一类非线性系统的自适应抗测量噪声的输出反馈镇定

林 雷，沈绝军 ${ }^{\dagger}$
（三峡大学 电气与新能源学院，湖北 宜昌 443002）

摘要：本文研究一类非线性系统的自适应抗测量噪声的输出反馈镇定问题．所研究的非线性系统输出中存在正的且有界的乘性噪声．非线性项的增长率为一个未知常数乘以输出的幂函数加上带有时滞输出的幂函数．首先，证明一个矩阵不等式．其次，设计含有 3 个时变增益的输出反馈控制器，并给出增益的自适应律，然后，构造适当的Lyapunov－Kraso－ vskii泛函，给出确保闭环系统渐近稳定的充分条件．最后，仿真实验验证该方法的可行性和有效性．
关键词：乘积形式噪声；自适应镇定；非线性系统；时滞；输出反馈
引用格式：林雷，沈绝军．一类非线性系统的自适应抗测量噪声的输出反馈镇定．控制理论与应用，2022，39（8）： 1460 － 1470
DOI：10．7641／CTA．2022．10773

Adaptive anti－measurement－disturbance stabilization fora class of nonlinear systems via output feedback

LIN Lei，SHEN Yan－jun ${ }^{\dagger}$
（College of Electrical Engineering \＆New Energy，China Three Gorges University，Yichang Hubei 443002，China）

Abstract

In this paper，we study adaptive anti－measurement－disturbance stabilization for a class of nonlinear systems via output feedback．In the output of the systems，there exist multiplicative noises which are assumed to be positive and have known upper and lower bounds．The growth rate of the nonlinear terms has an unknown constant multiplied by a power function of the output and a power function of the output with time delay．Firstly，a matrix inequality is developed． Secondly，we design an output feedback stabilizer with three time－varying gains，and give adaptive laws of the gains as well． Then，a Lyapunov－Krasovskii functional is constructed，and sufficient conditions are derived to ensure that the closed－loop system is asymptotically stable．Finally，numerical simulations are provided to verify the feasibility and effectiveness of the design method．

Key words：multiplicative noises；adaptive stabilization；nonlinear system；time－delay；output feedback
Citation：LIN Lei，SHEN Yanjun．Adaptive anti－measurement－disturbance stabilization for a class of nonlinear systems via output feedback．Control Theory \＆Applications，2022，39（8）：1460－1470

1 Introduction

The problem of stabilization has been well stud－ ied for nonlinear systems via output feedback in the past few decades．Most of the results are derived under the condition that the output can be measured precise－ ly［1－4］．However，since the influence of disturbance or sensor error，sometimes，we cannot get the accurate values of the output．For this reason，the synthesis prob－ lem has been studied for nonlinear systems with output containing disturbance，such as $y=x_{1}+\rho$ ，where ρ denotes disturbance．For instance，an adaptation－gain observer was designed for a class of nonlinear sys－ tems with measurement noises［5］．The authors in［6］
addressed an L_{1} adaptive output－feedback descriptor for multi－variable nonlinear systems with measurement disturbances．

However，sometimes the error in the output is not related to time，but related to the states．Therefore，re－ searchers proposed the assumption $y=\varphi\left(x_{1}\right)$［7－9］， where $\varphi(\cdot)$ is a function with respect to x_{1} ．In order to stabilize this type of systems，it is usually needed to as－ sume that y is differentiable．For example，the authors in［8］studied output feedback stabilization for uncertain nonlinear systems with unknown growth rate and un－ known output function．A design method was proposed to solve the problem of sampled－data output feedback

[^0]stabilization for nonlinear systems with unknown output function [9].

Recently, a new output function error model like $y=\theta(t) x_{1}$ has been proposed, where $\theta(t)$ is a function with respect to time. Compared with the previous model, it is not necessary to assume that the function y is derivable when considering the stabilization problem for this kind of nonlinear systems. In fact, it is only assumed that $\theta(t)$ is a bounded function [10-12]. The authors in [10] proposed a dual-domination approach to copy with the problem of output-feedback stabilization for nonlinear systems with unknown measurement sensitivity. More specifically, in [11], the authors developed a new stochastic adaptive dual-domination approach to deal with the problem of stabilization for stochastic strict-feedback systems with sensor uncertainty. A large bound of measurement sensitivity was allowed to achieve the regulation of nonlinear systems with unknown growth constant rate [12]. However, in practice, nonlinear systems with time-varying growth rate are usually applied to model the circuits with nonlinear resistance [13-14] and business cycles [15]. Therefore, it is interesting to research the problem of anti-measurement-disturbance output feedback stabilization for a class of nonlinear systems with multiplicative noises and with time-varying, time-delay growth rate.

In this paper, we study the problem of output feedback stabilization for nonlinear systems with unknown measurement sensitivity. The growth rate of the nonlinear terms has an unknown constant multiplied by a power function of the output and a power function of the output with time delay. Firstly, we present a matrix inequality. Then, based on this matrix inequality, an output feedback controller is constructed with three timevarying gains to stabilize the nonlinear system. At last, a Lyapunov-Krasovskii functional is proposed and sufficient conditions are derived to ensure that the closedloop system is asymptotically stable. Our major contributions include: 1) A useful matrix inequality is proposed. 2) Compared with the results in [16-17], the boundedness of the measurement disturbances $\theta(t)$ is enlarged as $0<\theta(t)<+\infty$, and the growth rate of the nonlinear terms is time-varying and dependent on the output.

The remainder of this paper is organized as follows. In Section 2, we present some useful lemmas and problem description. In Section 3, an output feedback controller is designed based on a specially constructed observer and three time-varying gains. In Section 4, we give our main results: sufficient conditions are proposed to ensure asymptotical stability of the closed-loop system. Numerical simulations are provided to illustrate the validity of the proposed design methods in Section 5. This paper is concluded in Section 6.

2 Preliminaries and problem description

In this paper, we consider an n-order $(n \geqslant 2)$ single-input single-output (SISO) uncertain nonlinear system

$$
\left\{\begin{array}{l}
\dot{x}_{i}=x_{i+1}+f_{i}\left(t, \bar{x}_{i}\right), i=1, \cdots, n-1 \tag{1}\\
\dot{x}_{n}=u+f_{n}\left(t, \bar{x}_{n}\right) \\
y=\theta(t) x_{1}
\end{array}\right.
$$

where $\bar{x}_{i}=\left(\begin{array}{lll}x_{1} & \cdots & x_{i}\end{array}\right)^{\mathrm{T}} \in \mathbb{R}^{i}, u \in \mathbb{R}$ and $y \in \mathbb{R}$ are the system state, control input and measurement output, respectively. The sensor sensitivity $\theta(t)\left(t \in \mathbb{R}^{+}\right)$ is an unknown continuous function. The functions f_{i} : $\mathbb{R}^{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ are continuous and satisfy the following assumptions.

Assumption $1{ }^{[3,18]}$ There exists a known real number $p \geqslant 0$ and an unknown constant $c>0$ such that

$$
\begin{aligned}
& \left|f_{i}\left(t, \bar{x}_{i}\right)\right| \leqslant \\
& c\left(1+\left|x_{1}\right|^{p}\right) \sum_{j=1}^{i}\left|x_{i}(t)\right|+ \\
& c\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right) \sum_{j=1}^{i}\left|x_{i}(t-\tau(t))\right|
\end{aligned}
$$

where $\tau(t)$ represents time-delay and satisfies that $0 \leqslant$ $\dot{\tau}(t) \leqslant \hat{\tau}<1, \hat{\tau}$ is a known constant.

Remark 1 Different from [11-12], the growth rate is a time-varying function in this paper. When $p=0$, the time-varying growth rate is reduced to a constant growth rate. Therefore, the constant growth rate can be regarded as a special case of the time-varying growth rate. Moreover, unlike [10, 17], the constant c of the growth rate is unknown. With the introduction of unknown constant, time-delay and sensor sensitivity, it is more difficult to design a stabilizer for the nonlinear system (1).

Remark 2 In practice, the nonlinear system with time-varying growth rate satisfied Assumption 1 is usually applied to model the circuits with nonlinear resistance [13-14] and business cycles [15]. The dynamical equation called the forced van der Pol equation [19-20] is given as follows:

$$
\begin{equation*}
\ddot{\vartheta}+\mu\left(1-\vartheta^{2}\right) \dot{\vartheta}+\vartheta=u, \tag{2}
\end{equation*}
$$

where μ is an unknown constant. The authors in [20] discussed in detail how an actual nonlinear RLC series circuit was transformed into the equation (2).

Suppose that only ϑ is measurable. Under the coordinate transformation $x_{1}=\vartheta, x_{2}=\dot{\vartheta}$, we have

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{3}\\
\dot{x}_{2}=u-x_{1}-\mu\left(1-x_{1}^{2}\right) x_{2} \\
y=x_{1}
\end{array}\right.
$$

If let $c=\max \{1,|\mu|\}, p=2$, then the condition in Assumption 1 holds. Thus, the system (3) has the form of the system (1).

Assumption 2 As in [12], the sensor sensitivity $\theta(t)$ is assumed to be unknown, continuous and bounded. Moreover, there exists positive constants $0<\theta_{l} \leqslant$ 1 and $1<\theta_{u} \leqslant \infty$ such that $\theta_{l} \leqslant \theta(t) \leqslant \theta_{u}$, for all $t \geqslant 0$.

