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摘要:本文研究一类非线性系统的自适应抗测量噪声的输出反馈镇定问题.所研究的非线性系统输出中存在正的且
有界的乘性噪声.非线性项的增长率为一个未知常数乘以输出的幂函数加上带有时滞输出的幂函数.首先,证明一个矩
阵不等式.其次,设计含有3个时变增益的输出反馈控制器,并给出增益的自适应律,然后,构造适当的Lyapunov-Kraso-
vskii泛函,给出确保闭环系统渐近稳定的充分条件.最后,仿真实验验证该方法的可行性和有效性.
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nonlinear systems via output feedback
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Abstract: In this paper, we study adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems
via output feedback. In the output of the systems, there exist multiplicative noises which are assumed to be positive and
have known upper and lower bounds. The growth rate of the nonlinear terms has an unknown constant multiplied by a
power function of the output and a power function of the output with time delay. Firstly, a matrix inequality is developed.
Secondly, we design an output feedback stabilizer with three time-varying gains, and give adaptive laws of the gains as well.
Then, a Lyapunov-Krasovskii functional is constructed, and sufficient conditions are derived to ensure that the closed-loop
system is asymptotically stable. Finally, numerical simulations are provided to verify the feasibility and effectiveness of the
design method.
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1 Introduction
The problem of stabilization has been well stud-

ied for nonlinear systems via output feedback in the
past few decades. Most of the results are derived under
the condition that the output can be measured precise-
ly [1–4]. However, since the influence of disturbance
or sensor error, sometimes, we cannot get the accurate
values of the output. For this reason, the synthesis prob-
lem has been studied for nonlinear systems with output
containing disturbance, such as y = x1 + ρ, where ρ
denotes disturbance. For instance, an adaptation-gain
observer was designed for a class of nonlinear sys-
tems with measurement noises [5]. The authors in [6]

addressed an L1 adaptive output-feedback descriptor
for multi-variable nonlinear systems with measurement
disturbances.

However, sometimes the error in the output is not
related to time, but related to the states. Therefore, re-
searchers proposed the assumption y = φ(x1) [7–9],
where φ(·) is a function with respect to x1. In order to
stabilize this type of systems, it is usually needed to as-
sume that y is differentiable. For example, the authors
in [8] studied output feedback stabilization for uncertain
nonlinear systems with unknown growth rate and un-
known output function. A design method was proposed
to solve the problem of sampled-data output feedback

Received 23 August 2021; accepted 25 January 2022.
†Corresponding author. E-mail: shenyj@ctgu.edu.cn.
Recommended by Associate Editor: LONG Li-jun.
Supported by the National Natural Science Foundation of China (61876097), the Yichang Key Laboratory of Defense and Control of Cyber-Physical
Systems (2020XXRH01) and the Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance (2021KJX04).



No. 8
LIN Lei et al: Adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems

via output feedback
1461

stabilization for nonlinear systems with unknown out-
put function [9].

Recently, a new output function error model like
y = θ(t)x1 has been proposed, where θ(t) is a func-
tion with respect to time. Compared with the previous
model, it is not necessary to assume that the function
y is derivable when considering the stabilization prob-
lem for this kind of nonlinear systems. In fact, it is only
assumed that θ(t) is a bounded function [10–12]. The
authors in [10] proposed a dual-domination approach to
copy with the problem of output-feedback stabilization
for nonlinear systems with unknown measurement sen-
sitivity. More specifically, in [11], the authors develope-
d a new stochastic adaptive dual-domination approach
to deal with the problem of stabilization for stochas-
tic strict-feedback systems with sensor uncertainty. A
large bound of measurement sensitivity was allowed to
achieve the regulation of nonlinear systems with un-
known growth constant rate [12]. However, in prac-
tice, nonlinear systems with time-varying growth rate
are usually applied to model the circuits with nonlin-
ear resistance [13–14] and business cycles [15]. There-
fore, it is interesting to research the problem of anti-
measurement-disturbance output feedback stabilization
for a class of nonlinear systems with multiplicative
noises and with time-varying, time-delay growth rate.

