 Table 3 Decoding process tracking table

| 迭代<br>次数 | $v_b^1$          | x         | y              | a | b | $z_{ab}$ |
|----------|------------------|-----------|----------------|---|---|----------|
| 0        | [0.33 0.27 0.04] | (550 500) | ( 300 400 200) | 2 | 1 | 300      |
| 1        | [0 0.27 0.04 ]   | (550 200) | (0 400 200)    | 1 | 2 | 400      |
| 2        | [0 0 0.04]       | (150 200) | (0 0 200)      | 1 | 3 | 150      |
| 3        | [0 0 0.04]       | (0 200)   | (0 0 50)       | 2 | 3 | 50       |
| 4        | [000]            | (0 150)   | (0 0 0)        | — | — | _        |

2) 本文模型各决策变量的解码过程如下: 输入:  $\tilde{d}_l, \tilde{a}_{if}, \tilde{b}_j, \tilde{S}c_k, \tilde{e}_m, \tilde{A}_{pf}, pd_k, \tilde{p}c_l, pl_{mf}$ . 通过1)计算  $z_{kl}, y_{jk}, Rz_{lk}, o_{km}, Rd_{mjf}, x_{ijf}, Rt_{mpf}$ .

# 5.4 适应度和精英保存

以目标函数值的倒数作为算法的适应度值,并 将当代最优解与前次迭代得到的最优解进行比较得 到截止到当前迭代代数的最优染色体和解进行保 存.

#### 5.5 WOA算法部分

将当前最优解作为"猎物"的位置,每个"鲸鱼" (染色体)向其靠近,首先产生随机数p,判断其值是 否小于0.5,若大于0.5则按照式(55)-(56)更新位置; 否则判断|A|的值是否小于1,若大于1则按式(57)更 新位置,否则按照式(51)更新位置.并且对超出范围 的个体进行修正,通过生成随机数修正其取值在 [0,1]之间,具体步骤见算法流程图2.

## 5.6 GA算法部分

1) 选择操作.

本文随机选取种群内的染色体进行后续交叉变 异操作,采用经典的轮盘赌策略操作,保证GA交叉 变异的随机性以避免陷入局部最优. 2) 交叉操作.

采用分段交叉的方法,首先根据交叉概率随机 选取染色体并两两分组,再对每组染色体生成2个 [1,7]之间的随机整数并在所对应的小节执行交叉操 作.例如选取第4小节和第6小节,变化过程见表4-5.

3) 变异操作.

对第2层染色体进行变异操作,首先根据变异概 率随机选择变异个体,然后随机选取个体中的两节, 再随机在这两节各选择1列重新生成[0.1]随机数替 代选中列.

综上, GA-WOA混合算法的求解流程如图2所示.





Fig. 2 Flow chart of GA-WOA hybrid algorithm

|         | 表 4 交叉操作执行前的染色体                         |
|---------|-----------------------------------------|
| Table 4 | Chromosoma before the crossover operati |

|                | 1401      | c + Chiomosonic |           | lossover oper | ation          |            |
|----------------|-----------|-----------------|-----------|---------------|----------------|------------|
| 第1节:L          | 第2节: K    | 第3节:L           | 第4节: K    | 第5节: M        | 第6节:J          | 第7节: M     |
| 0.33 0.27 0.04 | 0.44 0.08 | 0.32 0.69 0.78  | 0.62 0.19 | 0.77 0.84     | 0.58 0.92 0.81 | 0.57 0.28  |
| $z_{kl}$       | $y_{jk}$  | $Rz_{lk}$       | $o_{km}$  | $Rd_{mjf}$    | $x_{ijf}$      | $Rt_{mpf}$ |
| 0.45 0.56 0.34 | 0.76 0.56 | 0.23 075 0.18   | 0.97 0.65 | 0.54 0.23     | 0.65 0.46 0.51 | 0.39 0.61  |
| $z_{kl}$       | $y_{jk}$  | $Rz_{lk}$       | $o_{km}$  | $Rd_{mjf}$    | $x_{ijf}$      | $Rt_{mpf}$ |