Remark 3 In this paper, $\theta(t)$ is assumed to be an unknown continuous function with known upper and lower bounds, but does not need to be derivable. In fact, there always exists a multiplicative noise $\theta(t)$. For instance, in [21], the authors pointed out that the magnetic displacement sensor of the bearing suspension system has a sensor error of $\pm 10 \%$, which means $\theta(t)$ is a bounded time-varying function ranging from 0.9 to 1.1 . Because of its unique properties, it has been widely studied [10-12, 16].

Compared with $[11,16]$, in this paper, the allowable measurement error range is enlarged from 0 to $+\infty$. Thus, the proposed method can be applied to nonlinear systems not only with a multiplicative noise $\theta(t)$ close to 1 , but also with a multiplicative noise in the interval $(0,+\infty)$.

We also need the following inequalities to derive our main results.

Lemma $1^{[22]}$ For $(x y)^{\mathrm{T}} \in \mathbb{R}^{2}$, the following Young's inequality holds:

$$
x y \leqslant \frac{v^{p}}{p}|x|^{p}+\frac{1}{q v^{q}}|y|^{q},
$$

where $v>0$, the constants $p>1$ and $q>1$ satisfy $(p-1)(q-1)=1$.

Lemma $2^{[23]}$ For $p \in[1,+\infty)$ and any $x_{i} \in$ $\mathbb{R}, i=1, \cdots, n$, the following inequality holds:

$$
\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)^{p} \leqslant n^{p-1}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)
$$

Lemma $3{ }^{[12]}$ Under Assumption 2, let

$$
\begin{aligned}
& l_{1}=b_{2}+\frac{1}{2}+l_{0} \\
& l_{i}=b_{i} l_{i-1}-b_{i} \prod_{k=2}^{i} b_{k}+\prod_{k=2}^{i+1} b_{k}, i=2, \cdots, N
\end{aligned}
$$

where l_{0} is a positive constant, l_{0}^{*} satisfies

$$
\rho_{1}(1-\theta(t))-\frac{l_{0}^{*} \theta(t)}{2} \leqslant 0
$$

and the following inequalities for $i=2, \cdots, N$,

$$
\begin{aligned}
& \frac{2}{\kappa(n-1)^{2}}\left(\frac{l_{0}^{*} \theta(t)}{2}-\rho_{1}(1-\theta(t))\right)- \\
& (1-\theta(t))^{2} \rho_{i}^{2} \geqslant 0, \\
& \rho_{1}=b_{2}+\frac{1}{2}, \rho_{i}=b_{i} \prod_{k=2}^{i} b_{k}-\prod_{k=2}^{i+1} b_{k}, \\
& b_{i}=b_{i+1}+\frac{i}{2}+\frac{1}{\kappa}+\bar{b}_{i},
\end{aligned}
$$

$i=2, \cdots, N, b_{N+1}=0, \bar{b}_{N}=0, \kappa$ is a positive constant, and

$$
\begin{aligned}
\bar{b}_{i}= & \frac{1}{2} \sum_{m=i+1}^{N-1}\left(\bar{b}_{m}+\frac{1}{\kappa}+\frac{m}{2}\right)^{2} \prod_{k=i+1}^{m} b_{k}^{2}+ \\
& \frac{1}{2} b_{N}^{2} \prod_{k=i+1}^{N} b_{k}^{2}, i=2, \cdots, N-1 .
\end{aligned}
$$

Let A_{L} be an $N \times N$ matrix and $P_{\mathrm{L}}=P_{1}^{\mathrm{T}} P_{1}$ is a positive definite matrix as

$$
\begin{aligned}
& A_{\mathrm{L}}=\left(\begin{array}{ccccc}
-l_{1} \theta(t) & 1 & 0 & \cdots & 0 \\
-l_{2} \theta(t) & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-l_{N-1} \theta(t) & 0 & 0 & \cdots & 1 \\
-l_{N} \theta(t) & 0 & 0 & \cdots & 0
\end{array}\right), \\
& P_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-b_{2} & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & -b_{N} & 1
\end{array}\right)
\end{aligned}
$$

Then, for $l_{0}>l_{0}^{*}$, we have the following inequality:

$$
A_{\mathrm{L}} P_{\mathrm{L}}+P_{\mathrm{L}} A_{\mathrm{L}} \leqslant-\theta_{\mathrm{M}} I
$$

where $\theta_{\mathrm{M}}=\lambda_{\text {min }}\left(P_{\mathrm{L}}\right) \min \left\{l_{0} \theta_{l}, \frac{1}{\kappa}\right\}, I$ is an $N \times N$ identity matrix.

Remark 4 The different between Lemma 3 and Lemma 1 in [12] is that a parameter κ is introduced. But the proof process is similar and is omitted here. This parameter κ can bring flexibility when designing the output feedback stabilizer.

Lemma 4 Suppose that the conditions of Lemma 3 hold. For an $N \times N$ matrix $D=\operatorname{diag}\{\sigma, 1+$ $\sigma, \cdots, N-1+\sigma\}$, there exists an appropriate positive constant σ^{*}, such that when $\sigma>\sigma^{*}$, we have the following matrix inequality:

$$
D P_{\mathrm{L}}+P_{\mathrm{L}} D \geqslant \pi_{1} P_{\mathrm{L}}
$$

where $\pi_{1}>0$ is a real constant.
Proof Consider a system $\dot{\eta}=D \eta$ with $\eta=$ $\left[\begin{array}{llll}\eta_{1} & \eta_{2} & \cdots & \eta_{N}\end{array}\right]^{\mathrm{T}}$. Using a transformation $\xi=P_{1} \eta$, we have

$$
\begin{aligned}
& \eta_{1}=\xi_{1} \\
& \eta_{i}=\xi_{i}+\sum_{j=1}^{i-1} \xi_{j} \prod_{k=j+1}^{i} b_{k}, i=2, \cdots, N
\end{aligned}
$$

Then, that is,

$$
\begin{aligned}
& \dot{\xi}=P_{1} D \eta, \\
& \dot{\xi}_{1}=\sigma \xi_{1}, \\
& \dot{\xi}_{i}=-b_{i}(i-2+\sigma)\left(\xi_{i-1}+\sum_{j=1}^{i-2} \xi_{j} \prod_{k=j+1}^{i-1} b_{k}\right)+ \\
& \quad(i-1+\sigma)\left(\xi_{i}+\sum_{j=1}^{i-1} \xi_{j} \prod_{k=j+1}^{i} b_{k}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& (i-1+\sigma) \xi_{i}+\sum_{j=1}^{i-1} \xi_{j} \prod_{k=j+1}^{i} b_{k} \\
& i=2, \cdots, N
\end{aligned}
$$

Note that $\xi_{i} \xi_{j} \geqslant-\frac{1}{2} \xi_{i}^{2}-\frac{1}{2} \xi_{j}^{2}$, and $b_{i}>1, i=$ $2, \cdots, N$. Therefore,

$$
\begin{aligned}
\sum_{i=1}^{N} \xi_{i} \dot{\xi}_{i}= & \sum_{i=1}^{N}(i-1+\sigma) \xi_{i}^{2}+ \\
& \sum_{i=2}^{N} \xi_{i} \sum_{j=1}^{i-1} \xi_{j} \prod_{k=j+1}^{i} b_{k} \geqslant \\
& \sum_{i=1}^{N}\left(\sigma-\sigma^{*}\right) \xi_{i}^{2}
\end{aligned}
$$

where σ^{*} is an appropriate positive constant and related to b_{k}. If $\sigma>\sigma^{*}$, then, we get $\sum_{i=1}^{N} \xi_{i} \dot{\xi}_{i}>0$. Note that

$$
\begin{aligned}
& \sum_{i=1}^{N} \xi_{i} \dot{\xi}_{i}=\frac{1}{2} \frac{\mathrm{~d}\left(\xi^{\mathrm{T}} \xi\right)}{\mathrm{d} t}= \\
& \frac{1}{2}\left(\dot{\eta}^{\mathrm{T}} P_{1}^{\mathrm{T}} P_{1} \eta+\eta^{\mathrm{T}} P_{1}^{\mathrm{T}} P_{1} \dot{\eta}\right)= \\
& \frac{1}{2}\left(\eta^{\mathrm{T}} D P_{\mathrm{L}} \eta+\eta^{\mathrm{T}} P_{\mathrm{L}} D \eta\right)>0
\end{aligned}
$$

Thus, the conclusion holds.
Remark 5 Note that σ^{*} increases with the increase of b_{k}. We can select a larger value of κ to make b_{k} and σ^{*} small. For example, when $N=2$, $\kappa=10$, we have $b_{2}=1.1$. Choose $\sigma=0.25$, then $D P_{\mathrm{L}}+P_{\mathrm{L}} D>0$. If we choose $\kappa=1$ like [12], when $N=2$, we have $b_{2}=2$. With the same parameter $\sigma=0.25$, we get $\lambda_{\text {min }}\left(D P_{\mathrm{L}}+P_{\mathrm{L}} D\right)<0$.

3 Output feedback controller design

In this section, an output feedback controller is constructed for the nonlinear system (1) with unknown sensor sensitivity $\theta(t)$ and the time-varying growth rate shown in Assumption 1.

