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Abstract: This paper advances [1] by deducing a stabilizability theorem for discrete-time nonlinear systems with scalar
parameters, which takes a step forward to the complete characterization of feedback limitations in discrete-time adaptive
nonlinear control. It is well-known that exponent 4 is an important critical number to characterize the feedback capability
for the basic discrete-time scalar-parameter systems, which are governed by power functions. As an application of our
theorem, a new critical number 2 is derived for a typical class of discrete-time nonlinear stochastic systems with scalar
parameters.
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1 Introduction

Most works on nonlinear adaptive control in the
literature are focused on continuous-time systems>.
But adaptive control between continuous- and discrete-
time systems are rather different. As a matter of fact,
a large class of continuous-time nonlinear systems can
be globally stabilized by applying nonlinear damping
or back-stepping techniques, no matter how fast their
growth rates are° However, the situation in the
discrete-time case is different.

A heuristic result derived by [7] is that feedback
limitations exist for discrete-time adaptive nonlinear
control. [7] studied a basic discrete-time nonlinear ran-
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dom system with a scalar parameter:
b
Y1 = Oy + up + wia,

and demonstrated that b = 4 is the critical exponent for
the stabilizability. Soon afterwards [8] established an
“impossibility theorem” for the multi-parameter system

Yerr =01y + 02922+ 0,90 Fus+wey . (1)

A polynomial rule on by, - - - , b, was introduced in the
theorem to describe the nonlinear growth rates that fail
all feedback control laws in stabilizing system (1). Late-
ly, [9] proved that the polynomial rule in fact serves
as the necessary and sufficient condition of the stabi-
lizability of system (1). Besides, some initial research
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on nonlinear parameterized systems with scalar param-
eters indicates that b = 4 is also an important exponent
for the stabilizability!'%). Meanwhile, a parallel theory
in the deterministic framework on feedback limitations
has been developed accordingly (see [11-15]).

The aforementioned systems are all in polynomial
forms. For the following relatively general system

Yrr = 07 f(ys) + wp + wygq, 0 € R, )

one may wonder if | f(z)| = O(|z|*) is still the limit
of nonlinear growth rates for discrete-time stabilizable
systems? The first answer appeared in [1]. This work
showed that for n = 1, system (2) is possible to be sta-
bilized by a discrete-time feedback controller, even if it
grows exponentially fast. The density of a regular set is
defined in [1] to determine the stabilizability of system
(2). As a matter of a fact, [1] provided a quantitative
characterization on the densities of the concerned regu-
lar sets for both stabilizable systems and unstabilizable
systems in discrete time. But there is still a gap between
the two densities for stabilizable systems and unstabi-
lizable systems. A theorem established here, which to-
gether with Theorem 2.6 in [1], takes a step further to
the critical criterion of the stabilizability of system (2)
for n = 1. A direct application of the two theorems
illustrate that b = 4 is not a critical description in de-
termining the stabilizability in general. By constructing
a class of discrete-time nonlinear stochastic systems in
an example below, a new critical number 5 = 2 is pro-
duced instead.

The rest of the paper is built up as follows. Sec-
tion 2 presents the main results, while the corresponding
proofs are given in Section 3. The argument is finally
summarized in Section 4.

2 Main results
Consider the following system

Yir1 = Of(yr) + wp +wepq, >0, 3)

where 6 € R is an unknown parameter, y;, u;, wy; € R
are the system output, input and noise signals, respec-
tively. In addition, let f : R — R be a known piecewise
continuous function. Assume the initial value ¥, is in-
dependent of 6 and {w, }. Moreover,

Al) The noise {w;} is an i.i.d random sequence
with w; ~ N(0,1).

A2) Parameter § ~ N (6y, Py) is independent of
{w:}.

Assumption A1)—A2) are called as Bayesian frame-
work, which are widely used in the analysis of Kalman
filter model. Here 0y, P, are supposed to be known and
as the initial values in the filter in theory. In the applica-
tion, we can choose other initial values, it will not affect
the filtering performance.

Definition 1  System (3) is said to be almost
surely globally stabilizable, if there exits a feedback

control law
u € FY 2 o{y;,0<i<ty, t=0,1,---

such that for any initial conditions yg € R,

t
supl Y y? < +o0, as.
t>1 U i=1
For years, it had been conjectured that b = 4 might

provide a limit in describing the nonlinear growth rate
of system (3) that is stabilizable. The fact is, howev-
er, although b = 4 is good enough to approximate the
critical stabilizability condition for most common types
of discrete-time nonlinear systems, it is not an exact
critical number in general as we used to expect. The
example below throws light on this issue and present a
new critical phenomenon about stabilizability.