In this paper, we study the problem of output feed-
back stabilization for nonlinear systems with unknown
measurement sensitivity. The growth rate of the non-
linear terms has an unknown constant multiplied by a
power function of the output and a power function of
the output with time delay. Firstly, we present a matrix
inequality. Then, based on this matrix inequality, an out-
put feedback controller is constructed with three time-
varying gains to stabilize the nonlinear system. At last,
a Lyapunov-Krasovskii functional is proposed and suf-
ficient conditions are derived to ensure that the closed-
loop system is asymptotically stable. Our major contri-
butions include: 1) A useful matrix inequality is pro-
posed. 2) Compared with the results in [16–17], the
boundedness of the measurement disturbances θ(t) is
enlarged as 0 < θ(t) < +∞, and the growth rate of
the nonlinear terms is time-varying and dependent on
the output.

The remainder of this paper is organized as follows.
In Section 2, we present some useful lemmas and prob-
lem description. In Section 3, an output feedback con-
troller is designed based on a specially constructed ob-
server and three time-varying gains. In Section 4, we
give our main results: sufficient conditions are proposed
to ensure asymptotical stability of the closed-loop sys-
tem. Numerical simulations are provided to illustrate
the validity of the proposed design methods in Sec-
tion 5. This paper is concluded in Section 6.

2 Preliminaries and problem description
In this paper, we consider an n-order (n > 2)

single-input single-output (SISO) uncertain nonlinear
system

ẋi = xi+1 + fi(t, x̄i), i = 1, · · · , n− 1,

ẋn = u+ fn(t, x̄n),

y = θ(t)x1,

(1)

where x̄i = (x1 · · · xi)
T ∈ Ri, u ∈ R and y ∈ R are

the system state, control input and measurement out-
put, respectively. The sensor sensitivity θ(t) (t ∈ R+)
is an unknown continuous function. The functions fi:
R+×Rn → R are continuous and satisfy the following
assumptions.

Assumption 1 [3, 18] There exists a known real
number p > 0 and an unknown constant c > 0 such
that

|fi(t, x̄i)| 6

c(1 + |x1|p)
i∑

j=1

|xi(t)|+

c(1 + |x1(t− τ(t))|p)
i∑

j=1

|xi(t− τ(t))|,

where τ(t) represents time-delay and satisfies that 0 6
τ̇(t) 6 τ̂ < 1, τ̂ is a known constant.

Remark 1 Different from [11–12], the growth
rate is a time-varying function in this paper. When
p = 0, the time-varying growth rate is reduced to a con-
stant growth rate. Therefore, the constant growth rate
can be regarded as a special case of the time-varying
growth rate. Moreover, unlike [10, 17], the constant c
of the growth rate is unknown. With the introduction of
unknown constant, time-delay and sensor sensitivity, it
is more difficult to design a stabilizer for the nonlinear
system (1).

Remark 2 In practice, the nonlinear system with
time-varying growth rate satisfied Assumption 1 is usu-
ally applied to model the circuits with nonlinear resis-
tance [13–14] and business cycles [15]. The dynamical
equation called the forced van der Pol equation [19–20]
is given as follows:

ϑ̈+ µ(1− ϑ2)ϑ̇+ ϑ = u, (2)

where µ is an unknown constant. The authors in [20]
discussed in detail how an actual nonlinear RLC series
circuit was transformed into the equation (2).

Suppose that only ϑ is measurable. Under the coor-
dinate transformation x1 = ϑ, x2 = ϑ̇, we have

ẋ1 = x2,

ẋ2 = u− x1 − µ(1− x2
1)x2,

y = x1.

(3)
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If let c = max{1, |µ|}, p = 2, then the condition in
Assumption 1 holds. Thus, the system (3) has the form
of the system (1).

Assumption 2 As in [12], the sensor sensitivity
θ(t) is assumed to be unknown, continuous and bound-
ed. Moreover, there exists positive constants 0 < θl 6
1 and 1 < θu 6 ∞ such that θl 6 θ(t) 6 θu, for all
t > 0.

