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Adaptive stabilization via dynamic event-triggered output feedback
for uncertain nonlinear systems
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Abstract: This paper is devoted to the global adaptive stabilization via dynamic event-triggered output feedback for a
class of uncertain nonlinear systems. Remarkably, the systems admit unmeasured states dependent growth with the rate
of unknown polynomial-of-output. Although some continuous adaptive controllers have been proposed, they cannot be
trivially extended to the discontinuous (caused by sampled error) context since their fragility stemmed from the skillful
integration of nonlinear observer to unmeasured states, dynamic compensation to system unknowns and domination to
nonlinearities. To solve the problem, a dynamic high gain and a high-gain-based observer are first introduced to counteract
the unknown growth rate and reconstruct the unmeasured system states, respectively. Then noting the ineffectiveness of
static event-triggering mechanisms, an event-triggered output-feedback controller is successfully designed by introducing a
dynamic event-triggering mechanism to achieve the global boundedness and convergence of the system states. A numerical
example is provided to illustrate the validity of the designed controller.
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1 Introduction

Adaptive and observer-based feedback for some
uncertain nonlinear systems have been extensively in-
vestigated over the past decades!!™. With the pop-
ularity of networked control systems, event-triggered
feedback control has received increasing interest dur-
ing the past decade due to its advantage in saving
communication/computation resources while guaran-
teeing desired system performance!® '8!, And various
of event-triggering mechanisms have appeared which,
in terms of the thresholds therein, can be classified in-
to: absolute, relative, time-varying and dynamic types.

Received 25 June 2019; accepted 13 November 2019.

However, it is rather challenging for systems admitting
unmeasured states dependent growth with the rate of
unknown polynomial-of-output to achieve global sta-
bilization via event-triggered output-feedback scheme.
Although the systems in [13] admit large uncertain-
ties, the absolute/relative threshold schemes proposed
merely guarantee the boundedness rather than the con-
vergence. In addition, the time-varying event-triggered
schemes in [15-16] achieved output regulation or sta-
bilization, but the system in [16] is the strict output
feedback type and doesn’t allow large uncertainties. In
[17-18], dynamic event-triggered schemes were pro-
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posed to achieve global stabilization, but the systems
therein exclude any large uncertainties. When large un-
certainties are allowed in nonlinear systems, the global
stabilization via dynamic event-triggered output feed-
back becomes much more challenging: An effective
compensation mechanism needs not only suitably in-
troducing to counteract the large uncertainties but also
delicately integrating with a dynamic event-triggering
mechanism to handle the sampling error and to achieve
the desired system performance.

This paper is concerned with the global stabiliza-
tion via dynamic event-triggered output feedback for
a class of uncertain nonlinear systems. Because of
the unmeasured states dependent growth with the rate
of unknown polynomial-of-output, the existing event-
triggered schemes fail to guarantee the desired sys-
tem performance. In fact, the existing (static) ab-
solute threshold schemes merely guarantee the glob-
al boundedness rather than the convergence!'*!. Al-
though the (static) relative threshold schemes can en-
hance the control objective from boundedness to con-
vergence, the large uncertainties are not allowed! 8.
Inspired by works!!%~'8! for the possibility of further
saving of computation/communication resources, a dy-
namic event-triggered output-feedback control scheme
is proposed to achieve the global stabilization of the
uncertain nonlinear systems. Detailedly, an observer
with dynamic high gain is first introduced to recon-
struct the unmeasured system states, and meanwhile the
unknown growth rate is counteracted by the dynam-
ic high gain. Then, noting the ineffectiveness of stat-
ic event-triggering mechanisms, we propose a dynam-
ic event-triggering mechanism. By flexibly integrating
these compensation and dynamic strategies, an adaptive
event-triggered output-feedback controller is success-
fully designed to achieve the global boundedness and
convergence of the system states.

The remainder of this paper is organized as follows.
Section 2 formulates the system model and control ob-
jective. A dynamic event-triggered controller is pro-
posed in Section 3 to achieve global output-feedback
stabilization. Section 4 presents some useful implica-
tions and summarizes the main results of this paper.
Section 5 provides a simulation example and Section
6 gives some concluding remarks.

