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摘要:本文对基本的离散时间非线性单参数随机系统建立了可镇定性定理. 该定理推进了文献[1]的结果,进一步完
善了关于离散时间自适应控制的反馈能力刻画. 离散时间单参数系统可镇定的一个重要非线性临界常数是4,用以刻画
关于幂函数类系统的反馈能力. 而作为本文定理的应用,本文对一类典型的单参数离散时间非线性随机系统发现了新的
可镇定临界常数2.
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Abstract: This paper advances [1] by deducing a stabilizability theorem for discrete-time nonlinear systems with scalar
parameters, which takes a step forward to the complete characterization of feedback limitations in discrete-time adaptive
nonlinear control. It is well-known that exponent 4 is an important critical number to characterize the feedback capability
for the basic discrete-time scalar-parameter systems, which are governed by power functions. As an application of our
theorem, a new critical number 2 is derived for a typical class of discrete-time nonlinear stochastic systems with scalar
parameters.
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1 Introduction
Most works on nonlinear adaptive control in the

literature are focused on continuous-time systems[2–4].
But adaptive control between continuous- and discrete-
time systems are rather different. As a matter of fact,
a large class of continuous-time nonlinear systems can
be globally stabilized by applying nonlinear damping
or back-stepping techniques, no matter how fast their
growth rates are[5–6]. However, the situation in the
discrete-time case is different.

A heuristic result derived by [7] is that feedback
limitations exist for discrete-time adaptive nonlinear
control. [7] studied a basic discrete-time nonlinear ran-

dom system with a scalar parameter:

yt+1 = θyb
t + ut + wt+1,

and demonstrated that b = 4 is the critical exponent for
the stabilizability. Soon afterwards [8] established an
“impossibility theorem” for the multi-parameter system

yt+1=θ1y
b1
t +θ2y

b2
t +· · ·+θny

bn
t +ut+wt+1. (1)

A polynomial rule on b1, · · · , bn was introduced in the
theorem to describe the nonlinear growth rates that fail
all feedback control laws in stabilizing system (1). Late-
ly, [9] proved that the polynomial rule in fact serves
as the necessary and sufficient condition of the stabi-
lizability of system (1). Besides, some initial research
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on nonlinear parameterized systems with scalar param-
eters indicates that b = 4 is also an important exponent
for the stabilizability[10]. Meanwhile, a parallel theory
in the deterministic framework on feedback limitations
has been developed accordingly (see [11–15]).

The aforementioned systems are all in polynomial
forms. For the following relatively general system

yt+1 = θτf(yt) + ut + wt+1, θ ∈ Rn, (2)

one may wonder if |f(x)| = O(|x|4) is still the limit
of nonlinear growth rates for discrete-time stabilizable
systems? The first answer appeared in [1]. This work
showed that for n = 1, system (2) is possible to be sta-
bilized by a discrete-time feedback controller, even if it
grows exponentially fast. The density of a regular set is
defined in [1] to determine the stabilizability of system
(2). As a matter of a fact, [1] provided a quantitative
characterization on the densities of the concerned regu-
lar sets for both stabilizable systems and unstabilizable
systems in discrete time. But there is still a gap between
the two densities for stabilizable systems and unstabi-
lizable systems. A theorem established here, which to-
gether with Theorem 2.6 in [1], takes a step further to
the critical criterion of the stabilizability of system (2)
for n = 1. A direct application of the two theorems
illustrate that b = 4 is not a critical description in de-
termining the stabilizability in general. By constructing
a class of discrete-time nonlinear stochastic systems in
an example below, a new critical number β = 2 is pro-
duced instead.

The rest of the paper is built up as follows. Sec-
tion 2 presents the main results, while the corresponding
proofs are given in Section 3. The argument is finally
summarized in Section 4.

2 Main results
Consider the following system

yt+1 = θf(yt) + ut + wt+1, t > 0, (3)

where θ ∈ R is an unknown parameter, yt, ut, wt ∈ R
are the system output, input and noise signals, respec-
tively. In addition, let f : R → R be a known piecewise
continuous function. Assume the initial value y0 is in-
dependent of θ and {wt}. Moreover,

A1) The noise {wt} is an i.i.d random sequence
with w1 ∼ N(0, 1).

A2) Parameter θ ∼ N(θ0, P0) is independent of
{wt}.