Firstly, construct the following observer:

$$
\left\{\begin{array}{c}
\dot{\hat{x}}_{i}=\hat{x}_{i+1}+l_{i}\left(L_{1} L_{3}\right)^{i}\left(y-\hat{x}_{1}\right), \tag{4}\\
\\
i=1, \cdots, n-1, \\
\dot{\hat{x}}_{n}=u+l_{n}\left(L_{1} L_{3}\right)^{n}\left(y-\hat{x}_{1}\right),
\end{array}\right.
$$

where $\hat{x}=\left(\begin{array}{lll}\hat{x}_{1} & \cdots & \hat{x}_{n}\end{array}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$ is observer state, the dynamic gains L_{1}, L_{2} and L_{3} are updated by

$$
\begin{align*}
& \dot{L}_{1}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}}\left(\frac{L_{2}^{2 n-3}+1}{\left(L_{1} L_{2}\right)^{2 n-3} L_{3}^{2 \sigma_{1}}}\right), L_{1}(0)=1 \\
& \dot{L}_{2}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}}\left(\frac{1}{\left(L_{1} L_{2}\right)^{2 n-3} L_{3}^{2 \sigma_{1}}}\right), L_{2}(0)=1 \tag{6}
\end{align*}
$$

and

$$
\dot{L}_{3}=\max \left\{-\alpha L_{3}^{2}+\beta L_{1}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}, 0\right\}
$$

$$
\begin{equation*}
L_{3}(0)=1 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha \leqslant \min \left\{\frac{1}{\pi_{1} \lambda_{\min }\left(P_{\mathrm{L}}\right)}, \frac{1}{\pi_{2} \lambda_{\min }(Q)}\right\} \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& \beta \geqslant \\
& \max \left\{\frac{2-\hat{\tau}}{(1-\hat{\tau}) \pi_{1} \lambda_{\min }\left(P_{\mathrm{L}}\right)}\right. \\
& \tag{9}\\
& \left.\quad \frac{1}{(1-\hat{\tau}) \pi_{2} \lambda_{\min }(Q)}, \frac{1}{(1-\hat{\tau}) \pi_{1} \lambda_{\min }\left(P_{\mathrm{L}}\right)}\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma_{1}>\sigma^{*} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
p<\frac{1}{\sigma_{1}} \tag{11}
\end{equation*}
$$

The controller $u(t)$ is given by

$$
\begin{equation*}
u=-\sum_{i=1}^{n}\left(a_{i}\left(L_{1} L_{2} L_{3}\right)^{n-i+1}\right) \hat{x}_{i} \tag{12}
\end{equation*}
$$

where $a_{i}>0(i=1, \cdots, n)$ are coefficients of the Hurwitz polynomial $h_{1}(s)=s^{n+1}+a_{1} s^{n}+\cdots+$ $a_{n} s+a_{n}$.

Introduce the following change of coordinates:

$$
\begin{align*}
e_{i} & =\frac{x_{i}-\hat{x}_{i}}{L_{1}^{i-1} L_{3}^{i-1+\sigma_{1}}}, i=1, \cdots, n \tag{13}\\
z_{i} & =\frac{\hat{x}_{i}}{\left(L_{1} L_{2}\right)^{i-1} L_{3}^{i-1+\sigma_{1}}}, i=1, \cdots, n . \tag{14}
\end{align*}
$$

From (1) (4) (13) and (14), we have

$$
\begin{align*}
\dot{e}= & L_{1} L_{3} A_{\mathrm{L}} e+(1-\theta(t)) L_{1} L_{3} L z_{1}+F- \\
& \frac{\dot{L}_{1}}{L_{1}} D_{2} e-\frac{\dot{L}_{3}}{L_{3}} D_{1} e \tag{15}
\end{align*}
$$

and

$$
\begin{gather*}
\dot{z}=L_{1} L_{2} L_{3} B z+L_{1} L_{3} \theta(t) M L e_{1}-\frac{\dot{L}_{3}}{L_{3}} D_{1} z- \\
L_{1} L_{3}(1-\theta(t)) M L z_{1}-\left(\frac{\dot{L}_{1}}{L_{1}}+\frac{\dot{L}_{2}}{L_{2}}\right) D_{2} z \tag{16}
\end{gather*}
$$

where
$e=\left(\begin{array}{lll}e_{1} & \cdots & e_{n}\end{array}\right)^{\mathrm{T}}$,
$D_{1}=\operatorname{diag}\left\{\sigma_{1}, 1+\sigma_{1}, \cdots, n-1+\sigma_{1}\right\}$,
$D_{2}=\operatorname{diag}\{0,1, \cdots, n-1\}$,
$L=\left(\begin{array}{llll}l_{1} & l_{2} & \cdots & l_{n}\end{array}\right)^{\mathrm{T}}, z=\left(\begin{array}{lll}z_{1} & \cdots & z_{n}\end{array}\right)^{\mathrm{T}}$,
$A=\left(\begin{array}{cccc}-l_{1} \theta(t) & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -l_{n-1} \theta(t) & 0 & \cdots & 1 \\ -l_{n} \theta(t) & 0 & \cdots & 0\end{array}\right)$,
$F=\left(\begin{array}{c}\frac{f_{1}}{L_{3}^{\sigma_{1}}} \\ \frac{f_{2}}{L_{1} L_{3}^{1+\sigma_{1}}} \\ \vdots \\ \frac{f_{n}}{L^{n-1} L^{n-1+\sigma_{1}}}\end{array}\right), B=\left(\begin{array}{cccc}0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_{1} & -a_{2} & \cdots & -a_{n}\end{array}\right)$,
and $M=\operatorname{diag}\left\{1, \frac{1}{L_{2}}, \cdots, \frac{1}{L_{2}^{n-1}}\right\}$.
Then, by Lemma 1 in [24], there exists a positive definite matrix Q satisfying

$$
\begin{align*}
& B^{\mathrm{T}} Q+Q B \leqslant-I_{n} \\
& D_{1} Q+Q D_{1} \geqslant \pi_{2} Q \tag{17}
\end{align*}
$$

where $\pi_{2}>0$ is a real constant.

4 Main results

In this section, we construct a Lypunov-Krasovskii functional to derive sufficient conditions to guarantee that the closed-loop system (15)-(16) is asymptotically stable.

Theorem 1 For the system (1) with the Assumptions 1 and 2 , if the parameters $\alpha, \beta, \sigma_{1}, p$ satisfy the conditions (8)-(11), then, under the output feedback controller (4)-(7), and (12), the system (1) converges to the equilibrium at origin, which means that $\lim _{t \rightarrow+\infty} x(t)$ $=0, \lim _{t \rightarrow+\infty} \hat{x}(t)=0$.

Proof The derivative of the function $V_{1}(t)=$ $e^{\mathrm{T}} P_{\mathrm{L}} e$ is given by

$$
\begin{align*}
\dot{V}_{1}(t) \leqslant & L_{1} L_{3} e^{\mathrm{T}}\left(A_{\mathrm{L}}^{\mathrm{T}} P_{\mathrm{L}}+P_{\mathrm{L}} A_{\mathrm{L}}\right) e+ \\
& 2 L_{1} L_{3}|1-\theta(t)|\|L\|\left\|P_{\mathrm{L}}\right\|\|e\|\|z\|+ \\
& 2\|e\|\left\|P_{\mathrm{L}}\right\|\|F\|+2 \frac{\dot{L}_{1}}{L_{1}}\left\|D_{2}\right\|\left\|P_{\mathrm{L}}\right\|\|e\|^{2}- \\
& \frac{\dot{L}_{3}}{L_{3}} e^{\mathrm{T}}\left(D_{1} P_{\mathrm{L}}+P_{\mathrm{L}} D_{1}\right) e \tag{18}
\end{align*}
$$

From Lemma 1, Assumption 1, (13) and (14), we get

$$
\begin{aligned}
& \|F\| \leqslant\|F\|_{1} \leqslant \\
& c\left(1+\left|x_{1}\right|^{p}\right) \sum_{i=1}^{n} \sum_{j=1}^{i}\left(\left|e_{j}\right|+L_{2}^{j-1}\left|z_{j}\right|\right)+ \\
& c\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right) \sum_{i=1}^{n} \sum_{j=1}^{i}\left(\left|e_{j}(t-\tau(t))\right|+\right. \\
& \left.L_{2}^{j-1}(t-\tau(t))\left|z_{j}(t-\tau(t))\right|\right) \leqslant \\
& c\left(1+\left|x_{1}\right|^{p}\right) n \sqrt{n}\left(\|e\|+L_{2}^{n-1}\|z\|\right)+ \\
& c\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right) n \sqrt{n}(\|e(t-\tau(t))\|+ \\
& \left.L_{2}^{n-1}(t-\tau(t))\|z(t-\tau(t))\|\right) .
\end{aligned}
$$

From (5) and (6), it follows that

$$
\dot{L}_{1} \leqslant 2, \dot{L}_{2} \leqslant 1
$$

and

$$
\begin{equation*}
\dot{L}_{1}=\left(L_{2}^{2 n-3} \dot{L}_{2}+\dot{L}_{2}\right) \geqslant L_{2}^{2 n-3} \dot{L}_{2} \tag{19}
\end{equation*}
$$

Then,

$$
\begin{aligned}
& L_{1}-1 \geqslant \frac{1}{2(n-1)}\left(L_{2}^{2(n-1)}-1\right) \\
& 2(n-1) L_{1} \geqslant L_{2}^{2(n-1)}
\end{aligned}
$$