## 张鑫等:可持续闭环供应链网络设计的多目标模糊规划问题 表 5 交叉操作执行后的染色体

|                | Tab       | le 5 Chromosome | e after the cro | ossover opera | tion           |            |
|----------------|-----------|-----------------|-----------------|---------------|----------------|------------|
| 第1节:L          | 第2节: K    | 第3节:L           | 第4节: K          | 第5节: M        | 第6节: J         | 第7节: M     |
| 0.33 0.27 0.04 | 0.44 0.08 | 0.32 0.69 0.78  | 0.97 0.65       | 0.77 0.84     | 0.65 0.46 0.51 | 0.57 0.28  |
| $z_{kl}$       | $y_{jk}$  | $Rz_{lk}$       | $o_{km}$        | $Rd_{mjf}$    | $x_{ijf}$      | $Rt_{mpf}$ |
| 0.45 0.56 0.34 | 0.76 0.56 | 0.23 075 0.18   | 0.62 0.19       | 0.54 0.23     | 0.58 0.92 0.81 | 0.39 0.61  |
| $z_{kl}$       | $y_{jk}$  | $Rz_{lk}$       | $o_{km}$        | $Rd_{mjf}$    | $x_{ijf}$      | $Rt_{mpf}$ |

# 6 算例分析

## 6.1 算法比较与分析

为了验证模型和混合优化算法的有效性,设计 如下算例.根据公司发展战略,为开拓一个地区的 消费市场,某公司拟设计一个可持续闭环供应链, 从而降低运营成本、回收再制造产品,并兼顾环境 保护和社会发展的目标.根据企业的调研数据,利 用均匀分布的方法随机生成各确定参数值,各LR模 糊数根据首先在参数范围内根据均匀分布的方法随 机生成其名义值,后左右扰动20%的规则生成.在 此基础上生成6个不同规模的算例测试算法的有效 性,具体赋值如表6-7.

表 6 参数设置 Table 6 Parameter settings

|                                                                  |                        | U                                 |                        |
|------------------------------------------------------------------|------------------------|-----------------------------------|------------------------|
| 参数                                                               | 范围                     | 参数                                | 范围                     |
| $\widetilde{a}_i$                                                | Uniform(700, 1500)     | $\widetilde{Q}_p$                 | Uniform(50000, 200000) |
| $\widetilde{b}_j$                                                | Uniform(400, 600)      | $\widetilde{arphi}_{f}$           | Uniform(4, 8)          |
| $\widetilde{S}c_k$                                               | Uniform(700, 1000)     | $n_f$                             | Uniform(1,3)           |
| $\widetilde{e}_m$                                                | Uniform(400, 500)      | $COI_{ijf}, COM_{mjf}, COP_{mpf}$ | Uniform(0.2, 1.2)      |
| $\widetilde{A}_p$                                                | Uniform(300, 400)      | $COJ_{jk}, COK_{kl}$              | Uniform(0.3, 1.3)      |
| $pd_k$                                                           | 0.2                    | $COKM_{km}, COL_{lk}$             | Uniform(0.3, 1.3)      |
| $\widetilde{p}c_l$                                               | Uniform(0.15, 0.25)    | $CPJ_j, CPK_k, CPM_m$             | Uniform(0.2, 1.2)      |
| $pl_m$                                                           | 0.2                    | $CPP_p$                           | Uniform(0.2, 1)        |
| $\widetilde{d}_l$                                                | Uniform(200, 500)      | $CQJ_j, CQK_k$                    | Uniform(100,200)       |
| $\widetilde{s}_{ijf}$                                            | Uniform(10, 20)        | $CQM_m, CQP_p$                    | Uniform(60, 100)       |
| $\widetilde{t}_{jk}, \widetilde{u}_{kl}, \widetilde{v}_{km}$     | Uniform(1, 15)         | $DAJ_j, DAK_k$                    | Uniform(60,160)        |
| $\widetilde{w}_{mjf}, \widetilde{R}u_{lk}, \widetilde{R}p_{mpf}$ | Uniform(1, 15)         | $DAM_m, DAP_p$                    | Uniform(30, 100)       |
| $\widetilde{c}_j$                                                | Uniform(150000,450000) | $DBJ_j, DBK_k$                    | Uniform(1,10)          |
| $\widetilde{g}_k$                                                | Uniform(100000,300000) | $DBM_m, DBP_p$                    | Uniform(1, 10)         |
| $\widetilde{h}_m$                                                | Uniform(50000,200000)  |                                   |                        |

注: 对于各LR模糊数, 本表生成名义值范围, 左右扰动在名义值基础上获得.