Assumption A1)–A2) are called as Bayesian frame-
work, which are widely used in the analysis of Kalman
filter model. Here θ0, P0 are supposed to be known and
as the initial values in the filter in theory. In the applica-
tion, we can choose other initial values, it will not affect
the filtering performance.

Definition 1 System (3) is said to be almost
surely globally stabilizable, if there exits a feedback

control law

ut ∈ Fy
t , σ{yi, 0 6 i 6 t}, t = 0, 1, · · ·

such that for any initial conditions y0 ∈ R,

sup
t>1

1

t

t∑
i=1

y2
i < +∞, a.s..

For years, it had been conjectured that b = 4 might
provide a limit in describing the nonlinear growth rate
of system (3) that is stabilizable. The fact is, howev-
er, although b = 4 is good enough to approximate the
critical stabilizability condition for most common types
of discrete-time nonlinear systems, it is not an exact
critical number in general as we used to expect. The
example below throws light on this issue and present a
new critical phenomenon about stabilizability.

Example 1 Consider system (3) with

f(x) =

{
x3, x ∈ [−ee, ee],

|x|4−1/(log(log |x|))β , x > ee or x < −ee,

(4)

where β > 0. The system is globally stabilizable when-
ever β ∈ (0, 2] and unstabilizable if β > 2. Obviously,
β = 2 is a new critical number here. Note that for any
b < 4,

lim
x→+∞

|f(x)|
xb

= +∞, lim
x→+∞

|f(x)|
x4

= 0.

It confirms the fact that x4 cannot serve as the criti-
cal growth rate for system (3). As a matter of fact, if
β∈(0, 2], systems (3)–(4) can be stabilized by the least-
squares based self-tuning regulator (LS-STR), which is
defined later by (6)–(7). Fig. 1 simulates the stability of
the closed-loop systems (3) (4) (6) and (7) for β = 2,
y0 = 0, θ0 = 0 and P0 = 1. Of course, it just a simple
simulation of trajectory and can not provide more infor-
mation about the stability with probability 1, we need
strictly analysis to confirm the criticality of β = 2.

Fig. 1 The trajectory of the closed-loop system in Example 1
for β = 2

The critical number β = 2 in Example 1 cannot
be deduced directly from the existing works. It origi-
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nates from two theorems stated below. For this, assume
h : [0,+∞) → [0,+∞) is a nonnegative monotone
increasing piecewise continuous function and satisfies
h(|x|) = O(x4) + O(1). Let g(x) , |x|−1/4h−1(|x|),
where h−1 denotes the inverse function of h.

Theorem 1 Under Assumptions A1)–A2), sys-
tem (3) is globally stabilizable if |f(x)| = O(h(|x|)),
where h is chosen so that for some µ >

1

16
,

lim inf
t→+∞

inf
x∈[r2

t
1 ,rt2

t
2 ]

x−µ/t2 g(x)

log t
> 0, ∀r2 > r1 > e2.

(5)

Remark 1 Example 1 with β ∈ (0, 2] follows from
the fact that if we let h(x) = f(x), x > 0, then system (3)
is globally stabilizable, according to Theorem 1 with g(x) =

|x|−1/4h−1(|x|). In this case, (5) holds. The proof is contained
in Appendix.

On the other hand, Example 1 with β > 2 is unsta-
bilizable due to

Theorem 2 [1] Under Assumptions A1)–A2), sys-
tem (3) is unstabilizable if there is a δ > 0 such that

sup
x∈R

ℓ(Sh ∩ [x− l, x+ l])

l
= O(

1

(log(log l))1+δ
),

where Sh , {x : |f(x)| 6 h(|x|)} with h satisfying
+∞∑
t=1

sup
x∈[e2t ,+∞)

x−1/16t2g(x) < +∞.

Remark 2 The unstabilizability part of Example 1 is
a direct consequence of Theorem 2, by taking

g(x) = x1/12(log(log |x|))β

with β > 2 (see Appendix for details).