Example 1 Consider system (3) with
3 e e
. x-, T € [*e , € ]a
f(l') - {’x‘ﬁl1/(10g(10g|m))67 r>etora < _ee’
4)

where 5 > 0. The system is globally stabilizable when-
ever § € (0, 2] and unstabilizable if 5 > 2. Obviously,
B = 2 is a new critical number here. Note that for any
b <4,

L @)

T—+00 xb

=400, lim |f(@)] =0.

T—+00 ;C4

It confirms the fact that % cannot serve as the criti-
cal growth rate for system (3). As a matter of fact, if
B €(0,2], systems (3)—~(4) can be stabilized by the least-
squares based self-tuning regulator (LS-STR), which is
defined later by (6)—(7). Fig. 1 simulates the stability of
the closed-loop systems (3) (4) (6) and (7) for 5 = 2,
Yo =0, 8 = 0and Py = 1. Of course, it just a simple
simulation of trajectory and can not provide more infor-
mation about the stability with probability 1, we need
strictly analysis to confirm the criticality of 8 = 2.

T T T T T T T T T
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N tlzyzi
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Fig. 1 The trajectory of the closed-loop system in Example 1
for 5 =2

The critical number 3 = 2 in Example 1 cannot
be deduced directly from the existing works. It origi-
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nates from two theorems stated below. For this, assume
h : [0,+00) — [0,+400) is a nonnegative monotone
increasing piecewise continuous function and satisfies
h(|z]) = O(x*) + O(1). Let g(z) = ||~ *h~"(|z)),
where h~! denotes the inverse function of 5.

Under Assumptions Al)-A2), sys-

z|)),

Theorem 1
tem (3) is globally stabilizable if |f(x)| = O(h(
1

where h is chosen so that for some p > 1—6,

x
liminf inf 2 ~#* M
t——+oo xe[rft,rézt] IOgt

>0, Vry > 1 > e?.
®)
Remark 1  Example 1 with 3 € (0, 2] follows from
the fact that if we let h(z) = f(z), x > 0, then system (3)
is globally stabilizable, according to Theorem 1 with g(z) =
|| =4 =1 (|z|). In this case, (5) holds. The proof is contained
in Appendix.
On the other hand, Example 1 with 3 > 2 is unsta-
bilizable due to
Theorem 2! Under Assumptions A1)-A2), sys-
tem (3) is unstabilizable if there is a § > 0 such that
LSy Njx—1,z+1 1
up {501 D _ o )
z€R l (log(logl))
where S), £ {z : |f(x)| < h(|z|)} with h satisfying
+oo
> sup =

t=1 ze[e2t,+oo)

71/16t2g(x) < 400.

Remark 2  The unstabilizability part of Example 1 is
a direct consequence of Theorem 2, by taking

g(l’) _ 1_1/12(10g(10g |z]))?

with 8 > 2 (see Appendix for details).
3 Proof

3.1 Technique Lemmas

The feedback control law in this paper is designed
based on the least-squares (LS) algorithm, which can be
recursively defined by

Ori1 = 0; + At Picyy (Y1 — ue — 0, 01),

Py = Pi— aiPipy) P, Py >0, (6)

o = fQy), t=0,
where a; = (1 + ¢f Pi¢;)~* and (6, Py) denotes a
deterministic initial value. Let

uy = =0, f(y:), t = 0. (7
By the closed-loop system (3)(6)—(7),

rtll {éo - :_Z: Piwit1},

Yer1 = 0.f (Ye) + Wi,

N A A - A - _
where 6, = 0—0;,, r_; = P Vo, & Pt+11 =P, Ly
t

Z:O ¢?, t > 0. Notice that the LS algorithm (6) is exact-

ét —

ly the standard Kalman filter for § ~ N (6, ), then
0, = E[0|F}], P, = E[(6:)*| F}].
So, 941 is conditionally Gaussian distributed given F; .
For each t > 0, the conditional mean and variance sat-
isfy
A Yyl — —
ur :E[yt+1‘~/_'-t ] = Uyt + thbt = 0, a.s.
o; 2 Var(y, 1| F) = 1+ ¢ Py =
2
ﬂ +1= L, a.s.
Tt—1 Tt—1
We first present several technique lemmas under
Assumptions A1)-A2).
Lemma 1" Let {¢;};>, be a sequence satisfying

lim inf G > 0, then
t—+oo logt

= 212
> j e " dr < 4o0.
t=1+ |z[=e

Lemma 2 If ¢({x : |f(z)| > 0}) > 0, then

lim inf Tt >0, as..
t—+oo ¢
Lemma 3! Let f(z) = O(|z|*) + O(1) for
some a > 4 and let x5, < Tmax denote the two
solutions of equation z> — (a — 2)z + 1 = 0. If
({x : |f(x)| > 0}) > 0, then the following two state-
ments hold:
i) D, = D, with D; £ {sup, o, = +0oo} and