2 Problem formulation

Consider the global stabilization via event-triggered
output feedback for the following uncertain nonlinear
system:

T =z + fi(z,u,t),i=1,--- ,n—1,
Tn =u+ fo(z,u,t), (1)
Y =T,

where z = [z; -+ z,]7 € R" is the system state

vector with the initial value z(0) = o, v € R and

y € R are the control input and system output, respec-
tively; unknown functions f; : R" xR x [0, +00) — R,
i =1,---,n, called the system nonlinearities, are lo-
cally Lipschitz in the first argument and continuous in
the rest ones.

Assumption 1 There exist a known positive
constant p and an unknown positive constant 6 such that

|filt,2,u)] <O+ |2y [P) S|yl i =1, ,m.
j=1

Remarkably, Assumption 1 makes system (1) ad-
mit unmeasured states dependent growth with the rate
of unknown polynomial-of-output (the large uncertain-
ties are reflected by the unknown #), which is essentially
different from the related works!!>'¢-181 Specifically,
the works!'* ! have the nonlinearities merely lying on
the system output while the systems in [16—18] allow-
ing not any uncertainties or merely weak uncertainties.

Detailedly, the global stabilization to be established
is that for system (1) under Assumption 1, an event-
triggered output-feedback controller with dynamic
event-triggering mechanism will be designed such that
all the signals of the closed-loop system are globally
bounded while the system states converge to zero.

3 Event-triggered output-feedback control-
ler
We first suitably choose positive parameters a; and
b;, i = 1,--- ,n such that there exist symmetric posi-
tive definite matrices P and () satisfying

1l <CP+PC < cyl, BYP+ PB < 21,
sl KOCQ+QC < ey, ATQ+ QAL —1,

where ¢;’s are positive constants, both A = [—a [I,,_;
0,-1]"] and B = [[0,,.1 I,_1]" — b]" are Hurwitz
with I,,_; being (n — 1)-dimensional identity matrix
and 0,,_; being (n—1)-dimensional column vector with
all elements 0, a = [a; -+ a,]T,0=1[by -+ b,]",
C = diag{o,1+o,--- ,n — 1 + o} with constant &

2)

satisfying 0 < 0 < —.
4p

For system (1), we construct the following observ-
er (0) and dynamic high gain (G) with 7;(0) > 1 and
’YQ(O) > 1:

i’i = Zip1 +Y'ai(xy — 21),

0: i=1,-n—1,
&, =u+ v ay, (T, — 1),
v =(t) = n(t)), @)

G: I =mu(l+[z[7)? —ma(n — 1),

. 1-2¢0 xl_fi;l 2
Yo = (fgf%

where m; and mo are positive constants satisfying

: 1
my; > max{—, —} and my < min{—, —1}, re-
C1 C3 202 204
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spectively. By (G), we know that v (%) is nondecreas-
ing and v, (t) > 1,72(t) > 1, Vt > 0.

We then design the following event-triggered con-
troller:

u(t) = W((’)/(tk), i‘(tk))v te [tkv tk+1)>
n . R
w(y,2) = — Zl YT,
1=
and particularly the following dynamic event-triggering
mechanism (to generate the execution times j’s):

tht1 = mf{t > tk|W(t) = X(t)},
2| PE|*(u—w)®  [12]?
72n71+20' 4,}/2n73+207

X = _dlw(t) - d2Xa X(O) >0,

where w(t) denotes w(u(t), fy(t) Z(t)) for brevity and

@(0) < x(0), En = [0 1]

dy and dj satisfy 0 < d; < 1 and dy >

tively.

From (5) and noting @ (0) < x(0), we have w(t)
< x(t), Vt > 0 and hence x > —(d; + d2)x, which
implies x(t) = x(0)e~(a+d2)t > 0, vt > 0.