3 Proof
3.1 Technique Lemmas

The feedback control law in this paper is designed
based on the least-squares (LS) algorithm, which can be
recursively defined by

θt+1 = θt + atPtϕt(yt+1 − ut − ϕT
t θt),

Pt+1 = Pt − atPtϕtϕ
T
t Pt, P0 > 0,

ϕt , f(yt), t > 0,

(6)

where at , (1 + ϕT
t Ptϕt)

−1 and (θ0, P0) denotes a
deterministic initial value. Let

ut = −θtf(yt), t > 0. (7)

By the closed-loop system (3)(6)–(7),

θ̃t =
1

rt−1

{θ̃0 −
t−1∑
i=0

ϕiwi+1},

yt+1 = θ̃tf(yt) + wt+1,

where θ̃t , θ−θt, r−1 , P−1
0 , rt , P−1

t+1 = P−1
0 +

t∑
i=0

ϕ2
i , t > 0. Notice that the LS algorithm (6) is exact-

ly the standard Kalman filter for θ ∼ N(θ0, P0), then

θt = E[θ|Fy
t ], Pt = E[(θ̃t)

2|Fy
t ].

So, yt+1 is conditionally Gaussian distributed given Fy
t .

For each t > 0, the conditional mean and variance sat-
isfy

mt ,E[yt+1|Fy
t ] = ut + θtϕt = 0, a.s.

σ2
t ,Var(yt+1|Fy

t ) = 1 + ϕtPtϕt =

ϕ2
t

rt−1

+ 1 =
rt
rt−1

, a.s.

We first present several technique lemmas under
Assumptions A1)–A2).

Lemma 1 [1] Let {ct}t>1 be a sequence satisfying

lim inf
t→+∞

ct
log t

> 0, then

+∞∑
t=1

w
|x|>ct

e−x2/2 dx < +∞.

Lemma 2 [1] If ℓ({x : |f(x)| > 0}) > 0, then

lim inf
t→+∞

rt
t
> 0, a.s..

Lemma 3 [1] Let f(x) = O(|x|a) + O(1) for
some a > 4 and let xmin 6 xmax denote the two
solutions of equation x2 − (a − 2)x + 1 = 0. If
ℓ({x : |f(x)| > 0}) > 0, then the following two state-
ments hold:

i) D1 = D2 with D1 , {supt σt = +∞} and

D2 , {lim inf
t→+∞

log rt
log rt−1

> 1 + xmin};

ii) P (D3) = 0 with

D3 , {lim sup
t→+∞

log rt
log rt−1

> 1 + xmax}.

Lemma 4 If (5) holds, then

lim inf
x→+∞

g(x)

log x
> 0.

Proof Suppose lim inf
x→+∞

g(x)

log x
60. Then, there ex-

ists an infinite sequence {xn}n>1 satisfying lim
n→+∞

xn

= +∞ and

g(xn) <
1

n
log xn. (8)

Observe that for any r2 > r1 > e2,

r2
t+1

1 < rt2
t

2 , t > 2

and hence ∪
t>2

[r2
t

1 , rt2
t

2 ] = [r41,+∞).

Therefore, for any sufficiently large n, there is a positive
integer kn with lim

n→+∞
kn = +∞ such that

xn ∈ [r2
kn

1 , rkn2
kn

2 ]. (9)
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This together with (8) and (9) yields

lim sup
n→+∞

inf
x∈[r2

kn
1 ,rkn2kn

2 ]

x−µ/k2
n
g(x)

log kn
6

lim sup
n→+∞

x−µ/k2
n

n

g(xn)

log kn
6 lim sup

n→+∞
x−µ/k2

n
n

log xn

n log kn
6

lim sup
n→+∞

r
−µ2kn /k2

n
1

kn2
kn log r2

n log kn
= 0,

and consequently,

lim inf
t→+∞

inf
x∈[r2

t
1 ,rt2

t
2 ]

x−µ/t2 g(x)

log t
6 0.

We thus draws a contradiction of (5). QED.
3.2 Proof of Theorem 1

As already claimed in the proof of [1, Theorem 2.2],
it suffices to show the stabilization for ℓ({x : |f(x)| >
0}) > 0. Under this condition, lim inf

t→+∞

rt
t

> 0 almost

surely due to Lemma 2. Denote

sm , log f2(ym)

log rm−1

− 2,

S , { lim
t→+∞

log rt
log rt−1

= 2} = { lim
t→+∞

st = 0},

Um , {sm−1 6 0, sm > 0},

V C
m , {sm > 2sm−1

2 + sm−1

− C

m2
}, C > 0.