1
Dy 2 {liminf —2"
t—+oo logri_y

> 1 + xmin};

iiy P(D;) =0 with

1
D5 £ {limsup 8T

> 14+ Zax -
t—+oo 108 Tt 1

Lemma4 If (5) holds, then
lim inf 9(2) 0
z—+o0 logx
Proof Suppose lim inf 9(z) < 0. Then, there ex-

a—+oo log
ists an infinite sequence {x, },>1 satisfying lim =z,
n—-+oo

= 400 and
1
g(xn) < *IOg Ln- (8)
n

Observe that for any ry > 7, > €2,

t4+1 t
<l 22

and hence
t t
Uy, rs?] = [r}, +00).
t>2
Therefore, for any sufficiently large n, there is a positive

integer k,, with lim k, = 400 such that
n—-+oo

kn kn
z, € [} "y, ©)
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This together with (8) and (9) yields
L 9(z)

lim su inf <
n—)+oop we[rzk” ’Tkn2k"] log kn
2 g(n) w2 log m,
limsup z, —ulky, I3 < limsup o, #n ———
e SRS vy S G L v
limsupr; u2tn i, 7k 27 logrs =
nﬁﬂop nlogk, ’
and consequently,
T
liminf inf g 9(x) <
t—+4o00 we[rft ,TéZt] logt
We thus draws a contradiction of (5). QED.

3.2 Proof of Theorem 1

As already claimed in the proof of [1, Theorem 2.2],
it suffices to show the stabilization for £({z : |f(z)| >

0}) > 0. Under this condition, lgm Jrinf % > 0 almost
—+o0

surely due to Lemma 2. Denote

s, & log fZ(yTn) _9,
log 71
log r; .
5 £ {tLIJroo logr,_; 2} = {tilgloo se=0},
Um = {Sm—l < 07 Sim 2 0}7
2377171

Vygé{37rz> _%}7020

2+ Sm—1
Since the proof of [1, Theorem 2.2] indicates

1 t
{supo;, < 400} C {; >y =0},
¢ i=0

taking account of Lemma 3 with a = 4, the remainder
of the proof is sufficient to verify

P(S) =0. (10)

Without loss of generality, suppose | f(x)| <h(]z|)
for all z € R. Therefore, as long as m is sufficiently
large,

P(Unia|F) =
E{Ip2(ynnzrzy Loz, b1 Fimd <
Li<rmasrz oy PO (Ymya) = 75, | F2) <
I{Tmérm 1l 3 P(h(|ym+1|) > Tm|~7:7€z) =

I{rm<7"m 1+Tm 1} P(‘ym-i-l’ T}T{,élg(r"l) |’F’r17l’7,) =

{02, <A/ (1+1/rp, — 1)rm}
1

EI (- | 2T g ()
I{U%Lé\/m} '

1
Ej\x»(lwo)*mgwm)
1
\/ﬂf\zp (14+Po)~Y4g(rp,)

2
e m/2dl_<

2
e x/2dx<

e 2 4, (11)

and

"U

+1‘}_y) =

H(Ymia) >y G L) <
Z

v,

(f

(h(Jgmsa]) = rp o/ @Hem) =CPmE ) —
( | > r%4(1+s7n/(2+sm)—0/2m,2) .

"U“U"U

|ym+1
(r’}n+sm/(2+sm)70/2m2)|fgl) _

1
V2T
where
Rﬁ ,r_fC/8m g( 14-8m /(248m)—C/2m> )
(1—|—T_1 sm) 1/2(2+€m)

Observe that Tim inf 2%
T—r+00 Og €T

Q

—z2/2
j|¢|>R 2 g, (12)

> 0 in view of Lemma 4.

. . ..
Furthermore, according to liminf —~ > 0 and S =
m—+oo M,

{tglinoo s; = 0}, we have

lim inf 9(rm)
m— 00 logm

>0 (13)

and

1+sm/2+sm) .