表 7 测试问题的规模 Table 7 The scale of the test problem

|      |      | Iuo              | ie / The sea |      | st problem |      |       |
|------|------|------------------|--------------|------|------------|------|-------|
| 测试问题 | 供应商I | $\bot \square J$ | 配送中心K        | 客户区L | 拆解中心M      | 填埋点P | 零件种类F |
| 1    | 3    | 4                | 4            | 5    | 3          | 2    | 2     |
| 2    | 6    | 8                | 8            | 10   | 6          | 4    | 2     |
| 3    | 12   | 16               | 16           | 20   | 12         | 8    | 2     |
| 4    | 24   | 32               | 32           | 40   | 24         | 16   | 2     |
| 5    | 48   | 64               | 64           | 80   | 48         | 32   | 2     |
| 6    | 60   | 80               | 80           | 100  | 60         | 40   | 2     |

实验中,模型和算法分别利用CPLEX12.5.1和 MATLAB R2017b进行求解,计算机配置为Intel(R) Core(TM) i7 2.8 GHz, 4 GB内存, 64位Windows10操 作系统.为测试模型和算法的有效性,选择采用相似的编码方法求解网络设计问题,但并无WOA算法 搜索过程的文献[43]的GA算法与GA-WOA混合算

法进行比较.此外,两种算法选取相同的公共参数 以保证测试的公平合理.其中:Me测度参数λ取0.5, 增广Epsilon-约束中各目标函数权重值取[0.4, 0.3, 0.3], δ取1e-4,各约束的置信水平取90%,两算法交 叉率取60~70%,变异率取10%~20%, $\gamma_2$ 和 $\gamma_3$ 的取 值由目标函数2和函数3的上、下界计算得出, $\varepsilon_2$ 和 $\varepsilon_3$ 分别取目标函数2和函数3上、下界的中间值.根据 以上参数分别求解UAM和LAM,结果如表8所示.

|         | 表 8 CPLEX和算法计算结果比较                         |
|---------|--------------------------------------------|
| Table 8 | Comparisons of CPLEX and algorithm results |

| 问题                              | CPLEX                                       | K.                 | GA-WOA混合                                    | 算法      | GA                                          |         |
|---------------------------------|---------------------------------------------|--------------------|---------------------------------------------|---------|---------------------------------------------|---------|
| 测试问题1<br>(种群数量=200)<br>(迭代200次) | UAM: 1045707.2<br>LAM: 1049626.4            | 1.96               | UAM: 1045704.0<br>LAM: 1049626.4<br>[0]     | 97.26   | UAM: 1045704.0<br>LAM: 1049626.4<br>[0]     | 88.35   |
| 测试问题2<br>(种群数量=300)<br>(迭代300次) | UAM: 1837272.0<br>LAM: 2099252.8            | 5.20               | UAM: 1841497.7<br>LAM: 2105340.6<br>[0.28%] | 248.53  | UAM: 1842058.2<br>LAM: 2106752.3<br>[0.62%] | 218.58  |
| 测试问题3<br>(种群数量=400)<br>(迭代400次) | UAM: 3609072.8<br>LAM: 3917524.8            | 154.39             | UAM: 3628532.3<br>LAM: 3947827.1<br>[0.69%] | 556.45  | UAM: 3635462.7<br>LAM: 3956498.2<br>[1.73%] | 501.53  |
| 测试问题4<br>(种群数量=500)<br>(迭代500次) | UAM: 7595384.5<br>LAM: 7784382.3<br>(可行解)   | >8024.46<br>(内存不足) | UAM: 7775633.2<br>LAM: 8056325.6<br>[5.87%] | 1523.42 | UAM: 7897265.1<br>LAM: 8072154.3<br>[7.67%] | 1379.28 |
| 测试问题5<br>(种群数量=500)<br>(迭代500次) | UAM: 15468392.4<br>LAM: 16125324.5<br>(可行解) | >4335.53<br>(内存不足) | UAM: 15343854.1<br>LAM: 16035738.2<br>[—]   | 3943.32 | UAM: 15395847.5<br>LAM: 16071265.3<br>[—]   | 3217.66 |
| 测试问题6<br>(种群数量=500)<br>(迭代500次) | _                                           | _                  | UAM: 20184269.7<br>LAM: 21045643.3<br>[—]   | 6825.67 | UAM: 21026462.3<br>LAM: 22135432.8<br>[]    | 6052.35 |