Remark 3 In this paper, θ(t) is assumed to be
an unknown continuous function with known upper and
lower bounds, but does not need to be derivable. In fact,
there always exists a multiplicative noise θ(t). For in-
stance, in [21], the authors pointed out that the magnetic
displacement sensor of the bearing suspension system
has a sensor error of ± 10%, which means θ(t) is a
bounded time-varying function ranging from 0.9 to 1.1.
Because of its unique properties, it has been widely s-
tudied [10–12, 16].

Compared with [11,16], in this paper, the allowable
measurement error range is enlarged from 0 to +∞.
Thus, the proposed method can be applied to nonlinear
systems not only with a multiplicative noise θ(t) close
to 1, but also with a multiplicative noise in the interval
(0,+∞).

We also need the following inequalities to derive
our main results.

Lemma 1 [22] For (x y)T ∈ R2, the following
Young’s inequality holds:

xy 6 vp

p
|x|p + 1

qvq
|y|q,

where v > 0, the constants p > 1 and q > 1 satisfy
(p− 1)(q − 1) = 1.

Lemma 2 [23] For p ∈ [1,+∞) and any xi ∈
R, i = 1, · · · , n, the following inequality holds:

(|x1|+ · · ·+ |xn|)p 6 np−1(|x1|p + · · ·+ |xn|p).

Lemma 3 [12] Under Assumption 2, let

l1 = b2 +
1

2
+ l0,

li = bili−1 − bi
i∏

k=2

bk +
i+1∏
k=2

bk, i = 2, · · · , N,

where l0 is a positive constant, l∗0 satisfies

ρ1(1− θ(t))− l∗0θ(t)

2
6 0,

and the following inequalities for i = 2, · · · , N,

2

κ(n− 1)
2 (

l∗0θ(t)

2
− ρ1(1− θ(t)))−

(1− θ(t))2ρ2i > 0,

ρ1 = b2 +
1

2
, ρi = bi

i∏
k=2

bk −
i+1∏
k=2

bk,

bi = bi+1 +
i

2
+

1

κ
+ b̄i,

i = 2, · · · , N , bN+1 = 0, b̄N = 0, κ is a positive
constant, and

b̄i =
1

2

N−1∑
m=i+1

(b̄m +
1

κ
+

m

2
)2

m∏
k=i+1

b2k+

1

2
b2N

N∏
k=i+1

b2k, i = 2, · · · , N − 1.

Let AL be an N × N matrix and PL = PT
1 P1 is a

positive definite matrix as

AL =


−l1θ(t) 1 0 · · · 0

−l2θ(t) 0 1 · · · 0
...

...
...

...
−lN−1θ(t) 0 0 · · · 1

−lNθ(t) 0 0 · · · 0

 ,

P1 =


1 0 0 · · · 0

−b2 1 0 · · · 0
...

...
...

...
0 · · · 0 −bN 1

 .

Then, for l0 > l∗0 , we have the following inequality:

ALPL + PLAL 6 −θMI,

where θM = λmin(PL)min{l0θl,
1

κ
}, I is an N × N

identity matrix.
Remark 4 The different between Lemma 3 and

Lemma 1 in [12] is that a parameter κ is introduced. But
the proof process is similar and is omitted here. This pa-
rameter κ can bring flexibility when designing the out-
put feedback stabilizer.

Lemma 4 Suppose that the conditions of Lem-
ma 3 hold. For an N × N matrix D = diag{σ, 1 +
σ, · · · , N − 1 + σ}, there exists an appropriate posi-
tive constant σ∗, such that when σ > σ∗, we have the
following matrix inequality:

DPL + PLD > π1PL,

where π1 > 0 is a real constant.

Proof Consider a system η̇ = Dη with η =
[η1 η2 · · · ηN ]

T. Using a transformation ξ = P1η,
we have

η1 = ξ1,

ηi = ξi +
i−1∑
j=1

ξj
i∏

k=j+1

bk, i = 2, · · · , N.