Thus,

$$
\begin{align*}
& 2\|e\|\left\|P_{\mathrm{L}}\right\|\|F\| \leqslant \\
& L_{1} \frac{1}{L_{3}}\left(1+\left|x_{1}\right|^{p}\right)^{2}\|e\|^{2}+ \\
& (3+2(n-1)) L_{3} c^{2} n^{3}\left\|P_{\mathrm{L}}\right\|^{2}\|e\|^{2}+ \\
& 4(n-1) L_{3} c^{2} n^{3} L_{1}\left\|P_{\mathrm{L}}\right\|^{2}\|z\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2}\|e(t-\tau(t))\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2} L_{1}(t- \\
& \tau(t))\|z(t-\tau(t))\|^{2} \tag{20}
\end{align*}
$$

Note that $\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2} \geqslant\left(1+\left|x_{1}\right|^{p}\right)^{2}, D_{1} P_{\mathrm{L}}+$ $P_{\mathrm{L}} D_{1} \geqslant \pi_{1} P_{\mathrm{L}} \geqslant \pi_{1} \lambda_{\text {min }}\left(P_{\mathrm{L}}\right) I, \dot{L}_{3} \geqslant 0$, and $L_{3} \geqslant 1$. From Lemma 4 and (7)-(9), we obtain

$$
\begin{align*}
& -\frac{\dot{L}_{3}}{L_{3}} e^{\mathrm{T}}\left(D_{1} P_{\mathrm{L}}+P_{\mathrm{L}} D_{1}\right) e \leqslant \\
& \alpha \pi_{1} \lambda_{\min }\left(P_{\mathrm{L}}\right) L_{3}\|e\|^{2}- \\
& \beta \pi_{1} \lambda_{\min }\left(P_{\mathrm{L}}\right) L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|e\|^{2} \leqslant \\
& L_{3}\|e\|^{2}-L_{1} \frac{1}{L_{3}}\left(1+\left|x_{1}\right|^{p}\right)^{2}\|e\|^{2}- \\
& \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|e\|^{2} \tag{21}
\end{align*}
$$

Substituting (20) and (21) into (18), from Lemma 3, we have

$$
\begin{align*}
& \dot{V}_{1}(t) \leqslant \\
& -\theta_{\mathrm{M}} L_{1} L_{3}\|e\|^{2}+c_{1} L_{1} L_{3} \mid 1- \\
& \theta(t) \mid\|e\|\|z\|+c_{1} L_{3}\|e\|^{2}+c_{1} L_{1} L_{3}\|z\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2}\|e(t-\tau(t))\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2} L_{1}(t-\tau(t)) \| z(t- \\
& \tau(t))\left\|^{2}-\frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\right\| e \|^{2} \tag{22}
\end{align*}
$$

where $c_{1}=\max \left\{2\left\|P_{\mathrm{L}}\right\|\|L\|, 4(n-1) c^{2} n^{3}\left\|P_{\mathrm{L}}\right\|^{2},(3\right.$ $\left.+2(n-1)) c^{2} n^{3}\left\|P_{\mathrm{L}}\right\|^{2}+1+4\left\|D_{2}\right\|\left\|P_{\mathrm{L}}\right\|\right\}$.

The derivative of $V_{2}(t)=z^{\mathrm{T}} Q z$ along the sys-
tem (16) is given as follows:

$$
\begin{aligned}
\dot{V}_{2}(t) \leqslant & -L_{1} L_{2} L_{3}\|z\|^{2}-\frac{\dot{L}_{3}}{L_{3}} z^{\mathrm{T}}\left(D_{1} Q+Q D_{1}\right) z+ \\
& 2 L_{1} L_{3} \theta(t)\|M\|\|L\|\|Q\|\|e\|\|z\|+ \\
& 2 L_{1} L_{3} \mid 1-\theta(t)\|M\|\|L\|\|Q\|\|z\|^{2}+ \\
& 2\left(\frac{\dot{L}_{1}}{L_{1}}+\frac{\dot{L}_{2}}{L_{2}}\right)\left\|D_{2}\right\|\|Q\|\|z\|^{2} .
\end{aligned}
$$

Similar to (21), we have

$$
\begin{aligned}
& -\frac{\dot{L}_{3}}{L_{3}} z^{\mathrm{T}}\left(D_{1} Q+Q D_{1}\right) z \leqslant \\
& L_{3}\|z\|^{2}-\frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|z\|^{2} .
\end{aligned}
$$

Note that $\|M L\| \leqslant\|L\|$. From (17), we have

$$
\begin{align*}
\dot{V}_{2}(t) \leqslant & -L_{1} L_{2} L_{3}\|z\|^{2}+c_{2} L_{1} L_{3} \theta(t)\|e\|\|z\|+ \\
& c_{2} L_{1} L_{3}|1-\theta(t)|\|z\|^{2}+c_{2} L_{3}\|z\|^{2}- \\
& \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|z\|^{2}, \tag{23}
\end{align*}
$$

where $c_{2}=\max \left\{2\|Q\|\|L\|, 1+6\left\|D_{2}\right\|\|Q\|\right\}$.
Consider the following Lyapunov-Krasovskii functional:

$$
V(t)=V_{1}(t)+V_{2}(t)+V_{3}(t)+V_{4}(t),
$$

where

$$
\begin{aligned}
V_{3}(t) & =\frac{1}{1-\hat{\tau}} \frac{1}{L_{3}} \sum_{i=1}^{n} \int_{t-\tau(t)}^{t} \hbar(s) e_{i}^{2}(s) \mathrm{d} s \\
V_{4}(t) & =\frac{1}{1-\hat{\tau}} \frac{1}{L_{3}} \sum_{i=1}^{n} \int_{t-\tau(t)}^{t} \hbar(s) L_{1}(s) z_{i}^{2}(s) \mathrm{d} s
\end{aligned}
$$

$$
\text { and } \hbar(s)=\left(1+\left(\frac{|y(s)|}{\theta_{l}}\right)^{p}\right)^{2}
$$

Note that $L_{3} \geqslant 1, \frac{1-\dot{\tau}}{1-\hat{\tau}} \geqslant 1$ and $\dot{L}_{3} \geqslant 0$. Then,

$$
\begin{align*}
& \dot{V}_{3}(t) \leqslant \\
& \frac{1}{1-\hat{\tau}} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|e\|^{2}-\frac{\dot{L}_{3}}{L_{3}} V_{3}(t)- \\
& \frac{1-\dot{\tau}}{1-\hat{\tau}} \frac{1}{L_{3}}\left(1+\left(\frac{|y(t-\tau(t))|}{\theta_{l}}\right)^{p}\right)^{2}\|e(t-\tau(t))\|^{2} \leqslant \\
& \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|e\|^{2}- \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2}\|e(t-\tau(t))\|^{2} . \tag{24}
\end{align*}
$$

Similar to (24), we have

$$
\begin{align*}
\dot{V}_{4}(t) \leqslant & \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|z\|^{2}- \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2} L_{1}(t- \\
& \tau(t))\|z(t-\tau(t))\|^{2} . \tag{25}
\end{align*}
$$

From (22)-(25), it follows that

$$
\begin{aligned}
& \dot{V}(t)=\dot{V}_{1}(t)+\dot{V}_{2}(t)+\dot{V}_{3}(t)+\dot{V}_{4}(t) \leqslant \\
& -\theta_{\mathrm{M}} L_{1} L_{3}\|e\|^{2}+c_{1} L_{1} L_{3} \mid 1-\theta(t)\|e\|\|z\|+ \\
& c_{1} L_{3}\|e\|^{2}+c_{1} L_{1} L_{3}\|z\|^{2}-L_{1} L_{2} L_{3}\|z\|^{2}+ \\
& c_{2} L_{1} L_{3} \theta(t)\|e\|\|z\|+c_{2} L_{1} L_{3} \mid 1- \\
& \theta(t)\|z\|^{2}+c_{2} L_{3}\|z\|^{2} .
\end{aligned}
$$

Then,

$$
\begin{align*}
& \dot{V}(t) \leqslant \\
& -\frac{L_{1} L_{3} \theta_{\mathrm{M}}}{2}\|e\|^{2}-\frac{L_{1} L_{2} L_{3}}{2}\|z\|^{2}- \\
& L_{3}\left(\frac{L_{1} \theta_{\mathrm{M}}}{4}-c_{1}\right)\|e\|^{2}- \\
& L_{3}\left(\frac{L_{1} L_{2}}{4}-c_{1} L_{1}-c_{2} L_{1}|1-\theta(t)|-c_{2}\right)\|z\|^{2}- \\
& L_{3}\left[\begin{array}{l}
\|e\| \| \\
\|z\|
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{cc}
\frac{L_{1} \theta_{\mathrm{M}}}{4} & \Pi(t) \\
\Pi(t) & \frac{L_{1} L_{2}}{4}
\end{array}\right]\left[\begin{array}{l}
\|e\| \\
\|z\|
\end{array}\right], \tag{26}
\end{align*}
$$

where $\Pi(t)=-\frac{1}{2}\left(c_{1} L_{1}|1-\theta(t)|+c_{2} L_{1} \theta(t)\right)$.
Note that $|1-\theta(t)|, \theta(t)$ are bounded and c_{1}, c_{2} are two positive constants. The rest proof will be discussed on the following two cases.