注: 平均时间为分别运行UAM和LAM20次两个模型平均运行时间之和. 平均误差率为UAM和LAM的误差率平均值. 误差率的计算如下: (算法求得的目标值-CPLEX求得的目标值)/CPLEX求得的目标值.

从表8中可见:算例1通过GA-WOA得出的目标 函数值与CPLEX的求解结果一致,这说明本文提出 的GA-WOA混合算法适用于网络设计问题的求解: 随着问题规模的不断增大,对于算例2-3, GA-WOA 混合算法求得的目标值较CPLEX所求得的目标值 较大,但误差率小于1%,这说明随着问题规模递增, GA-WOA混合算法的求解的结果与最优值有误差, 但是误差率较小;对于大规模的算例4-6, CPLEX无 法求出最优解,且会超出运行内存无法继续求解, GA-WOA混合算法的求解结果会接近CPLEX的求 解结果,且用时较CPLEX求解时间更少且对于更大 规模算例6, GA-WOA仍旧能得到可行解. 在对小 规模算例1-3进行求解时, CPLEX求解效率远高于 GA-WOA混合算法,且能够得到比GA-WOA混合 算法更优的目标值,具有更好的适用性;对大规模 的算例4-6求解时,采用GA-WOA混合算法的求解 效率和效果更优. 以上分析表明CPLEX优化软件在 小规模问题的求解中优势明显, GA-WOA混合算法 问题规模越大越适用.

此外, GA-WOA算法与GA算法相比, 对于算例 1, 都能求得最优解, 说明两种算法都适用于该问题 的求解; 对于算例 2-6, GA-WOA 的解比 GA 小, 但 运行时间长, 且问题规模越大, 运行时间差值越大, 这是因为GA-WOA的全局搜索能力较强, 能够找到 质量更高的解, 但是执行WOA的搜索过程需要花费 较多时间来求得更好的解.

为比较GA和GA-WOA的收敛速度和求解精度, 选取中等规模测试问题3,其他参数设置与表6相同 值,分别求解UAM和LAM模型,所得收敛曲线如 图3-4所示;UAM和LAM目标值随时间变化的曲线 如图5-6所示.

根据图3-4可以看出, 在种群规模、迭代次数以 及其他各个参数相同的情况下, GA-WOA算法较 GA算法在逃脱局部最优以及寻优精度上都表现出 了优越性. 根据图5-6可以看出, 在相同的迭代次数 下GA-WOA算法比GA算法花费时间长, 但是前者 的收敛速度更快, 并在更短时间内找到精度更高的 可行解, 这也证明了上述混合算法的优越性.



第3期

图 3 迭代次数和UAM最优值曲线

Fig. 3 The curve of iteration number and UAM optimal value





Fig. 4 The curve of iteration number and LAM optimal value



图 5 求解时间和UAM最优值曲线

Fig. 5 The curve of solving time and UAM optimal values



图 6 求解时间和LAM最优值曲线



#### 6.2 模型分析

为了研究各约束满足的置信水平(ω)以及各个模 糊参数分别对UAM和LAM的影响,选取CPLEX和 GA-WOA混合算法能同时求出最优解的算例1进行 分析.

首先分析了确定性模型各目标之间的关系,分别以3个目标作为目标函数对确定性模型进行求解, 计算出最优解和其他两个目标的值,结果如表9所示.