Then, that is,

ξ̇ = P1Dη,

ξ̇1 = σξ1,

ξ̇i = −bi(i− 2 + σ)(ξi−1 +
i−2∑
j=1

ξj
i−1∏

k=j+1

bk)+

(i− 1 + σ)(ξi +
i−1∑
j=1

ξj
i∏

k=j+1

bk) =
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(i− 1 + σ)ξi +
i−1∑
j=1

ξj
i∏

k=j+1

bk,

i = 2, · · · , N.

Note that ξiξj > −1

2
ξ2i − 1

2
ξ2j , and bi > 1, i =

2, · · · , N . Therefore,
N∑
i=1

ξiξ̇i =
N∑
i=1

(i− 1 + σ)ξ2i+

N∑
i=2

ξi
i−1∑
j=1

ξj
i∏

k=j+1

bk >

N∑
i=1

(σ − σ∗)ξ2i ,

where σ∗ is an appropriate positive constant and related

to bk. If σ > σ∗, then, we get
N∑
i=1

ξiξ̇i > 0. Note that

N∑
i=1

ξiξ̇i =
1

2

d(ξTξ)

dt
=

1

2
(η̇TPT

1 P1η + ηTPT
1 P1η̇) =

1

2
(ηTDPLη + ηTPLDη) > 0.

Thus, the conclusion holds. �
Remark 5 Note that σ∗ increases with the in-

crease of bk. We can select a larger value of κ to
make bk and σ∗ small. For example, when N = 2,
κ = 10, we have b2 = 1.1. Choose σ = 0.25, then
DPL + PLD > 0. If we choose κ = 1 like [12], when
N = 2, we have b2 = 2. With the same parameter
σ = 0.25, we get λmin(DPL + PLD) < 0.

3 Output feedback controller design
In this section, an output feedback controller is con-

structed for the nonlinear system (1) with unknown sen-
sor sensitivity θ(t) and the time-varying growth rate
shown in Assumption 1.

Firstly, construct the following observer:
˙̂xi = x̂i+1 + li(L1L3)

i(y − x̂1),

i = 1, · · · , n− 1,

˙̂xn = u+ ln(L1L3)
n(y − x̂1),

(4)

where x̂ = (x̂1 · · · x̂n)
T ∈ Rn is observer state, the

dynamic gains L1, L2 and L3 are updated by

L̇1 =
y2 + x̂2

1

1 + y2 + x̂2
1

(
L2n−3

2 + 1

(L1L2)2n−3L2σ1
3

), L1(0) = 1,

(5)

L̇2 =
y2 + x̂2

1

1 + y2 + x̂2
1

(
1

(L1L2)2n−3L2σ1
3

), L2(0) = 1,

(6)

and

L̇3 = max{−αL2
3 + βL1(1 + (

|y|
θl

)p)2, 0},

L3(0) = 1, (7)

where

α 6 min{ 1

π1λmin(PL)
,

1

π2λmin(Q)
}, (8)

and

β >

max{ 2− τ̂

(1− τ̂)π1λmin(PL)
,

1

(1− τ̂)π2λmin(Q)
,

1

(1− τ̂)π1λmin(PL)
},

(9)

and

σ1 > σ∗, (10)

and

p <
1

σ1

. (11)

The controller u(t) is given by

u = −
n∑

i=1

(ai(L1L2L3)
n−i+1)x̂i, (12)

where ai > 0 (i = 1, · · · , n) are coefficients of the
Hurwitz polynomial h1(s) = sn+1 + a1s

n + · · · +
ans+ an.