Since the proof of [1, Theorem 2.2] indicates

{sup
t

σt < +∞} ⊆ {1
t

t∑
i=0

y2
i = O(1)},

taking account of Lemma 3 with a = 4, the remainder
of the proof is sufficient to verify

P (S) = 0. (10)

Without loss of generality, suppose |f(x)|6h(|x|)
for all x ∈ R. Therefore, as long as m is sufficiently
large,

P (Um+1|Fy
m) =

E{I{f2(ym+1)>r2m} · I{f2(ym)6r2m−1}|F
y
m} 6

I{rm6rm−1+r2m−1} · P (f2(ym+1) > r2m|Fy
m) 6

I{rm6rm−1+r2m−1} · P (h(|ym+1|) > rm|Fy
m) =

I{rm6rm−1+r2m−1} · P (|ym+1| > r1/4
m g(rm)|Fy

m) =

I{σ2
m6

√
(1+1/rm−1)rm} ·

1√
2π

w
|x·σm|>r1/4

m g(rm)
e−x2/2 dx 6

I{σ2
m6

√
(1+P0)rm} ·

1√
2π

w
|x|>(1+P0)−1/4g(rm)

e−x2/2 dx 6

1√
2π

w
|x|>(1+P0)−1/4g(rm)

e−x2/2 dx, (11)

and

P (V C
m+1|Fy

m) =

P (f2(ym+1) > r2+2sm/(2+sm)−C/m2

m |Fy
m) 6

P (h(|ym+1|) > r1+sm/(2+sm)−C/2m2

m |Fy
m) =

P (|ym+1| > r1/4(1+sm/(2+sm)−C/2m2)
m ·

g(r1+sm/(2+sm)−C/2m2

m )|Fy
m) =

1√
2π

w
|x|>RC

m

e−x2/2 dx, (12)

where

RC
m , r−C/8m2

m g(r1+sm/(2+sm)−C/2m2

m ) ·
(1 + r−1−sm

m−1 )−1/2(2+sm).

Observe that lim inf
x→+∞

g(x)

log x
> 0 in view of Lemma 4.

Furthermore, according to lim inf
m→+∞

rm
m

> 0 and S =

{ lim
t→+∞

st = 0}, we have

lim inf
m→+∞

g(rm)

logm
> 0 (13)

and

lim inf
m→+∞

1

logm
g(r1+sm/2+sm

m ) ·

(1 + r−1−sm
m−1 )−1/2(2+sm) > 0 on S. (14)

Let C = 0. By virtue of (11)–(14) and Lemma 1, it
deduces that

+∞∑
m=1

1√
2π

w
|x|>R0

m

e−x2/2 dx < +∞ on S,

+∞∑
m=1

1√
2π

w
|x|>(1+P0)−1/4g(rm)

e−x2/2 dx < +∞,

and
+∞∑
m=1

P (V 0
m+1|Fy

m) < +∞ on S,

+∞∑
m=1

P (Um+1|Fy
m) < +∞.

Using Borel-Cantelli-Levy theorem, one has
+∞∑
m=1

IV 0
m
< +∞ on S,

+∞∑
m=1

IUm
< +∞.

a.s.. (15)

Now, according to (15), on S, {st}t>1 either satis-
fies

0 < st <
2st−1

2 + st−1

(16)

or

st <
2st−1

2 + st−1

< 0, (17)

where t is sufficiently large. However, if (17) holds,

|st| >
2|st−1|
2 + st−1

> |st−1|, and then lim
t→+∞

st ̸= 0,



No. 11 LIU Zhaobo et al: Stabilizability theorem of discrete-time nonlinear systems with scalar parameters 1933

which contradicts to the definition of S. Thus, {st}t>1

satisfies (16) on S, which means

S ⊆
∪
n>1

∩
t>n+1

{0 < st <
2st−1

2 + st−1

} ⊆

∪
n>1

∪
r∈Q+

∩
t>n

{0 < st <
2

2/r + t− n
}. (18)

On the other hand, since lim inf
t→∞

rt
t
> 0 almost surely,

S ⊆
∪
n>1

{rn > e2} =∪
n>1

∪
s∈Q+,s>e2

{rn ∈ (s, s+ 1)}. (19)

Denote

W r
n ,

∩
t>n

{0 < st <
2

2/r + t− n
},

T s
n , {rn ∈ (s, s+ 1)},

(18) and (19) leads to

S ⊆
∪
n>1

((
∪

r∈Q+

W r
n)

∩
(

∪
s∈Q+,s>e2

T s
n)) ⊆∪

n>1

∪
r∈Q+

∪
s∈Q+,s>e2

(T s
n ∩W r

n).