4 Main results

Since f;()’s are locally Lipschitz, the right-hand
sides of the entire dynamical system (1) and (3) are con-
tinuous in (¢, w) and locally Lipschitz in (x, Z,v1,Y2).
The existence and uniqueness theorem and continua-
tion theorem, (see e.g., Theorem 3.1 on Page 18 and
Theorem 2.1 on Page 17 of [19], respectively), to-
gether with the piecewise continuation in [11], suggest
that for any given initial value (¢, Zo,71(0),72(0)),
the resulting closed-loop system has a unique solution
(z(t),z(t),y1(t), v2(t)) on the maximum existence in-
terval [0,7,), where 0 < T, < +oo. The case

“Twm < +00” , as in [11], implies that

Jm ([2@f + 12N + 7 (2) +72(8)) = +o0

4

A

w(u,v,&)=

(&)

€ R", constants
1 —d,, respec-

lim tk = Tm.

k—+oco
For further development, we introduce the scaled
coordinate transformation to (z, &):

or that Zeno occurs, i.e.,

2 = yi—lto’ s i—lta” t=1-,n.
Then by (1) and (3), there are
) En -
z= —ZCZ + ")/BZ + yae, + Ebu_il_,'_:})a
] ) ! (©6)
e=——Ce+~Ac+ f,
Y
where z = [z zo|t e = [e1 -+ &n]", and
rs fl f2 fn
f = [7 1+o T n71+U]T'
DA

Remark that, once y(t) is bounded on [0, +00), the
stability of system (6) implies that of the original system

(x, ), and vice versa. Nevertheless, system (6) makes
the stable mode explicit, which is more advantageous to
the stability analysis.

We have the following propositions:

Proposition1  Choose V = 2T Pz+acQe+x
with @ = 4||Pa||* 4+ 1. Then along the trajectories of
(6) and the dynamics Y in (5), there holds

DYV < (2 + O]+ [le]?) = dx. D

where D* V' denotes the upper right-hand derivative of
V, and © and d are unknown positive and known non-
negative constants, respectively.

Proof Along the dynamics  in (5) and the trajec-
tories of (6), there holds

D*V=—1.T(CP + PC)2+~:*(B*P + PB)z +
Y

—w T

oo 7 PEn—

2ve12T Pa + 2

a%gT(CQ + QC’)E+&75T(ATQ +QA)e +

2d€TQ.]E — dlw — ng

Then by (2) and the dynamics ; in (3), and noting that
Y2 = 0,72 > 1, we have

D*Vé—ﬂzT(CP + PC)z — 29|12+

B \PE,|
PE,
2llPall - el - ool + 2L 2l .

2] — a%e%@ +QC)e — ave)*+
2a)| Q|| - el - |1 fl| = dvew — dox <

cim
(L )22 + camel2))*

1

ctm
; 2H I = 291l201* + 2] Pal| - |12 -

[PE,||

a03m1
n 1+o | ’

lea +2 w| - [|2]] =

L+ 22 ]7)* - flell” + aC4m2II€||2 -

aczms
lell*—ayllell*+2allQll - llell - 171l —

dlw — dgx
The positivity of c¢;, c3, ms and @ and y; > 1 imply

cm
DYV <(eams = 29)||2]° == (1 + |21 )|z +

2||PE, |
2y|[Pall-|I=]- |€1\+ﬁ\ w| - 2] +
acsm
(acamz — ay)|el® — ——(1 + | [")*

lell>+2al|Q] - ]l - | fll —diw — dax. (8

By Assumption 1 and the completing squares tech-
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nique, the following three terms satisfy:

~y
2y(|Pal| - [[z]| - |ea] < fIIZIIQ + 29| Pal?e3,
APEN o) e <
n—1+o
2| PE,|?
|| ”2 m( W)Qv

2aHQII el - 1Al <
1+ |z,[")? 7
(|f11|)(quu||e||2)+vl(an9\lQll>2||e||2-
©)

Substituting this into (8), and noting the positivity of c,,
c4, Mo and @ and v > 1, we have

D+V < (CQ’I’TLQ — ].) (&C4m2’}/2 —avys +
2| Pal*2 + 2(and||QI))*) [l£]]* +

1-— C1y

(L + [ "))l +

1 —acsm

(1 | P)lel? +
T

2| PE,|?

S Tree (u—w)? — dyw — dyx.