Introduce the following change of coordinates:

ei =
xi − x̂i

Li−1
1 Li−1+σ1

3

, i = 1, · · · , n, (13)

zi =
x̂i

(L1L2)i−1Li−1+σ1
3

, i = 1, · · · , n. (14)

From (1) (4) (13) and (14), we have

ė = L1L3ALe+ (1− θ(t))L1L3Lz1 + F−
L̇1

L1

D2e−
L̇3

L3

D1e, (15)

and

ż = L1L2L3Bz + L1L3θ(t)MLe1 −
L̇3

L3

D1z−

L1L3(1− θ(t))MLz1 − (
L̇1

L1

+
L̇2

L2

)D2z, (16)

where

e = (e1 · · · en)
T,

D1 = diag{σ1, 1 + σ1, · · · , n− 1 + σ1},

D2 = diag{0, 1, · · · , n− 1},

L = (l1 l2 · · · ln)
T, z = (z1 · · · zn)

T,

A =


−l1θ(t) 1 · · · 0

...
...

...
−ln−1θ(t) 0 · · · 1

−lnθ(t) 0 · · · 0

 ,
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F =



f1
Lσ1

3

f2

L1L
1+σ1
3
...
fn

Ln−1
1 Ln−1+σ1

3


, B=


0 1 · · · 0
...

...
...

0 0 · · · 1

−a1 −a2 · · · −an

 ,

and M = diag{1, 1

L2

, · · · , 1

Ln−1
2

}.

Then, by Lemma 1 in [24], there exists a positive
definite matrix Q satisfying

BTQ+QB 6 −In,

D1Q+QD1 > π2Q, (17)

where π2 > 0 is a real constant.

4 Main results
In this section, we construct a Lypunov-Krasovskii

functional to derive sufficient conditions to guarantee
that the closed-loop system (15)–(16) is asymptotically
stable.

Theorem 1 For the system (1) with the Assump-
tions 1 and 2, if the parameters α, β, σ1, p satisfy the
conditions (8)–(11), then, under the output feedback
controller (4)–(7), and (12), the system (1) converges to
the equilibrium at origin, which means that lim

t→+∞
x(t)

= 0, lim
t→+∞

x̂(t) = 0.

Proof The derivative of the function V1(t) =
eTPLe is given by

V̇1(t) 6 L1L3e
T(AT

LPL + PLAL)e+

2L1L3|1− θ(t)|∥L∥∥PL∥∥e∥∥z∥+

2∥e∥∥PL∥∥F∥+ 2
L̇1

L1

∥D2∥∥PL∥∥e∥2−

L̇3

L3

eT(D1PL + PLD1)e. (18)

From Lemma 1, Assumption 1, (13) and (14), we
get

∥F∥ 6 ∥F∥1 6

c(1 + |x1|p)
n∑

i=1

i∑
j=1

(|ej|+ Lj−1
2 |zj|)+

c(1 + |x1(t− τ(t))|p)
n∑

i=1

i∑
j=1

(|ej(t− τ(t))|+

Lj−1
2 (t− τ(t))|zj(t− τ(t))|) 6

c(1 + |x1|p)n
√
n(∥e∥+ Ln−1

2 ∥z∥)+

c(1 + |x1(t− τ(t))|p)n
√
n(∥e(t− τ(t))∥+

Ln−1
2 (t− τ(t))∥z(t− τ(t))∥).

From (5) and (6), it follows that

L̇1 6 2, L̇2 6 1,

and

L̇1 = (L2n−3
2 L̇2 + L̇2) > L2n−3

2 L̇2. (19)

Then,

L1 − 1 > 1

2(n− 1)
(L

2(n−1)
2 − 1),

2(n− 1)L1 > L
2(n−1)
2 .

Thus,

2∥e∥∥PL∥∥F∥ 6

L1

1

L3

(1 + |x1|p)2∥e∥2+

(3 + 2(n− 1))L3c
2n3∥PL∥2∥e∥2+

4(n− 1)L3c
2n3L1∥PL∥2∥z∥2+

1

L3

(1 + |x1(t− τ(t))|p)2∥e(t− τ(t))∥2+

1

L3

(1 + |x1(t− τ(t))|p)2L1(t−

τ(t))∥z(t− τ(t))∥2. (20)

Note that (1 + (
|y|
θl

)p)2 > (1 + |x1|p)2, D1PL +

PLD1 > π1PL > π1λmin(PL)I , L̇3 > 0, and L3 > 1.