To show (10), we only need to prove that for any
r, s ∈ Q+, s > e2 and n > 1,

P (T s
n ∩W r

n) = 0. (20)

Now, fix r, s ∈ Q+, s > e2 and n > 1. Assume
W , T s

n ∩W r
n satisfies P (W ) > 0, we next show that

on W ,

rm ∈ [s2
m−n

, (C1 · (s+ 1))(m−n+1)2m−n

], m > n,
(21)

where C1 = 1 +
1

s
.

In fact, rm > s2
m−n

clearly holds. Moreover, for
m > n,

C1rm 6
C1rm−1 + C1r

2+2/(2/r+m−n)
m−1 =

C1r
2+2/(2/r+m−n)
m−1 (1 + r

−1−2/(2/r+m−n)
m−1 ) <

r
2+2/(2/r+m−n)
m−1 C2

1 < (C1rm−1)
2+2/(m−n),

then

rm <C−1
1 (C1rn)

m∏
i=n+1

(2+2/(i−n))

=

C−1
1 (C1rn)

(m−n+1)2m−n

<

C−1
1 (C1(1 + s))(m−n+1)2m−n

<

(C1(1 + s))(m−n+1)2m−n

and hence (21) follows.
Now, take some ν1 ∈ (e2, s), ν2 > C1(s+ 1) and

C ∈ (
1

2
, 8µ). On W , one has

r1+sm/(2+sm)−C/2m2

m > s2
m−n(1−C/2m2) > ν2m−n

1

(22)

and

r1+sm/(2+sm)−C/2m2

m <

(C1 · (s+ 1))(m−n+1)2m−n(1+sm/(2+sm)) <

(C1 ·(s+1))(m−n+1)2m−n((2/r+m−n+3)/(2/r+m−n+1))<

(C1 · (s+ 1))(m−n+3)2m−n

< ν
(m−n)2m−n

2 , (23)

where m is sufficiently large. Denote

Yt , inf
[ν2t

1 ,νt2t
2 ]

x−µ/t2g(x),

then by (21)–(23) and lim inf
t→+∞

rt
t

> 0, for any suffi-

ciently large m,

RC
m =

r−C/8m2

m g(r1+sm/(2+sm)−C/2m2

m ) ·
(1 + r−1−sm

m−1 )−1/(4+4sm) >
r−C/8m2

m g(r1+sm/(2+sm)−C/2m2

m )(1 + r−1
m−1)

−1/4 >
(r1+sm/(2+sm)−C/2m2

m )−C/(8m2−4C) ·

g(r1+sm/(2+sm)−C/2m2

m ) · 1
2
>

(r1+sm/(2+sm)−C/2m2

m )−µ/(m−n)2 ·

g(r1+sm/(2+sm)−C/2m2

m ) · 1
2
>

inf
[ν2m−n

1 ,ν
(m−n)2m−n

2 ]

x−µ/(m−n)2g(x) · 1
2
=

1

2
Ym−n on W, (24)

where RC
m is defined in (12). Moreover, by virtue of

Lemma 1 and (5) with r1 = ν1 and r2 = ν2,
+∞∑

m=n+1

1√
2π

w
|x|>Ym−n/2

e−x2/2 dx < +∞. (25)

With (12) (24) and (25), it is straightforward that
+∞∑
m=1

P (V C
m+1|Fy

m) < +∞ on W,

which shows
+∞∑
m=1

IV C
m+1

< +∞ almost surely on set

W , in view of Borel-Cantelli-Levy theorem. As a re-
sult, as long as m is sufficiently large,

0 < sm <
2sm−1

2 + sm−1

− C

m2
a.s. on W.

For m > n+ 1, denote

ρm , 2− (m− n)sm,

dm , 2sm−1

2 + sm−1

− sm,

since sm <
2

2/r +m− n
<

2

m− n
on W , one has

ρm ∈ (0, 2), dm >
C

m2
and

(m− n)dm =
2(m− n)(2− ρm−1)

2(m− n)− ρm−1

− (2− ρm) =
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ρm−1(2− ρm−1)

2(m− n)− ρm−1

+ ρm − ρm−1 6

1

2(m− n− 1)
+ ρm − ρm−1.