The choice of m,, m; and a, together with v; > 1 and
the expression of o, implies that

DTV < ——||z||2 - f(% A(andllQN) el +

2| PE, ||?
,y2n71+2a ( - )

*II I = *(72
(1 — dl)w — de

From the event-triggering mechanism (5), it follows
that o < x(t). Then we have

g
DYV < (—f +2@@nd||QIN*)m(l=l* + llell*) +
(1 —di —d2)x. (10)
Since dy > 1 — d;, we immediately derive (7) with
O =2(anb||Q|)*andd =dy +dy — 1 > 0.
In what follows, we denote V' (z(t),e(t), x(¢)) by
V (t) (or directly V') for convenience.
Proposition 2 If v,(¢) is bounded on [0,7},),

then z(¢) and £(t) are bounded on [0, T},), and more-
over,

im [ (3 (7) 12072 + [le()]|?)dr < +oo.

t—=Tm JO

?—dyw —dyx <

4(and||QIN*)llell* +

Proof We first show the boundedness and square
integrability of z(¢) on [0,7,,). On the one hand,
choose the Lyapunov function candidate V, = zT Pz +
x- Along the dynamics y and z in (5) and (6), and not-
ing (2) and 5 > 0, 72 > 1, there holds

D+1/Z:—1ZT(CP+PC)2+WT(BTP + PB)z+
2ve12" Pa+ 2~ :"PE,—
-
dlw_d2X\
11 ZY(CP + PC)z — 2v]|2||? + 2v||Pal|
1
| PE, |
[z - lea] + 27 g lu —wl - [|2]|-
diw — dyx.

Then by (2) and the dynamics of 7, in (3), and noting
the positivity of c¢1, ca, My, Mo, 1 and the first two
inequalities in (9), we have

cC1m C1Tn
DYV, < L1+ o )2 22 — =2

—ll=l* +
cama||2|* = ~2[* + 27HPaH2€1 +

2| PE,|?
A 2n=1+20 (u—w)

Q—dlw—d2X<

(czmz — 1)y|12[|* + 27| Pal|*e] +

2| PE,|?

Jantiae (4T W)" —diw — oy <

y
—5 1217 + 27l Pall*el +

2| PE.|*

~EnTrae (u—w)? —dyww — dyx.

By the dynamics of v in (3) and similar to the deriva-
tion of (10), we get

DV, <=7 |12 + 21| Pal 22 +

(1—dy — do)y. (11)

Since 2 (t) is bounded and nondecreasing on [0, 7,,),
we know that there exists a positive constant ¥, such
that 3, = tlir%l ~2(t). Denote

—dm

1
)\1 = min{i, dg

o) ™~ d; —1}.

Then we have
D'V, <=MV, + 2||Pal[*52%2,
from which it follows
D*(eMV)
Integrating the above inequality from O to ¢, it holds
v, < ‘;(Ot) 23 [ My (7) <
V(0) + 2|| Pal[*3,
which means the boundedness of z(¢) on [0, T},).

On the other hand, integrating (11) from O to ¢, we
can derive

V(1) =

< 2| Pal*52e*"4s.

1

V() <=7 ), m(@ll=(n)lPdr +
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t
2||Pall*, | Aa(r)dr +

1—dy—d ' 7)dT
( 1 2)LX() .
Thenby 0 < d; < landd, > 1

L I B

which implies that fo Y1 (7)]|2(7) ||PdT < 400.

We next show the boundedness and square integra-
bility of £(¢) on [0, T},,). For this, we introduce the fol-
lowing scaling transformation:

— d;, we have

7)|IPdT <V,(0) + 2| Pal*5;,

xXr; — i‘i
(myz)i-tte’

where 73 is a constant satisfying 5 > max{7,, 8n’x
(92HQ||2 + 1}. Then by (1) and (3), we have

= (12)

n—_?CnJr'm s An+mysam—yLan+f*, (13)

where
. Y2 Y2 \n—1
F:dlag{l,—*,---, — }
V2 (72)
s fl fn
and f* = | - v —————7
(m73)° (r1y3)n e

On one hand, choose the Lyapunov function candi-
date V,, = nTQn. Then by (2) and the dynamics 7, in
(3) and along the trajectories of (13), there holds

DYV, = —%HT(CQ +QC)n+myn (ATQ +

1
QAN + 2v1vsmn" Qa — 2ymn Qla +
T Qf" <
_03m1(1 + ’Zlf1|p)2

711> 4 camallnl|* —
71

C31Mo
—[nll> = vl + 235 Iml - 1]l -

HQaH +2y[ml - [l - |QTall +
2[nl- QN - 1171- (14)

By Assumption 1 and the method of completing
squares, the last three terms satisfy

2719 Im| - Il - | Qall <

MYs .
Tzllnll2 + 17311 Qall*ni,

o
2y[m| - Inll - QT a|| < anHQ + 8v|1QIa||*n3,
20l - QI - 11l <

(L + [, ]7)?
P2 QI ]+ ).