Case 1 There exist three positive constants \hat{L}_{1}, \hat{L}_{2} and t^{*}, such that if $L_{1}(t) \geqslant \hat{L}_{1}, L_{2}(t) \geqslant \hat{L}_{2}, t \geqslant t^{*}$, the following conditions hold:

$$
\left\{\begin{array}{l}
\frac{L_{1} \theta_{\mathrm{M}}}{4} \geqslant c_{1} \tag{27}\\
\frac{L_{1} L_{2}}{4} \geqslant c_{1} L_{1}+c_{2} L_{1}|1-\theta(t)|+c_{2} \\
\frac{L_{1} \theta_{\mathrm{M}}}{4} \frac{L_{1} L_{2}}{4} \geqslant \Pi^{2}(t), \forall t \in\left[t^{*},+\infty\right)
\end{array}\right.
$$

Case $2 L_{1}(t) \leqslant \hat{L}_{1}$ or $L_{2}(t) \leqslant \hat{L}_{2}, \forall t \in[0,+\infty)$.
Firstly, we consider the conditions in Case 1 hold.
From (26) and (27), it follows that

$$
\begin{equation*}
\dot{V} \leqslant-\frac{L_{1} L_{3} \theta_{\mathrm{M}}}{2}\|e\|^{2}-\frac{L_{1} L_{2} L_{3}}{2}\|z\|^{2} . \tag{28}
\end{equation*}
$$

Obviously, we can get $\lim _{t \rightarrow+\infty}\|e\|^{2}=0$ and $\lim _{t \rightarrow+\infty}\|z\|^{2}=0$.

According to (28), we can obtain

$$
\dot{V} \leqslant-c_{3}\left(\|e\|^{2}+\|z\|^{2}\right),
$$

where c_{3} is an appropriate positive constant.
Thus,

$$
\begin{aligned}
& \int_{0}^{t}\left(\|e\|^{2}+\|z\|^{2}\right) \mathrm{d} t \leqslant \\
& -\frac{1}{c_{3}}(V(t)-V(0)) \leqslant \frac{V(0)}{c_{3}}<+\infty .
\end{aligned}
$$

From (6), it follows that

$$
\dot{L}_{2}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{1}{\left(L_{1} L_{2}\right)^{2 n-3} L_{3}^{2 \sigma_{1}}} \leqslant
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
y^{2}+\hat{x}_{1}^{2} \\
L_{3}^{2 \sigma_{1}}
\end{array} \theta_{u}^{2}\left(e_{1}+z_{1}\right)^{2}+z_{1}^{2} \leqslant \\
& \quad\left(2 \theta_{u}^{2}+1\right)\left(e_{1}^{2}+z_{1}^{2}\right) \\
& \text { Then, } \\
& L_{2}-1 \leqslant\left(2 \theta_{u}^{2}+1\right) \int_{0}^{t}\left(\|e\|^{2}+\|z\|^{2}\right) \mathrm{d} t<+\infty
\end{aligned}
$$ which means that L_{2} is bounded.

From (19), we have

$$
\begin{equation*}
L_{1}-1=\frac{1}{2(n-1)} L_{2}^{2(n-1)}-\frac{1}{2(n-1)}+L_{2}-1 \tag{29}
\end{equation*}
$$

Note that L_{2} is bounded. Thus, L_{1} is also bounded. $\lim _{t \rightarrow+\infty} e_{1}(t)=0$ and $\lim _{t \rightarrow+\infty} z_{1}(t)=0$ imply that $|y|=\theta(t) L_{3}^{\sigma_{1}}\left|e_{1}+z_{1}\right| \leqslant C_{1} L_{3}^{\sigma_{1}}$, where C_{1} is an appropriate positive constant. Due to $\dot{L}_{3} \geqslant 0, L_{3} \geqslant 1$, $p \sigma_{1}<1$ and L_{1} is bounded, there exists $t_{3}>0$ such that

$$
\begin{align*}
& -\alpha L_{3}^{2}+\beta L_{1}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2} \leqslant \\
& -\alpha L_{3}^{2}+C_{2} L_{3}^{2 p \sigma_{1}}+2 \beta L_{1} \leqslant 0 \\
& \forall t \in\left[t_{3},+\infty\right) \tag{30}
\end{align*}
$$

where C_{2} is an appropriate positive constant. Then, we can obtain that $\dot{L}_{3}=0, \forall t \in\left[t_{3},+\infty\right)$ and L_{3} is bounded. Therefore, we have $\lim _{t \rightarrow+\infty} x(t)=0$, $\lim _{t \rightarrow+\infty} \hat{x}(t)=0$. Note that L_{1}, L_{2} and L_{3} are bounded and $\lim _{t \rightarrow+\infty} \hat{x}(t)=0$. From (12), it follows that $\lim _{t \rightarrow+\infty} u(t)=0$.

Secondly, we proceed our discussion on Case 2.
From (29), we know that whatever $L_{1}(t)$ or $L_{2}(t)$ is bounded, the other is also bounded.

According to (6), we have
$\infty>L_{2}-1>$
$\lim _{t \rightarrow+\infty} \frac{1}{\left(L_{1}(+\infty) L_{2}(+\infty)\right)^{2 n-3}} \int_{0}^{t} \frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{1}{L_{3}^{2 \sigma_{1}}} \mathrm{~d} t$.
By the Barbalat's Lemma [25], we can get

$$
\lim _{t \rightarrow+\infty} \frac{x_{1}^{2}}{L_{3}^{2 \sigma_{1}}}=0, \lim _{t \rightarrow+\infty} \frac{\hat{x}_{1}^{2}}{L_{3}^{2 \sigma_{1}}}=0
$$

Introduce the following change of coordinates:

$$
\begin{align*}
\varepsilon_{i} & =\frac{x_{i}-\hat{x}_{i}}{L_{1}^{* i-1} L_{3}^{i-1+\sigma_{1}}}, i=1, \cdots, n \tag{31}\\
\xi_{i} & =\frac{\hat{x}_{i}}{\left(L_{1}^{*} L_{2}^{*}\right)^{i-1} L_{3}^{i-1+\sigma_{1}}}, i=1, \cdots, n, \tag{32}
\end{align*}
$$

where L_{1}^{*} and L_{2}^{*} are two positive constants satisfying

$$
\begin{gathered}
L_{1}^{*} \geqslant \max \left\{L_{1}(+\infty), \frac{24}{\theta_{\mathrm{M}}} c^{2} n^{3}\left\|P_{\mathrm{L}}\right\|^{2} L_{2}^{* 2(n-1)},\right. \\
\frac{12}{\theta_{\mathrm{M}}}\left(L_{2}^{* 2(n-1)}+3\right) c^{2} n^{3}\left\|P_{\mathrm{L}}\right\|^{2}, \frac{12}{\theta_{\mathrm{M}}}
\end{gathered}
$$

$$
\begin{align*}
& \left.\frac{24}{\theta_{\mathrm{M}}}\left\|P_{\mathrm{L}}\right\| \sqrt{n} \sum_{i=1}^{n} a_{i} L_{1}\right\}, \tag{33}\\
& L_{2}^{*} \geqslant L_{2}(+\infty) \tag{34}
\end{align*}
$$

From (1) (4) (31) and (32), we have

$$
\begin{align*}
\dot{\varepsilon}= & L_{1}^{*} L_{3} A_{\mathrm{L}} \varepsilon+L_{1}^{*} L_{3} \theta(t) L \varepsilon_{1}-L_{1} L_{3} \theta(t) \Gamma L \varepsilon_{1}- \\
& \frac{\dot{L}_{3}}{L_{3}} D_{1} \varepsilon+L_{1} L_{3}(1-\theta(t)) \Gamma L \xi_{1}+F^{*}, \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
\dot{\xi}= & L_{1}^{*} L_{2}^{*} L_{3} A_{\mathrm{L}} \xi+L_{1}^{*} L_{2}^{*} L_{3} \theta(t) L \xi_{1}+ \\
& L_{1} L_{3} \theta(t) \Gamma E L \varepsilon_{1}-L_{1} L_{3}(1-\theta(t)) \Gamma E L \xi_{1}+ \\
& D_{3} \frac{u}{\left(L_{1}^{*} L_{2}^{*}\right)^{n-1} L_{3}^{n-1+\sigma_{1}}}-\frac{\dot{L}_{3}}{L_{3}} D_{1} \xi \tag{36}
\end{align*}
$$

where

$$
\begin{aligned}
& \varepsilon=\left(\begin{array}{lll}
\varepsilon_{1} & \cdots & \varepsilon_{n}
\end{array}\right)^{\mathrm{T}}, \xi=\left(\begin{array}{lll}
\xi_{1} & \cdots & \xi_{n}
\end{array}\right)^{\mathrm{T}}, \\
& D_{3}=\left(\begin{array}{lll}
0 & 0 & \cdots
\end{array}\right)^{\mathrm{T}}, \\
& \Gamma=\operatorname{diag}\left\{1, \frac{L_{1}}{L_{1}^{*}}, \cdots,\left(\frac{L_{1}}{L_{1}^{*}}\right)^{n-1}\right\} \\
& E=\operatorname{diag}\left\{1, \frac{1}{L_{2}^{*}}, \cdots,\left(\frac{1}{L_{2}^{*}}\right)^{n-1}\right\}, \\
& F^{*}=\left(\begin{array}{c}
\frac{f_{1}}{L_{3}^{\sigma_{1}}} \\
\frac{f_{2}}{L_{1}^{*} L_{3}^{1+\sigma_{1}}} \\
\vdots \\
\frac{f_{n}}{L_{1}^{* n-1} L_{3}^{n-1+\sigma_{1}}}
\end{array}\right)
\end{aligned}
$$