’H’L

1
liminf ——
imin log m g(r

m——+oo

(147, lom) =24 > 0 on 5. (14)
Let C' = 0. By virtue of (11)—(14) and Lemma 1, it
deduces that
e " dx < 400 on S,

o0
mgl V 27T‘[|x‘>R9n,
20:0 I —12/2d < +
—— (§] X o0
e /27 12l >(14Po) =Yg (rem) ’

and

—+oo

> P(

m=1

+oo
Z P(Um+1|Fryn) < +oo.
m=1

Vo FL) < 400 on S,

Using Borel-Cantelli-Levy theorem, one has

+oo
> Iyo < 400 on S,
me a.s.. (15)
Z IUm < 4-o00.
m=1
Now, according to (15), on S, {s;};>1 either satis-
fies

2511
0<syy < —— 16
St 2+ 54 (16)
or
2841
< <0, 17
St 2+ s, (17)
where ¢ is sufficiently large. However, if (17) holds,
2|8,
|s¢] > 7|St 1 # 0,
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which contradicts to the definition of S. Thus, {s;}:>1
satisfies (16) on .S, which means

2841
C S e
SCU N {0<st<2+s } C

n=>1lt>2n+1 t—1

U U N{0<s <

nzlreQt tzn

#} (18)
2r+t—n"

On the other hand, since lim mf ? > 0 almost surely,
t—oo

SC U{r,>¢e*=

n>1

u U

n>1seQ+,s>e?

{r, € (s,s+1)}. (19)
Denote

Wy 2 N{0<s < —
" tgn{ St 2mM+t—n

T: 2 {r, €
(18) and (19) leads to
scyuy wont U 1)) c

n>1 reQt SEQT,s>e?

U u U @&nw).

n2lreQt seQt,s>e?

2

(s,s + 1)},

To show (10), we only need to prove that for any
r,s€Qb,s>e’andn > 1,

P(T:NnWr) =0. (20)
Now, fix r,s € Q*, s > e>andn > 1. Assume
W £ TsNW satisfies P(W) > 0, we next show that
on W,

Tm € [s

gm—n

’ (01 . (S + 1))(m,—n+1)2mn]’ —

(21)
1
where C; =14 —.
s

In fact, r,,, > s>

m > n,

clearly holds. Moreover, for

Clrm X

Cl’l“m 1 + ClT'

2+42/(2/r+ —1-2/(2Ir4+m—
Cl 2t 1( r+m— n)(l‘i‘rm_l (2/r+m n))<

2+2/(2/r+m n) ~2 242/(m—n
Cl ) ( )7

Tm—1

2+2/ 2lr+m— n)

< (Cl Tm—1
then

H (2+42/(i— n))
T < CyH(Chry)i=mtt

C7H(Cyry )Mt _
Cri(Ci(1+ 5))(’”—n+1)2m—n -
(C:(1+ S))(m—nﬂ)gm—n

and hence (21) follows.
Now, take some v, € (e%,s), vo > C;(s+ 1) and

1
Ce (7,8,u). On W, one has

gm—n

1+s /(24-8m)—C/2m? 2m T (1-C/2m?) 2’” "
T ™ " Z s >V
(22)

and

. 2
T1+Sm/(2+5m) Cl2m <

(Cl (S+1))(m7n+1)2m’"’(1+sm/(2+sm)) <
(01 (S+1))(m*n+1)2m7”((2/T’+mfn+3)/(2/r+mfn+l))<
(€

(S + 1))(m—n+3)2'””L < Vém—n)Qm’"’ (23)
where m is sufficiently large. Denote

Y2 inf a7"g(a),

t t
i 5]

then by (21)-(23) and lgm +inf —? > 0, for any suffi-
—+o0
ciently large m,

RC_

—C/8m? ( 1+sm/(2+sm)7C/2m2)'

Tm g\r
(1+7"_1 sm) 1/(44+4sm) >
r

—C/8m? g(rijsm/(%sm)fcmm?)(l + T;£1)71/4 >

m
(,r.lJrSm 2+sm)7C/2m2)7C/(8m274C) .

g(ryln+sm/(2+sm),c/2mz) ‘ % >

(P sniann) -y o
g(r#+s,,l/(2+sm)—0/2m2) ' % >

amn iﬁf_n)gm_n] a = g () - % _

Y L

3¥nen on W) (24)

2
where R% is defined in (12). Moreover, by virtue of
Lemma 1 and (5) with r; = v; and 5, = v,

+oo

—z?/2
- q | ,
27TJ‘\93|2Y,,,L,”/2€ T < 400 (25)

m=n+1

With (12) (24) and (25), it is straightforward that

“+o0o
20 PVinlFp) < +oo on W,

which shows Z Ivc < 400 almost surely on set

W, in view of Borel Cantelh -Levy theorem. As a re-
sult, as long as m is sufficiently large,