Substituting the above inequalities into (14) and noting
that c3m; > 1 and c3 < ¢4, we have

(1 + [2:]7)*
a1

(63m1 —

D+Vn<_ ”77H2+

C31T2 ’Y1’Y
camaln||* — H 12 = =2 nll* +

8717§HQGH2771 + 8’YHQFGH i+
2n20%[|QIP 1 (Il + lInll*) <

Vi
= (% = 802 QIM) In* +

8717 |Qall*n; + 8v||Qal*ni +
2n°6%)| Q|1 | 2|

By 95 > max{ds, 80202 QI + 1} and 71 > 1, we
have
p o (B Ty 22y

(M173)° e Vs

T — I

N
=N

=
Then
D+V§7<—*H77H2 (8% 11Qall* + 8%[|QIall?) -
et + 20707 QI*nllz]* <
=2V, + (815 Qall* +8% /1@ al|*)met +

2n°0%(|Q1*y 121, (15)
1

Anax (Q)
< (8% ]|Qall® + 8% || QT al|*)e** 16T +
2n°0° || Q|2 1 || 2|7,

from which it follows
Vi(0), (g _ -
Vo <=5 [ (371 Qal*+8% | QT al )0 x
t
(M) (r)dT+ | 20267 Q[P (7) x
(7?7 <
(0)+ (8% |Qal*+8% QT al) [ ~(r
t
£1(r)dr+2n°6* QI [ i ()ll=(7)|*dr.
By (3) and the hypothesis, we know

() = 72(0) = [ fal(r)dr =

fot Y1 (7)e2(1)dT < 400, (16)

where Ay = This can immediately derive

D* (V)

t

t
which, together with jo (M) |lz(7)|]Pdr < 4o, im-
plies that n(¢) is bounded on [0, T, ).

On the other hand, integrating the first inequality in
(15) from O to ¢, we immediately have

@l P <

Va(0)+ (855 1Qall +8%/ QT all?) 3 (r)ek (r)dr +
202QI1* [ 1 (r)1=(r)]*dr.

Noting (16) and fot Y (T)|2(7)|]PdT < 400, we can

t
derive fo () |In(7)|?dr < +oo. Then by (12)
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and noting that 75 > 1 and 73 > 1, we know that
t
jo |le()|?dr < 400.  QED.

Proposition 3 If all the signals of the result-
ing closed-loop system are bounded on [0,7},), then
T., = 400 and Zeno doesn’t occur, and moreover,

tLigrnoo(x(t),:%(t),u(t)) =0.

Proof Noting that the internal dynamic variable
x(t) satisfies x(t) = x(0)e~(a+d2)t > 0, vt > 0,
and v > 1, the dynamic event-triggering mechanism
(5) in this paper can be degenerated to the following
time-varying one:

teoy = inf{t >t | 2| PE.|2(u — w)? =
x(0)e(Atd)ty (17)

By using the existing analysis of eliminating Zeno phe-
nomenon under time-varying event-triggered scheme
(e.g. [15]) and integrating the compensation mechanis-
m in this paper, a time-varying event-triggered scheme
can be designed to achieve the global boundedness and
ultimately convergence of system (1) under Assumption
1 while no Zeno occurs. The detailed derivation of the
effectiveness of time-varying event-triggered scheme is
omitted here due to the page limitation.

For a given system state, denote ¢, and t}_ , be
the next execution time of a dynamic event-triggering
mechanism and time-varying event-triggering mecha-
nism, respectively. We show that ¢, > ¢} ;. In fact,
suppose that ¢, < t! . Then by (17), we have

2PE, | (u(ti ) —w(tin)® <
X(o)e*(d1+d2)tg+1 . (18)

On the other hand, from the event-triggering mechanis-
m (5), it follows that ww(t{_ ;) = x(t{,,). By this and
~(t) > 1, we immediately derive

20 PE, P (u(ths) — w(to))? > X(ti) >
x(0)e it

which is a contradiction with (18). Thus we have
tﬁ 1 =2 tff Y1 which means that the minimum inter-
execution time of the dynamic event-triggering mech-
anism cannot be smaller than that of a time-varying
one. Then the fact that no Zeno occurs for time-varying
event-triggering mechanism (just analysed) implies that
no Zeno occurs for a dynamic one in (5).