The derivative of the function $V_{5}(t)=\varepsilon^{\mathrm{T}} P_{\mathrm{L}} \varepsilon$ is given by

$$
\begin{align*}
& \dot{V}_{5}(t) \leqslant \\
& L_{1}^{*} L_{3} \varepsilon^{\mathrm{T}}\left(A_{\mathrm{L}}^{\mathrm{T}} P_{\mathrm{L}}+P_{\mathrm{L}} A_{\mathrm{L}}\right) \varepsilon+ \\
& 2 L_{1}^{*} L_{3}|\theta(t)|\|L\|\left\|P_{\mathrm{L}}\right\|\|\varepsilon\|\left|\varepsilon_{1}\right|+ \\
& 2 L_{1} L_{3}|\theta(t)|\|\Gamma\|\|L\|\left\|P_{\mathrm{L}}\right\|\|\varepsilon\| \| \varepsilon_{1} \mid+ \\
& 2 L_{1} L_{3}|1-\theta(t)|\|\Gamma\|\|L\|\left\|P_{\mathrm{L}}\right\|\|\varepsilon\|\left\|\xi_{1}\right\|- \\
& \dot{L}_{3} \varepsilon_{3}^{\mathrm{T}}\left(D_{1} P_{\mathrm{L}}+P_{\mathrm{L}} D_{1}\right) \varepsilon+2\left\|P_{\mathrm{L}}\right\|\|\varepsilon\|\left\|F^{*}\right\| \leqslant \\
& -\frac{7}{12} \theta_{\mathrm{M}} L^{*}{ }_{1} L_{3}\|\varepsilon\|^{2}+c_{4} L_{1}^{*} L_{3}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}+ \\
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|1-\theta(t)|^{2}\left|\xi_{1}\right|^{2}+\frac{\theta_{\mathrm{M}}}{12} L_{1}^{*} L_{2}^{*} L_{3}\|\xi\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2}\|\varepsilon(t-\tau(t))\|^{2}+ \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2} L_{1}(t-\tau(t)) \| \xi(t- \\
& \tau(t))\left\|^{2}-\frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\right\| \varepsilon \|^{2}, \tag{37}
\end{align*}
$$

where $c_{4}=\frac{24}{\theta_{\mathrm{M}}}\|L\|^{2}\left\|P_{\mathrm{L}}\right\|^{2}$.
Calculate the derivative of the function $V_{6}(t)=$ $\xi^{\mathrm{T}} P_{\mathrm{L}} \xi$. Then,

$$
\begin{align*}
& \dot{V}_{6}(t) \leqslant \\
& L_{1}^{*} L_{2}^{*} L_{3} \xi^{\mathrm{T}}\left(A_{\mathrm{L}}^{\mathrm{T}} P_{\mathrm{L}}+P_{\mathrm{L}} A_{\mathrm{L}}\right) \xi+ \\
& 2 L_{1}^{*} L_{2}^{*} L_{3}|\theta(t)|\|L\|\left\|P_{\mathrm{L}}\right\|\|\xi\|\left|\xi_{1}\right|+ \\
& 2 L_{1}^{*} L_{3}|\theta(t)|\|\Gamma\|\|E\|\|L\|\left\|P_{\mathrm{L}}\right\|\|\xi\| \| \varepsilon_{1} \mid+ \\
& 2 L_{1}^{*} L_{3}|1-\theta(t)|\|\Gamma\|\|E\|\|L\|\left\|P_{\mathrm{L}}\right\|\|\xi\|\left\|\xi_{1}\right\|+ \\
& 2 \xi^{\mathrm{T}} P_{\mathrm{L}} D_{3} \frac{u}{\left(L_{1}^{*} L_{2}^{*}\right)^{n-1} L_{3}^{n-1+\sigma_{1}}-} \\
& \dot{L_{3}} \xi^{\mathrm{T}}\left(D_{1} P_{\mathrm{L}}+P_{\mathrm{L}} D_{1}\right) \xi \leqslant \\
& -\frac{7}{12} \theta_{\mathrm{M}} L_{1}^{*} L_{2}^{*} L_{3}\|\xi\|^{2}+c_{4} L_{1}^{*} L_{2}^{*} L_{3}|\theta(t)|^{2}\left|\xi_{1}\right|^{2}+ \\
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}+ \\
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|1-\theta(t)|^{2}\left|\xi_{1}\right|^{2}- \\
& \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|\xi\|^{2} . \tag{38}
\end{align*}
$$

Consider the following Lyapunov-Krasovskii functional:

$$
V_{9}(t)=V_{5}(t)+V_{6}(t)+V_{7}(t)+V_{8}(t)
$$

where

$$
\begin{aligned}
& V_{7}(t)=\frac{1}{1-\hat{\tau}} \frac{1}{L_{3}} \sum_{i=1}^{n} \int_{t-\tau(t)}^{t} \hbar(s) \varepsilon_{i}^{2}(s) \mathrm{d} s, \\
& V_{8}(t)=\frac{1}{1-\hat{\tau}} \frac{1}{L_{3}} \sum_{i=1}^{n} \int_{t-\tau(t)}^{t} \hbar(s) L_{1}(s) \xi_{i}^{2}(s) \mathrm{d} s .
\end{aligned}
$$

Note that $L_{3} \geqslant 1, \frac{1-\dot{\tau}}{1-\hat{\tau}} \geqslant 1$ and $\dot{L}_{3} \geqslant 0$. Similar to (24), it follows that

$$
\begin{align*}
\dot{V}_{7}(t) \leqslant & \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|\varepsilon\|^{2}- \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2}\|\varepsilon(t-\tau(t))\|^{2} \tag{39}
\end{align*}
$$

Similar to (39), we have

$$
\begin{align*}
\dot{V}_{8}(t) \leqslant & \frac{1}{1-\hat{\tau}} L_{1} \frac{1}{L_{3}}\left(1+\left(\frac{|y|}{\theta_{l}}\right)^{p}\right)^{2}\|\xi\|^{2}- \\
& \frac{1}{L_{3}}\left(1+\left|x_{1}(t-\tau(t))\right|^{p}\right)^{2} L_{1}(t- \\
& \tau(t))\|\xi(t-\tau(t))\|^{2} \tag{40}
\end{align*}
$$

Based on (37)-(40), we obtain

$$
\begin{aligned}
& \dot{V}_{9}(t)= \\
& \dot{V}_{5}(t)+\dot{V}_{6}(t)+\dot{V}_{7}(t)+\dot{V}_{8}(t) \leqslant \\
& -\frac{7}{12} \theta_{\mathrm{M}} L_{1}^{*} L_{3}\|\varepsilon\|^{2}+c_{4} L_{1}^{*} L_{3}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}+
\end{aligned}
$$

$$
\begin{align*}
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|1-\theta(t)|^{2}\left|\xi_{1}\right|^{2}+\frac{\theta_{\mathrm{M}}}{12} L_{1}^{*} L_{2}^{*} L_{3}\|\xi\|^{2}- \\
& \frac{7}{12} \theta_{\mathrm{M}} L_{1}^{*} L_{2}^{*} L_{3}\|\xi\|^{2}+c_{4} L_{1}^{*} L_{2}^{*} L_{3}|\theta(t)|^{2}\left|\xi_{1}\right|^{2}+ \\
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}+ \\
& c_{4} L_{1}^{*} L_{2}^{*} L_{3}|1-\theta(t)|^{2}\left|\xi_{1}\right|^{2} \leqslant \\
& -\frac{1}{3} \theta_{\mathrm{M}} L_{1}^{*} L_{3}\|\varepsilon\|^{2}-\frac{1}{3} \theta_{\mathrm{M}} L^{*}{ }_{1} L_{2}^{*} L_{3}\|\xi\|^{2}- \\
& L_{1}^{*} L_{3}\left(\frac{\theta_{\mathrm{M}}}{4}\|\varepsilon\|^{2}-c_{4}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}-\right. \\
& \left.c_{4} L_{2}^{*}|\theta(t)|^{2}\left|\varepsilon_{1}\right|^{2}\right)-L_{1}^{*} L_{2}^{*} L_{3}\left(\frac{\theta_{\mathrm{M}}}{6}\|\xi\|^{2}-\right. \\
& \left.2 c_{4}|1-\theta(t)|^{2}\left|\xi_{1}\right|^{2}-c_{4}|\theta(t)|^{2}\left|\xi_{1}\right|^{2}\right) . \tag{41}
\end{align*}
$$

Note that $|\theta(t)|,|1-\theta(t)|$ are bounded. There exist appropriate positive constants C_{3}, C_{4}, C_{5} such that (41) can be rewritten as

$$
\begin{aligned}
& \dot{V}_{9}(t) \leqslant \\
& -C_{3} L_{3}\left(\|\varepsilon\|^{2}+\|\xi\|^{2}\right)- \\
& L_{3}\left(C_{4}\left(\|\varepsilon\|^{2}+\|\xi\|^{2}\right)-C_{5}\left(\left|\varepsilon_{1}\right|^{2}+\left|\xi_{1}\right|^{2}\right)\right) .
\end{aligned}
$$