通过表9的计算结果可以看出,分别求解各目标 函数时各层级设施的选址不同,且3个优化目标相 互冲突,满足目标1最小成本时,会尽量减少固定投 资较大的设施的建设,此时企业的碳排量增多,社 会效益较小;满足目标2碳排量最小时,会优先考虑 碳排量较小的设施和运输路径,此时成本较高,社 会效益较小;满足目标3社会效益最大时,需要选取 尽量多的设施以增加工作机会,此时成本和碳排量 更大.对于决策者来说,需要权衡3个目标,并根据 实际情况和企业的目标选择满足企业战略需要的最 优均衡方案.

|         | 表9 各目标的最优化结果                           |
|---------|----------------------------------------|
| Table 9 | Optimization results of each objective |

|     | 目标1         | 目标2     | 目标3   | OJ         | OK          | ОМ      | OP   |
|-----|-------------|---------|-------|------------|-------------|---------|------|
| 目标1 | 2196326     | 32864   | 23448 | 1, 1, 0, 1 | 0, 1 , 1, 1 | 0, 0, 1 | 1, 0 |
| 目标2 | 2.6196e6    | 31903.7 | 23816 | 1, 0, 1, 1 | 1, 0, 1 ,1  | 0, 0, 1 | 1, 0 |
| 目标3 | 3.3693e6    | 46380   | 33344 | 1, 1, 1, 1 | 1, 1, 1, 1  | 1, 1, 1 | 1, 1 |
| QW  | 878530.4(总) | _       | _     | 1, 1, 0, 1 | 0, 1, 1, 1  | 0, 0, 1 | 1,0  |

注: 加黑为各目标的最优解; 加权目标值为置信水平1,  $\lambda = 0.5$ ,  $\theta_1$ ,  $\theta_2$ ,  $\theta_3$ 分别为0.4, 0.3, 0.3时的值, QW表示增广Epsilon-约束方法求解结果, 下同.

对于模糊规划模型,首先分析不同置信水平( $\omega$ ) 对UAM和LAM的影响,取 $\lambda$ =0.5, $\theta_1$ =0.4, $\theta_2$ =0.3,  $\theta_3$ =0.3, $\varepsilon_2$ 和 $\varepsilon_3$ 为目标函数2和目标函数3上、下界 的中间值,各LR模糊数的左右扰动比率为20%,各 ω取值相同,计算结果如图7-10所示.

从图7-10可见,对于加权目标QW和3个单目标 而言,随着置信度的不断增大,目标函数的的解会 增大.





Fig. 7 The change chart of weighted objective QW with confidence level  $\omega$ 



图 8 目标W1随置信水平ω变化图



dence level  $\omega$ 





dence level  $\omega$ 





这是因为较高的置信水平会使各模糊约束的严密性增加,模型的可行解区域缩小,趋向于确定性模型,从而提高系统的稳定性.置信水平增大时,UAM的值随着客户需求增加而逐渐变大,置信水平在0.5~0.7范围内变化时,由于需要增加设施以满足需求因此成本目标W1增加较快;LAM随着客户需求减少而逐渐减小,两者的差值随着置信度增大,客户需求的接近而逐渐减小.本文中社会影响仅与选址有关,置信水平的变化会影响设施选址进而影响社会目标的值.同时,对于成本最小化目标来说,决策者在UAM中考虑的是乐观态度(值更小),UAM的可行域比LAM的更大,UAM能给出更优的解,这也证实了Xu和Zhou(2013)<sup>[26]</sup>所观察到的LAM大于UAM的现象.

取置信水平 $\omega$ =0.9,…, $\theta_2$ =0.3, $\theta_3$ =0.3, $\varepsilon_2$ 和  $\varepsilon_3$ 为目标函数2-3上、下界的中间值,各LR模糊数 的左右扰动比率为20%,分析乐观-悲观参数 $\lambda$ 的变 化对目标值的影响,计算结果如下图11-12所示.



Fig. 11 The change chart of weighted objective QW with





乐-悲观参数λ

pessimistic parameter  $\lambda$ 

从图11-12可见,随着乐观-悲观参数λ值的增加,加权目标QW和模糊总成本目标的值呈上升趋势.本文的模糊总成本目标函数与λ取值有关,对于成本最小化目标而言,参数λ是一个"悲观"参数,

在机会约束取相同的置信水平条件下,当"悲观" 参数λ取值增加时,表明决策者对于未来市场更加 悲观,即决策者需要更大的成本投入以应对未来的 不确定性,由于确定性目标函数2-3与λ无关,因此 λ值的变化不会改变目标函数2-3的计算.基于此, 决策者能够根据其自身对于未来市场的预测,得到 满足他们不同态度的不同决策方案,更好的应对未 来市场的变化,使整个供应链具有较强的市场竞争 力.