Now suppose that T3, < o0, then by the bound-
edness of all the signals of the resulting closed-loop sys-
tem, there must exist Zeno phenomenon. Similar to the
proof of Lemma 4.1 in [15], we know that, for any finite
T, there holds inf{t] , — t;|[t},t},,) C [0,T)} >
0. Since tﬁ b =2 tz. 41 (just proved), we know that

lim t¢ = 400, which results in a contradiction. Thus
k— 400

T,, = +00 and no Zeno occurs.

We next prove the convergence of the system s-
tates. In fact, by the hypothesis and (6), both Z(¢) and
£(t) are bounded on [0, +00). In addition, Proposi-

t
tion 2 indicates that lim f |lz(7)||?dT < 400, and
=Ty JO

t
lim e(7)||*dT < 400. Then by Barbilat Lemma
0 Yy

t—Tm
in [20], we have

tkinoo z(t) =0, tlgrnooe(t) = 0.
z;
Then by coordinate transformations z; = e and
T — T . !
€= ot = 1,--- ,n and noting the bounded-
,yzf +o
ness of 7y, we have
tLleroo z(t) =0, tilinoox(t) =0.
Proposition 3 is thus proved. QED.

Theorem 1  Consider system (1) under Assump-
tion 1. The event-triggered output-feedback con-
troller (4) with dynamic event-triggering mechanis-
m (5), based on the observer (O) and dynamic high
gain (G), guarantees that, for any given initial value
(20, Zo,71(0),72(0)), all the resulting closed-loop sys-
tem signals are well-defined and bounded on [0, +00),
and furthermore, tLiIgloo(a;(t), Z(t),u(t)) = 0 while no

Zeno occurs.

Proof As discussed earlier, for any given initial
value (xg, Zg,71(0),72(0)), the resulting closed-loop
system (consisting of (1), (3) and (4) together with
(5) has a unique solution (x(t),Z(t),v1(t),v2(t)) on
[0, Th)-

In view of Propositions 2 and 3, it suffices to prove
the boundedness of 7 (¢) and y2(¢) on [0, 7},). In fact,
from the boundedness of ~y; (t) and ~,(¢) and Propo-
sition 2, it follows that all the signals of the result-
ing closed-loop system are bounded, which satisfies
the hypothesis of Proposition 3. We first prove that
v2(t) is bounded. Suppose for contradiction that it
is unbounded on [0,7},). The nondecreasing proper-
ty of 2(t) implies that tl_l)r:p Y2(t) = 400, i.e., there

m

isa Ty € [0,Ty,) such that, for any ¢ € [T, 1),
v (t) = 46 + 2. This, together with (7), 71 (t) > 1 and

x(t) > 0, implies that DTV < —%He”? Then by

integrating over [Ty, t) for any ¢t € [Tp, T},), we have
N
lim = | 4 (7)|e(n)]Pdr < V(Tp).

t—Twm 2 JT
By this and the dynamics of 7, in (3), we get

+00 =

t
Jim Ya(t) — 72(To) = Jim T Fo(T)dT <
t
lim Y1 (7)|le(T)[PdT < 2V (Ty) < +o0,

t—Tm
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a contradiction. Thus, Y2 (t) is bounded on [0, T, ).
We next prove that 7, (¢) is bounded on [0, 7},,). For
this, we claim that |z |/{ is bounded. In fact,

e Y o B T

Bl gl ot

M Y Y
which together with the boundedness of ~,(¢) and

Proposition 2, indicates that there is a positive constant
b such that |x;| < by7. Then noting the dynamics of 7,

) =75 (|21] + lea),

1
in(3)and 0 < 0 < —, we have
4p

A =my(1+ |z1|7)* —ma(yn — 1) <
2mq + 2mll_72p’yfap — Moy + Mg <

me 2m2p*P
—— M + 2m1 + M.
2 mo

This implies that -y, (t) is bounded on [0,7},). The
proof is thus completed. QED.