Thus, if $\|\varepsilon\|^{2}+\|\xi\|^{2} \geqslant \frac{C_{5}}{C_{4}}\left(\left|\varepsilon_{1}\right|^{2}+\left|\xi_{1}\right|^{2}\right)$, we have $\dot{V}_{9} \leqslant 0 .\|\varepsilon\|^{2}+\|\xi\|^{2}$ is ultimately bounded by $\frac{C_{5}}{C_{4}}\left(\left|\varepsilon_{1}\right|^{2}+\left|\xi_{1}\right|^{2}\right)$. Due to

$$
\lim _{t \rightarrow+\infty} \frac{x_{1}^{2}}{L_{3}^{2 \sigma_{1}}}=\lim _{t \rightarrow+\infty} \frac{\hat{x}_{1}^{2}}{L_{3}^{2 \sigma_{1}}}=0
$$

we have $\lim _{t \rightarrow+\infty}\left|\varepsilon_{1}\right|^{2}=0, \lim _{t \rightarrow+\infty}\left|\xi_{1}\right|^{2}=0$. It is obvious that the ultimate bound of $\|\varepsilon\|^{2}+\|\xi\|^{2}$ becomes to 0 as $t \rightarrow+\infty$.

Therefore, we have $\lim _{t \rightarrow+\infty}\|\varepsilon\|=0, \lim _{t \rightarrow+\infty}\|\xi\|=0$. Similar to (30), we known that L_{3} is bounded. Then, $\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} \hat{x}(t)=0$. Note that L_{1}, L_{2} and L_{3} are bounded and $\lim _{t \rightarrow+\infty} \hat{x}(t)=0$. According to (12), it follows that $\lim _{t \rightarrow+\infty} u(t)=0$.

5 Numerical simulations

In this section, we use two simulation examples to demonstrate the effectiveness of our adaptive anti-measurement-disturbance controller design for nonlinear systems with time-varying, time-delay growth rate. In addition, the third example is applied to compare the performance of our method with the method proposed in [12].

Example 1 Consider the following SISO nonlinear system (3) with sensor uncertainty:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}, \tag{42}\\
\dot{x}_{2}=u-x_{1}-\mu\left(1-x_{1}^{2}\right) x_{2}, \\
y=\theta(t) x_{1},
\end{array}\right.
$$

where μ is an unknown constant. In this example, we select $\theta(t)=1+0.5 \sin t$ and $\theta(t)=1.4+\sin t$. It is obvious that system (42) satisfies Assumption 1 with $p=2, c=\max \{1,|\mu|\}, \tau(t)=0$ and Assumption 2 with $\theta_{l}=0.4, \theta_{u}=2.6$. Compared with the examples in literatures [10] and [11], the growth rate of our nonlinear system is no longer a known or an unknown constant, but a time-varying function related to the output. Meanwhile, the range of $\theta(t)$ is not in the vicinity of 1 as in [11], but has been greatly enlarged.

According to Lemma 3, we choose $\kappa=10$. Thus, $b_{2}=1.1, \rho_{1}=1.6, \rho_{2}=1.21$. Then, let $l_{0}=150, l_{1}=$ 151.6 and $l_{2}=165.55$. Based on Theorem 1, set $a_{1}=$ $4, a_{2}=4, \sigma_{1}=0.45$. From (17), we get

$$
Q=\left[\begin{array}{cc}
1.125 & 0.125 \\
0.125 & 0.1563
\end{array}\right]
$$

Then, $\pi_{1}=0.4, \pi_{2}=0.8, \lambda_{\text {min }}\left(P_{\mathrm{L}}\right)=0.3496$, $\lambda_{\text {min }}(Q)=0.1404, \hat{\tau}=0$. According to (8) and (9), we choose $\alpha=7, \beta=30$. Construct the following controller for the system (42):

$$
\left\{\begin{array}{l}
\dot{\hat{x}}_{1}=\hat{x}_{2}+151.6 L_{1} L_{3}\left(y-\hat{x}_{1}\right) \tag{43}\\
\dot{\hat{x}}_{2}=u+165.55\left(L_{1} L_{3}\right)^{2}\left(y-\hat{x}_{1}\right), \\
u=-4\left(L_{1} L_{2} L_{3}\right)^{2} \hat{x}_{1}-4 L_{1} L_{2} L_{3} \hat{x}_{2} \\
\dot{L}_{1}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{L_{2}+1}{L_{1} L_{2} L_{3}^{0.9}}, L_{1}(0)=1 \\
\dot{L}_{2}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{1}{L_{1} L_{2} L_{3}^{0.9}}, L_{2}(0)=1 \\
\dot{L}_{3}=\max \left\{-7 L_{3}^{2}+30 L_{1}\left(1+\left(\frac{y^{2}}{0.4^{2}}\right)\right)^{2}, 0\right\} \\
L_{3}(0)=1
\end{array}\right.
$$

The initial conditions are given as $x_{1}(0)=1$, $x_{2}(0)=2, \hat{x}_{1}(0)=2, \hat{x}_{2}(0)=1, L_{1}(0)=1$, $L_{2}(0)=1, L_{3}(0)=1$ and the parameter $\mu=3$. The simulation results are shown in Fig. 1, which verifies that the proposed method is correct and effective.

Fig. 1 The trajectories of the states of the closed-loop system with different measurement disturbance

Example 2 In order to verify that our method is still effective in the presence of time delay, we consider a two-stage chemical reactor system [26] as follows:

$$
\left\{\begin{align*}
\dot{x}_{1}= & \frac{1-R_{\beta}}{V_{\alpha}} x_{2}-\frac{1}{C_{\alpha}} x_{1}-K_{\alpha} x_{1} \tag{44}\\
\dot{x}_{2}= & \frac{E_{\alpha}}{V_{\beta}} u-\frac{1}{C_{\beta}} x_{2}-K_{\beta} x_{2}+ \\
& \frac{R_{\alpha}}{V_{\beta}} x_{1}(t-\tau(t))+\frac{R_{\beta}}{V_{\beta}} x_{2}(t-\tau(t)) \\
y= & \theta(t) x_{1}
\end{align*}\right.
$$

where x_{1} and x_{2} are the compositions, u and y are the input and output, R_{α} and R_{β} are the recycle flow rates, C_{α} and C_{β} are the reactor residence times, E_{α} is the feed rate, V_{α} and V_{β} are the reactor volumes, K_{α} and K_{β} are the reaction functions. So as to facilitate the simulation, we choose the following parameters as $R_{\alpha}=R_{\beta}=0.5, K_{\alpha}=K_{\beta}=0.5, V_{\alpha}=V_{\beta}=0.5$, $C_{\alpha}=C_{\beta}=2, E_{\alpha}=0.5$. Then, the system (44) can be transformed into

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}-x_{1} \tag{45}\\
\dot{x}_{2}=u-x_{2}+x_{1}(t-\tau(t))+x_{2}(t-\tau(t)) \\
y=\theta(t) x_{1}
\end{array}\right.
$$

In this example, we choose a non-directed $\theta(t)=$ $0.4+1.6|\cos t|$. It is easy to verify that system (45) satisfies Assumption 1 with $p=2, c=1$ and Assumption 2 with $\theta_{l}=0.4, \theta_{u}=2$. According to Lemma 3, we choose $\kappa=10$, thus, $b_{2}=1.1, \rho_{1}=1.6, \rho_{2}=1.21$. Then, let $l_{0}=40, l_{1}=41.6$ and $l_{2}=44.55$.

Based on Theorem 1, set $a_{1}=4, a_{2}=4, \sigma_{1}=$ $0.45, \tau(t)=0.8$. From (17), we get

$$
Q=\left[\begin{array}{cc}
1.125 & 0.125 \\
0.125 & 0.1563
\end{array}\right]
$$

Then, $\pi_{1}=0.4, \pi_{2}=0.8, \lambda_{\text {min }}\left(P_{\mathrm{L}}\right)=0.3496$, $\lambda_{\text {min }}(Q)=0.1404, \hat{\tau}=0$. From (8) and (9), we choose $\alpha=7, \beta=20$. Construct the following controller:

$$
\left\{\begin{array}{l}
\dot{\hat{x}}_{1}=\hat{x}_{2}+41.6 L_{1} L_{3}\left(y-\hat{x}_{1}\right), \tag{46}\\
\dot{\hat{x}}_{2}=u+44.55\left(L_{1} L_{3}\right)^{2}\left(y-\hat{x}_{1}\right), \\
u=-4\left(L_{1} L_{2} L_{3}\right)^{2} \hat{x}_{1}-4 L_{1} L_{2} L_{3} \hat{x}_{2}, \\
\dot{L}_{1}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{L_{2}+1}{L_{1} L_{2} L_{3}^{0.9}}, L_{1}(0)=1, \\
\dot{L}_{2}=\frac{y^{2}+\hat{x}_{1}^{2}}{1+y^{2}+\hat{x}_{1}^{2}} \frac{1}{L_{1} L_{2} L_{3}^{0.9}}, L_{2}(0)=1, \\
\dot{L}_{3}=\max \left\{-7 L_{3}^{2}+20 L_{1}\left(1+\frac{y^{2}}{0.4^{2}}\right)^{2}, 0\right\}, \\
L_{3}(0)=1 .
\end{array}\right.
$$

The initial conditions are given as $x_{1}(0)=1, x_{2}(0)$ $=1, \hat{x}_{1}(0)=0, \hat{x}_{2}(0)=0, L_{1}(0)=1, L_{2}(0)=$ $1, L_{3}(0)=1$ and the parameter $\mu=3$. The simulation results are shown in Fig. 2. Obviously, our proposed method is also effective for nonlinear systems with time-delay.