取置信水平 $\omega$ = 0.9,  $\lambda$ = 0.5,  $\theta_1$  = 0.4,  $\theta_2$  = 0.3,  $\theta_3$  = 0.3,  $\varepsilon_2 \pi \varepsilon_3 \lambda$ 目标函数2–3上、下界的中间值, 分析各LR模糊数扰动比率的变化对目标值的影响, 计算结果如图13–16所示.

从图13-16的变化趋势可知:与确定性模型结果 表7相比,随着各LR模糊数扰动比率的增加,加权目 标QW和各目标值呈逐渐增大的趋势,表明不确定 性较大的模型会带来成本和碳排量的增加,并且难 以得到最大社会效益,供应链中设施建设各项成 本、运输费用、客户需求以及各设施能力等参数的 不确定性增大时,需要增加更多的预算,构造更加 复杂的运输线路,这必然会导致成本上升以及碳排 量的增加,同时社会效益增大.















对于增广 Epsilon-约束的相关参数,由于松弛 (剩余)变量的存在,改变目标权重对加权目标求解 后3个目标各自的值影响不明显.这可以基于目标 的规范化来避免缩放问题,由于目标权重是在1和 0之间进行缩放,改变权重只会轻微地影响目标值. 因此决策者可以根据实际情况更加灵活的选择合适 的权重.

bance ratio

综上分析,改变置信水平(ω)以及各模糊参数的 值对模型的影响是显著的,通过将乐观-悲观态度 和置信水平的程度纳入决策模型,可以得到区间解, 为决策者提供最优决策的上限和下限.此外,决策 者可以灵活的根据市场调研和前景分析确定各模糊 参数的取值范围,得到更加符合实际的解决方案.

## 7 结论

研究可持续闭环供应链网络设计问题能够为实现经济、环境和社会三者协调发展提供理论指导和决策支持.本文针对模糊环境下多零件、多层级、多目标的多级闭环供应链网络设计问题,建立了可持续闭环供应链的多目标模糊规划模型.该模型不仅考虑了供应链网络设计中的经济目标,而且还兼顾了可持续供应链中环境和社会两方面的因素.对于

模糊参数,本文采用基于Me测度的模糊规划方法, 分别利用期望值规划和机会约束规划方法处理模糊 目标和模糊约束,同时,该模型还利用增广Epsilon-约束方法处理多目标问题.另外,本文提出一种基 于[0,1]随机数的双层编码GA-WOA混合算法求解 模型,并通过算例验证了算法和模型的可行性和实 用性.

进一步的研究可以系统考虑企业多产品、多阶段、多种生产方式的决策问题,分析不同算法求解 该问题的效率,并细化对社会影响指标的选取和评价工作.

## 参考文献:

- BADRI H, GHOMI S M T F, HEJAZI T H. A two-stage stochastic programming approach for value-based closed-loop supply chain network design. *Transportation Research Part E*, 2017, 105: 1 – 17.
- [2] JEIHOONIAN M, ZANJANI M K, GENDREAU M. Accelerating benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels. *European Journal of Operational Research*, 2016, 251(3): 830 – 845.
- [3] LI Jin. Multi-objective robust fuzzy optimization problem for closed-loop supply chain network design under low-carbon environment. *Control and Decision*, 2018, 33(2): 293 300.
  (李进. 低碳环境下闭环供应链网络设计多目标鲁棒模糊优化问题. 控制与决策, 2018, 33(2): 293 300.)
- [4] GOVINDAN K, SOLEIMANI H, KANNAN D. Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. *European Journal of Operational Research*, 2015, 240(3): 603 – 626.
- [5] United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development. New York, 2015–10–21, https://www.un.org/ ga/search/view\_doc.asp?symbol=A/RES/70/1&Lang=E., 2015.
- [6] Ministry of foreign affairs of the people's republic of China. China's Progress Report on Implementation of the 2030 Agenda for Sustainable Development. https://www.fmprc.gov.cn/web/ziliao\_674 904/zt\_674979/dnzt\_6749 81/qtzt/2030kcxfzyc\_686343/P020170824 649973281209.pdf, 2017–08–24.