Remark 1  The dynamic event-triggering mechanis-
m proposed in this paper could possibly achieve further saving
of computation/communication resources than a time-varying
one. This can be seen from the proof of Proposition 3, which
indicates that the minimum inter-execution time of the dynam-
ic event-triggering mechanism cannot be smaller than that of a
time-varying one.
S A simulation example

In this section, a simulation example will be giv-
en to illustrate the effectiveness of the proposed event-

triggered output-feedback controller of the following
second-order controlled pendulum system:
mlf+klé+mgsin§ = u, (19)

where £ is the angle between the pendulum and the ver-
tical direction, m and [ are the mass of the bob and the
length of the rod, respectively, k, which represents the
friction coefficient, is an unknown constant and g is the
acceleration of gravity.

Let xy = ml and x5 = mlf. Then system (19)
becomes

Ty = g,
T k

io = u—mgsin — — —x,, (20)
ml m

Yy=2=a.

Choose a; = 2, a; = 4 and y; = 4. Then the observer
is designed as

ili"l = Ty + 8ya(xy — T1),
i%g =Uu + 64’)/22(171 — Zi‘l)7
2 _ A2
where 7, = M
Vs
We can verify that system (20) satisfies Assumption
k
(1) by setting 6 = max{%, — }. Then by the previous
m

design procedure, we design the event-triggered con-

troller in (4) as (¢t € [tx, txr1)):
u(t) = —6.47; (tp) 21 (tr) — 1.67(tr) 22 (tr)

with b; = 0.4 and b, = 0.4, and introduce the follow-
ing event-triggering mechanism and the inter-dynamic

1
variable (with o = Z):

_ 21PE,|I? (v — w)?
by = inf{t > ¢, | APEl(w = w)”
Vs
~112
A
2175,
4y

i = 217 2[PEL*(u —w)*

4y Vs
with x(0) = 4. The globally stabilization of system
(19) can be achieved by the designed event-triggered
output-feedback controller. Notably, owning to the un-
known k, the event-triggered schemes in [7-8, 16-18]
are not valid any more. In addition, the convergence of
the system states can not be guaranteed by the event-
triggered strategies proposed in [13].

Letm = 0.25,1 =4,k = 0.25 and g = 10 and
the initial value is selected as [£(0), £(0), &1 (0), &2(0),
x(0)]* = [-2,2,—1.5,3,1]". Then Figs. 1-4 are ob-
tained to exhibit the trajectories of the resulting closed-
loop system. From the figure we can see that (&, &, Z1,
5;2, 72, X, w) are globally bounded, and furthermore, (&,
&, 1, T, u) ultimately converge to zero.

1 T T T T
0 -
weo-1f -
,2 —
,3 1 1 1 1 1
0 1 2 3 4 5 6
t/s
3 T T T T
2 -
s 1k i
0 -
_1 1 1 ! 1 1
0 1 2 3 4 5 6
t/s
Fig. 1 The trajectories of £ and &
1 T T T T
0 -
=)
71 = —
_2 1 1 I 1 1
0 1 2 3 4 5 6
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3 T T T T T
2 - -
' LF 1
O -
_l 1 1 1 1 1
0 1 2 3 4 5 6
t/s
Fig. 2 The trajectories of 1 and 2
1.06 T T T 1
< 1.03 b
100 1 1 1 1 1
0 1 2 3 4 5 6
t/s
1.5 T T T T
1.0 7
X 05r 4
0.0
fOS 1 1 1 1 1
0 1 2 3 4 5 6
t/s
Fig. 3 The trajectories of 2 and x
2 T T T T T
0
S
,2 — -
_ 1 1 1 1 1
40 1 2 3 4 5 6

t/s
Fig. 4 The trajectory of u

6 Conclusions

In this paper, a dynamic event-triggered output-
feedback scheme has been proposed for uncertain non-
linear systems. Detailedly, an observer with dynamic
high gain is introduced to reconstruct the unmeasured
system states, and meanwhile the unknown growth rate
is counteracted by the dynamic high gain. Then, an
event-triggered output-feedback controller with a dy-
namic event-triggering mechanism rather than a stat-
ic one is successfully designed to achieve the global
boundedness and convergence of the system states. It
is worth pointing out that the dynamic event-triggered
scheme could possibly possess more potential abili-
ty of further saving of computation/communication re-
sources than a time-varying one.
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