2s 1
L——Q a.s.on W.
2+Sm1 m

For m > n + 1, denote

0< Sm <

P =2 — (M —n)sp,,
2Sm—1
dm £ T Sm
2 + Sm—1

2
< on W, one has
m-—n

since s, <
mn 20r+m—n

C
S (0, 2), d.m > ﬁ and

2m — )2 pur)
2(m—n) — pm-1

(m—n)d,, = —(2=pn) =
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pm—l (2 - pm—l)

m ~— Mm— g
2(m_n) — Pm—1 +p / P '
m + Pm — Pm—1-
Therefore,
C(m—n) m
m(pm_pm—1)> m _2(m7n71)7

. . 1. o
which, by noting that C' > > infers lim Jlrnf m(pm —
m——+0o0

Pm—_1) > 0, and hence lim p,, = +oo. This con-

n—-+4o00

tradicts to the fact that p,, < 2. We thus conclude
P(W) = 0. That is, (20) holds and hence Theorem 1
is proved.

4 Conclusions

The stabilizability theorem in this paper, combining
with Theorem 2 derived by [1], tries to elaborate on the
characterization of feedback limitations in discrete-time
adaptive nonlinear control. Although the stabilizability
and unstabilizability conditions presented here are very
close, it still calls for further efforts on the critical sta-
bilizability condition.
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Appendix: Proof of Remarks 1 and 2

We prove Remarks 1 and 2 in this appendix.

Proof of Remark 1 Given 8 € (0,2], let u = % > %

B
116(log(log [=)”  then for any ro > r; > e?

and g1(z) = =

t t
and z € [} , 752 ], one has

—plt?
Mg (z) =
BY_ 2

xl/(16(10g(10g\x|))) 1/12t >
xl/(16(10g(t2t log r2))%)—1/12¢% _

1/(16(t log 2+log t+0(1))%) —1/12¢%
x =
T(l/(w(t1og2+t(0.75—1og2))2)—1/12t2)2t _
1 =
24/36t2
1

)

where ¢ is sufficiently large. Thus,

L Hit? g1 (x) >

lim inf inf
t=400 per2t pt2t) logt
t 2
lim inf r% 136t 10g_1 t = +o0. (al)
t——+oo

Therefore, for any f(z) given by Example (4) with 8 € (0, 2],
if we can show

|lz| " () > g1(2) (a2)

holds for all sufficiently large |z|, then by using (al), f(z) sat-
isfies the condition of Theorem 1 and Remark 1 follows.

To this end, denote A; £ log(log|z|) and Ay £ = +

Py

%. Since log A2 € (—log2,0) for |z| > e°, it yields
164"

1
1t AP > (A +1og Ag)P. (a3)

Note that for any sufficiently large |z], (a3) is equivalent to

1

1>A4H4- —
2~ og(Azlog [o]))?

)

and hence

|l'| 2 |$|A2(471/(10g(/12 log|m\))ﬂ).
So, |z| = f(|z|Y*g1(z)), which is exactly (a2) as desired.
QED.

Proof of Remark 2 For f >
ml/lQ(log(log |z]))?

2, let g(z) =
t
. Then, for any = € [e2 , +00),
_ 2 B_ 2
o 1/16¢ g(w):x1/12(log(log|m\)) 1/16¢ <
ml/(12(tlog2)ﬁ)71/16t2 <

B_ 2) gt _
o(112(tlog 2)” ~1/16¢%)2 —oft 2)7



No. 11

LIU Zhaobo et al: Stabilizability theorem of discrete-time nonlinear systems with scalar parameters

1935

as t — +oo. Consequently,

+o0 2

S ap o V) <
t=1 zele?’,+o0)

o0 B_ 2\ot

> o(112(tl0g 2)? —1166%)2" _ |
t=1

This implies that if for all sufficiently large ||,
2| " (Ja)) < g(@),

then f(x) satisfies the condition of Theorem 2.
1

1
As above, denote A3 = 1t @ € (1
Then,

1
3 -k/lé3 < S(Ay +log A3)?,

ol i

(a4)

1
, 1) for |z| > e°.

and hence for any sufficiently large |z|,

=] < ||

As(4=1/(log(As log []))?)

Since f(z) is defined by (4), similar to the argument of Re-

mark 1, (a4) follows and we complete the proof.

Y R

X6 EEREFA, BT AR

2
il

QED.
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