(中华人民共和国外交部.中国落实2030年可持续发展议程进展报告.https://www.fmprc.gov.cn/web/ziliao\_674904/zt\_674979/dnzt\_674981/qtzt/2030kcxfzyc\_686343/P020170824649973281209.pdf, 2017-08-24.)

- [7] MOTA B, GOMES M I, CARVALHO A, et al. Sustainable supply chains: An integrated modelling approach under uncertainty. *Omega*, 2018, 77: 32 – 57.
- [8] MOTA B, GOMES M I, CARVALHO A, et al. Towards supply chain sustainability: Economic, environmental and social design and planning. *Journal of Cleaner Production*, 2015, 105: 14 – 27.
- [9] PÉREZ-FORTES M, LAÍNEZ-AGUIRRE J M, ARRANZ-PIERA P, et al. Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach. *Ener*gy, 2012, 44(1): 79 – 95.
- [10] VARSEI M, POLYAKOVSKIY S. Sustainable supply chain network design: A case of the wine industry in Australia. *Omega*, 2017, 66(Part B): 236 – 247.
- [11] CHAABANE A, RAMUDHIN A, PAQUET M. Design of sustainable supply chains under the emission trading scheme. *International Journal of Production Economics*, 2012, 135(1): 37 – 49.

- [12] SAHEBJAMNIA N, FARD A M F, HAJIAGHAEI-KESHTELI M. Sustainable tire closed-loop supply chain network design: Hybrid metaheuristic algorithms for large-scale networks. *Journal of Cleaner Production*, 2018, 196(20): 273 – 296.
- [13] ALLAOUI H, GUO Y, CHOUDHARY A, et al. Sustainable agrofood supply chain design using two-stage hybrid multi-objective decision-making approach. *Computers & Operations Research*, 2018, 89: 369 – 384.
- [14] KLIBI W, MARTEL A. The design of robust value-creating supply chain networks. OR Spectrum, 2013, 35(4): 867 – 903.
- [15] PEIDRO D, MULA J, JIMÉNEZ M, et al. A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. *European Journal of Operational Research*, 2010, 205(1): 65 – 80.
- [16] EL-SAYED M, AFIA N, EL-KHARBOTLY A. A stochastic model for forward - reverse logistics network design under risk. *Computers* & *Industrial Engineering*, 2010, 58(3): 423 – 431.
- [17] GONELA V. Stochastic optimization of sustainable hybrid generation bioethanol supply chains. *Transportation Research Part E*, 2015, 77: 1 – 28.
- [18] PISHVAEE M S, RAZMI J, TORABI S A. An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. *Transportation Research Part E*, 2014, 67: 14 – 38.
- [19] GU Qiaolun, JI Jianhua. Fuzzy chance-constrained programming model for the integrated logistics network of remanufacturing/manufacturing system. *Control Theory & Applications*, 2005, 22(6): 889 894.
  (顾巧论,季建华. 再制造/制造系统集成物流网络模糊机会约束规划模型. 控制理论与应用, 2005, 22(6): 889 894.)
- [20] SUBULAN K, TA?AN A S, BAYKASO?LU A. Designing an environmentally conscious tire closed-loop supply chain network with multiple recovery options using interactive fuzzy goal programming. *Applied Mathematical Modelling*, 2015, 39(9): 2661 – 2702.
- [21] XU J, ZHOU X. Approximation based fuzzy multi-objective models with expected objectives and chance constraints: Application to earth-rock work allocation. *Information Sciences*, 2013, 238(7): 75 – 95.
- [22] ESKANDARPOUR M, DEJAX P, MIEMCZYK J, et al. Sustainable supply chain network design: An optimization-oriented review. *Omega*, 2015, 54: 11 – 32.
- [23] AFROUZY Z A, NASSERI S H, MAHDAVI I. A genetic algorithm for supply chain configuration with new product development. *Computers & Industrial Engineering*, 2016, 101: 440 – 454.
- [24] LIU Yefeng. Application of improved genetic algorithm to magnetic materials group furnace optimization problem. *Control Theory & Applications*, 2014, 31(9): 1221 1231.
  (刘业峰. 改进遗传算法在磁性材料组炉优化问题中的应用. 控制理 论与应用, 2014, 31(9): 1221 1231.)
- [25] MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51 – 67.
- [26] LONG Wen, CAI Shaohong, et al. Improved whale optimization algorithm for large scale optimization problems. *Systems Engineering Theory & Practice*, 2017, 37(11): 2983 2994.
  (龙文, 蔡绍洪, 等. 求解大规模优化问题的改进鲸鱼优化算法. 系统 工程理论与实践, 2017, 37(11): 2983 2994.)
- [27] OLIVA D, AZIZ M A E, HASSANIEN A E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. *Applied Energy*, 2017, 200(15): 141 – 154.
- [28] MEHNE H H, MIRJALILI S. A parallel numerical method for solving optimal control problems based on whale optimization algorithm. *Knowledge Based Systems*, 2018, 151(1): 114 – 123.