Therefore,

m(ρm − ρm−1) >
C(m− n)

m
− m

2(m− n− 1)
,

which, by noting that C >
1

2
, infers lim inf

m→+∞
m(ρm −

ρm−1) > 0, and hence lim
m→+∞

ρm = +∞. This con-

tradicts to the fact that ρm < 2. We thus conclude
P (W ) = 0. That is, (20) holds and hence Theorem 1
is proved.

4 Conclusions
The stabilizability theorem in this paper, combining

with Theorem 2 derived by [1], tries to elaborate on the
characterization of feedback limitations in discrete-time
adaptive nonlinear control. Although the stabilizability
and unstabilizability conditions presented here are very
close, it still calls for further efforts on the critical sta-
bilizability condition.
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Appendix: Proof of Remarks 1 and 2

We prove Remarks 1 and 2 in this appendix.

Proof of Remark 1 Given β ∈ (0, 2], let µ =
1

12
>

1

16

and g1(x) = x1/16(log(log |x|))β , then for any r2 > r1 > e2

and x ∈ [r2
t

1 , rt2
t

2 ], one has

x−µ/t2g1(x) =

x1/(16(log(log |x|))β)−1/12t2 >
x1/(16(log(t2t log r2))

2)−1/12t2 =

x1/(16(t log 2+log t+O(1))2)−1/12t2 >
r
(1/(16(t log 2+t(0.75−log 2))2)−1/12t2)2t

1 =

r2
t/36t2

1 ,

where t is sufficiently large. Thus,

lim inf
t→+∞

inf
x∈[r2

t
1 ,rt2

t
2 ]

x−µ/t2 g1(x)

log t
>

lim inf
t→+∞

r2
t/36t2

1 log−1 t = +∞. (a1)

Therefore, for any f(x) given by Example (4) with β ∈ (0, 2],
if we can show

|x|−1/4f−1(|x|) > g1(x) (a2)

holds for all sufficiently large |x|, then by using (a1), f(x) sat-
isfies the condition of Theorem 1 and Remark 1 follows.

To this end, denote Λ1 , log(log |x|) and Λ2 , 1

4
+

1

16Λβ
1

. Since logΛ2 ∈ (− log 2, 0) for |x| > ee, it yields

1

4
+ Λβ

1 > (Λ1 + logΛ2)
β . (a3)

Note that for any sufficiently large |x|, (a3) is equivalent to

1 > Λ2(4−
1

(log(Λ2 log |x|))β
),

and hence

|x| > |x|Λ2(4−1/(log(Λ2 log |x|))β).

So, |x| > f(|x|1/4g1(x)), which is exactly (a2) as desired.
QED.

Proof of Remark 2 For β > 2, let g(x) =

x1/12(log(log |x|))β . Then, for any x ∈ [e2
t

,+∞),

x−1/16t2g(x) = x1/12(log(log |x|))β−1/16t2 6

x1/(12(t log 2)β)−1/16t2 6
e(1/12(t log 2)β−1/16t2)2t = o(t−2),
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as t → +∞. Consequently,

+∞∑
t=1

sup
x∈[e2t ,+∞)

x−1/16t2g(x) <

+∞∑
t=1

e(1/12(t log 2)β−1/16t2)2t < +∞.

This implies that if for all sufficiently large |x|,

|x|−1/4f−1(|x|) 6 g(x), (a4)

then f(x) satisfies the condition of Theorem 2.

As above, denote Λ3 , 1

4
+

1

12Λβ
1

∈ (
1

4
, 1) for |x| > ee.

Then,
1

3
+ Λβ

1 6 4

3
(Λ1 + logΛ3)

β ,

and hence for any sufficiently large |x|,

|x| 6 |x|Λ3(4−1/(log(Λ3 log |x|))β).

Since f(x) is defined by (4), similar to the argument of Re-
mark 1, (a4) follows and we complete the proof. QED.

作者简介:
刘刘刘兆兆兆波波波 博士研究生,目前研究方向为反馈能力、系统辨识、非线

性自适应控制, E-mail: Liuzhaobo15@mails.ucas.ac.cn;

李李李婵婵婵颖颖颖 研究员,第20届“关肇直奖”(2014年)获奖论文作者,目

前研究方向为反馈能力、系统辨识、非线性自适应控制, E-mail:

cyli@amss.ac.cn.