Fig. 2 The trajectories of the states of the closed-loop system

Example 3 In order to compare the effectiveness of our method with the method proposed in [12], we consider the following nonlinear system [12]:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}+d_{1} \sin x_{1} \tag{47}\\
\dot{x}_{2}=u+d_{2} \ln \left(1+x_{1}^{2}\right) \\
y=(1.5+1.1 \sin t) x_{1}
\end{array}\right.
$$

where d_{1}, d_{2} are two unknown bounded time-varying functions and $\theta(t)=1.5+1.1 \sin t$. As in [12], the following output feedback controller is constructed:

$$
\left\{\begin{array}{l}
\dot{\hat{x}}_{1}=\hat{x}_{2}+151.5 L_{1}\left(y-\hat{x}_{1}\right) \tag{48}\\
\dot{\hat{x}}_{2}=u+299 L_{1}^{2}\left(y-\hat{x}_{1}\right) \\
u=-4\left(L_{1} L_{2}\right)^{2} \hat{x}_{1}-4 L_{1} L_{2} \hat{x}_{2} \\
\dot{L}_{1}=\frac{|y|+\left|\hat{x}_{1}\right|+\left|\hat{x}_{2}\right|}{1+|y|+\left|\hat{x}_{1}\right|+\left|\hat{x}_{2}\right|} \frac{L_{2}+1}{L_{1} L_{2}}, L_{1}(0)=1 \\
\dot{L}_{2}=\frac{|y|+\left|\hat{x}_{1}\right|+\left|\hat{x}_{2}\right|}{1+|y|+\left|\hat{x}_{1}\right|+\left|\hat{x}_{2}\right|} \frac{1}{L_{1} L_{2}}, L_{2}(0)=1
\end{array}\right.
$$

The initial conditions are given as $x_{1}(0)=1, x_{2}(0)$ $=2, \hat{x}_{1}(0)=2, \hat{x}_{2}(0)=1, L_{1}(0)=1, L_{2}(0)=1$, $L_{3}(0)=1$ and the parameters $d_{1}=1+\cos t, d_{2}=2$ $-\sin (20 t)$. The simulation results are shown in Fig. 3. It can be seen that the system (47) under our presented output feedback controller has a faster convergent speed than that under the controller (48).

Fig. 3 The trajectories of the states of the closed-loop system with different methods

6 Conclusion

In this paper, we studied anti-measurementdisturbance stabilization for a class of nonlinear systems with unknown growth rate, unknown measurement uncertainty, and time-delay. First, a useful matrix inequality was developed. Then, by using three time-varying gains, an output feedback controller was designed to stabilize the nonlinear system. Based on the obtained matrix inequality and a specially constructed LyapunovKrasovskii functional, we derived sufficient conditions to ensure the closed-loop system was asymptotically stable. Finally, numerical simulations were applied to verify the correctness of our theoretic results.

References:

[1] ZHANG D Y, SHEN Y J. Global output feedback sampled-data stabilization for upper-triangular nonlinear systems with improved maximum allowable transmission delay. International Journal of Robust and Nonlinear Control, 2017, 27(2): 212 - 235.
[2] LEI H, LIN W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback. Automatica, 2006, 42(10): 1783-1789.
[3] LEI H, LIN W. Adaptive regulation of uncertain nonlinear systems by output feedback: A universal control approach. Systems and Control Letters, 2007, 56(7/8): 529 - 537.
[4] LI P P, SHEN Y J. Anti-disturbance adaptive sampled-data observers for a class of nonlinear systems with unknown hysteresis. International Journal of Robust and Nonlinear Control, 2021, 31(8): 3212 3229.
[5] SANFELICE R G, PRALY L. On the performance of high-gain observers with gain adaptation under measurement noise. Automatica, 2011, 47(10): 2165 - 2176.
[6] MA T, CAO C Y. L_{1} adaptive output-feedback descriptor for multivariable nonlinear systems with measurement noises. International Journal of Robust and Nonlinear Control, 2019, 29(12): 4097-4115.
[7] ZHAI J Y, QIAN C J. Global control of nonlinear systems with uncertain output function using homogeneous domination approach. International Journal of Robust and Nonlinear Control, 2012, 22(14): 1543-1561.
［8］YAN X H，LIU Y G，ZHENG W X．Global adaptive output－feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function．Automatica，2019，104： 173－181．
［9］ZHAI J Y，DU H B，FEI S M．Global sampled－data output feedback stabilisation for a class of nonlinear systems with unknown output function．International Journal of Control，2016，89（3）： 469 － 480.
［10］CHEN C C，QIAN C J，SUN Z Y，et al．Global output feedback stabi－ lization of a class of nonlinear systems with unknown measurement sensitivity．IEEE Transactions on Automatic Control，2018，63（7）： 2212 － 2217.
［11］LI W Q，YAO X X，KRSTIC M．Adaptive－gain observer－based stabi－ lization of stochastic strict－feedback systems with sensor uncertainty． Automatica，2020，120：1－12．
［12］KOO M S，CHOI H L．Output feedback regulation of a class of low－ er triangular nonlinear systems with arbitrary unknown measurement sensitivity．International Journal of Control，Automation and System－ $s, 2020,18(9): 2186-2194$.
［13］BALTH V．VII．Forced oscillations in a circuit with non－linear resis－ tance．The London，Edinburgh，and Dublin Philosophical Magazine and Journal of Science，1927，3（13）： $65-80$.
［14］KPOMAHOU Y，MIWADINOU C，AGBOKPANZO R，et al．Non－ linear dynamics of a RLC series circuit modeled by a generalized Van der Pol oscillator．International Journal of Nonlinear Sciences and Numerical Simulation，2021，22（3／4）： 479 － 494.
［15］ABRAHAM C C，FELIX A B，REMPEL E，et al．Attractor merging crisis in chaotic business cycles．Chaos，Solitons and Fractals，2005， 24（3）： 869 － 875 ．
［16］SUN Z Y，XING J W，MENG Q H．Output feedback regulation of time－delay nonlinear systems with unknown continuous output func－ tion and unknown growth rate．Nonlinear Dynamics，2020，100（2）： 1309－1325．
［17］ZHANG X，LIN W．Robust output feedback control of polynomi－ al growth nonlinear systems with measurement uncertainty．Interna－ tional Journal of Robust and Nonlinear Control，2019，29（13）： 4562 － 4576 ．
［18］SHANG F，LIU Y G，ZHANG C H．Adaptive output feedback sta－ bilization for a class of nonlinear systems with inherent nonlineari－ ties and uncertainties．International Journal of Robust and Nonlinear Control，2011，21（2）： 157 － 176.
［19］DIAZ G，COIMBRA C．Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation．Nonlin－ ear Dynamics，2009，56（1／2）： $145-157$.
［20］COOPER M，HEIDLAUF P，SANDS T．Controlling chaos－forced van der pol equation．Mathematics，2017，5（4）： 1 － 10.
［21］LANTTO E．Robust Control of Magnetic Bearings in Subcritical ma－ chines．Espoo：Department of Electrical Engineering，Helsinki Uni－ versity of Technology of Finland， 2001.
［22］KRSTIC M，DENG H．Stabilization of Uncertain Nonlinear Systems． New York：Springer， 1998.
［23］YANG B，LIN W．Homogeneous observers，iterative design，and global stabilization of high－order nonlinear systems by smooth out－ put feedback．IEEE Transactions on Automatic Control，2004，49（7）： 1069－1080．
［24］KRISHNAMURTHY P，KHORRAMI F．Gneralized adaptive output feedback form with unknown parameters multiplying high output relative－degree states．Proceedings of the 41st IEEE Conference on Decision and Control．New York：IEEE，2002，4：1503－1508．
［25］KHALIL H．Nonlinear Systems．Upper Saddle River，NJ：Prentice－ Hall， 2002.
［26］LÜ L N，SUN Z Y，XIE X J．Adaptive control for high－order time－ delay uncertain nonlinear system and application to chemical reactor system．International Journal of Adaptive Control and Signal Pro－ cessing，2015，29（2）： 224 － 241.

作者简介：

林 雷 硕士研究生，目前研究方向为非线性系统分析与控制， E－mail：873142364＠qq．com；

沈艳军 教授，博士生导师，目前研究方向为鲁棒控制，采样控制，非线性系统分析与控制，多智能体系统等，E－mail：shenyj＠ ctgu．edu．cn．

[^0]: Received 23 August 2021；accepted 25 January 2022.
 ${ }^{\dagger}$ Corresponding author．E－mail：shenyj＠ctgu．edu．cn．
 Recommended by Associate Editor：LONG Li－jun．
 Supported by the National Natural Science Foundation of China（61876097），the Yichang Key Laboratory of Defense and Control of Cyber－Physical Systems（2020XXRH01）and the Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance（2021KJX04）．