- 第3期
- [29] ABDEL-BASSET M, MANOGARAN G, EL-SHAHAT D, et al. A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. *Future Generation Computer Systems*, 2018, 85: 129 – 145.
- [30] ALTIPARMAK F, GEN M, LIN L, et al. A steady-state genetic algorithm for multi-product supply chain network design. *Computers & Industrial Engineering*, 2009, 56(2): 521 – 537.
- [31] SHI J, LIU Z, TANG L, et al. Multi-objective optimization for a closed-loop network design problem using an improved genetic algorithm. *Applied Mathematical Modelling*, 2016, 45: 14 – 30.
- [32] ZHANG S, LEE C K M, WU K, et al. Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels. *Expert Systems with Applications*, 2016, 65(15): 87 – 99.
- [33] GOVINDAN K, PAAM P, ABTAHI A R. A fuzzy multi-objective optimization model for sustainable reverse logistics network design. *Ecological Indicators*, 2016, 67: 753 – 768.
- [34] LIU B. *Theory and Practice of Uncertain Programming*. Berlin Heidelberg: Springer, 2009.
- [35] PISHVAEE M S, TORABI S A, RAZMI J. Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. *Computers & Industrial Engineering*, 2012, 62(2): 624 – 632.
- [36] TORABI S A, BAGHERSAD M, MANSOURI S A. Resilient supplier selection and order allocation under operational and disruption risks. *Transportation Research Part E*, 2015, 79: 22 – 48.
- [37] ZHALECHIANh M, TAVAKKOLI-MOGHADDAM R, RAHIMI Y, et al. An interactive possibilistic programming approach for a multiobjective hub location problem: Economic and environmental design. *Applied Soft Computing*, 2017, 52: 699 – 713.

- [38] ZADEH L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets & Systems, 1978, 1(1): 3 – 28.
- [39] WANG Z X, LIU Y J, FAN Z P, et al. Ranking LR fuzzy number based on deviation degree. *Information Sciences*, 2009, 179(13): 2070 – 2077.
- [40] MAVROTAS G. Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. *Applied Mathematics and Computation*, 2009, 213(2): 455 – 465.
- [41] ESMAILI M, AMJADY N, SHAYANFAR H A. Multi-objective congestion management by modified augmented  $\varepsilon$ -constraint method. *Applied Energy*, 2011, 88(3): 755 – 766.
- [42] TOFIGHI S, TORABI S A, MANSOURI S A. Humanitarian logistics network design under mixed uncertainty. *European Journal of Operational Research*, 2016, 250(1): 239 – 250.
- [43] ROGHANIAN E, PAZHOHESHFAR P. An optimization model for reverse logistics network under stochastic environment by using genetic algorithm. *Journal of Manufacturing Systems*, 2014, 33(3): 348 – 356.

作者简介:

**张 鑫** 博士研究生,主要研究方向为供应链网络优化设计和智能算法应用, E-mail: xinzhangandy@163.com;

赵 刚 教授,博士生导师,主要研究方向为国际航运管理、物流 管理与计算机应用等,E-mail: gangzhao@shmtu.edu.cn;

**李伯棠**博士研究生,主要研究方向为港口管理、交通运输规划 与管理, E-mail: botangli1991@163.com.