From Lemma 4 and (7)–(9), we obtain

− L̇3

L3

eT(D1PL + PLD1)e 6

απ1λmin(PL)L3∥e∥2−

βπ1λmin(PL)L1

1

L3

(1 + (
|y|
θl

)p)2∥e∥2 6

L3∥e∥2 − L1

1

L3

(1 + |x1|p)2∥e∥2−

1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥e∥2. (21)

Substituting (20) and (21) into (18), from Lemma 3,

we have

V̇1(t) 6
− θML1L3∥e∥2 + c1L1L3|1−

θ(t)|∥e∥∥z∥+ c1L3∥e∥2 + c1L1L3∥z∥2+
1

L3

(1 + |x1(t− τ(t))|p)2∥e(t− τ(t))∥2+

1

L3

(1 + |x1(t− τ(t))|p)2L1(t− τ(t))∥z(t−

τ(t))∥2 − 1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥e∥2, (22)

where c1 = max{2∥PL∥∥L∥, 4(n− 1)c2n3∥PL∥2, (3
+ 2(n− 1))c2n3∥PL∥2 + 1 + 4∥D2∥∥PL∥}.

The derivative of V2(t) = zTQz along the sys-
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tem (16) is given as follows:

V̇2(t) 6 −L1L2L3∥z∥2 −
L̇3

L3

zT(D1Q+QD1)z+

2L1L3θ(t)∥M∥∥L∥∥Q∥∥e∥∥z∥+

2L1L3|1− θ(t)|∥M∥∥L∥∥Q∥∥z∥2+

2(
L̇1

L1

+
L̇2

L2

)∥D2∥∥Q∥∥z∥2.

Similar to (21), we have

− L̇3

L3

zT(D1Q+QD1)z 6

L3∥z∥2 −
1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥z∥2.

Note that ∥ML∥ 6 ∥L∥. From (17), we have

V̇2(t) 6 −L1L2L3∥z∥2 + c2L1L3θ(t)∥e∥∥z∥+

c2L1L3|1− θ(t)|∥z∥2 + c2L3∥z∥2−
1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥z∥2, (23)

where c2 = max{2∥Q∥∥L∥, 1 + 6∥D2∥∥Q∥}.

Consider the following Lyapunov-Krasovskii func-
tional:

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

where

V3(t) =
1

1− τ̂

1

L3

n∑
i=1

w t

t−τ(t)
~(s)e2i (s)ds,

V4(t) =
1

1− τ̂

1

L3

n∑
i=1

w t

t−τ(t)
~(s)L1(s)z

2
i (s)ds,

and ~(s) = (1 + (
|y(s)|
θl

)p)2.

Note that L3 > 1,
1− τ̇

1− τ̂
> 1 and L̇3 > 0. Then,

V̇3(t) 6
1

1− τ̂

1

L3

(1 + (
|y|
θl

)p)2∥e∥2 − L̇3

L3

V3(t)−

1− τ̇

1− τ̂

1

L3

(1 + (
|y(t− τ(t))|

θl
)p)2∥e(t− τ(t))∥2 6

1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥e∥2−

1

L3

(1 + |x1(t− τ(t))|p)2∥e(t− τ(t))∥2. (24)

Similar to (24), we have

V̇4(t) 6
1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥z∥2−

1

L3

(1 + |x1(t− τ(t))|p)2L1(t−

τ(t))∥z(t− τ(t))∥2. (25)

From (22)–(25), it follows that

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) 6
− θML1L3∥e∥2 + c1L1L3|1− θ(t)|∥e∥∥z∥+

c1L3∥e∥2 + c1L1L3∥z∥2 − L1L2L3∥z∥2+

c2L1L3θ(t)∥e∥∥z∥+ c2L1L3|1−

θ(t)|∥z∥2 + c2L3∥z∥2.
Then,

V̇ (t) 6

− L1L3θM
2

∥e∥2 − L1L2L3

2
∥z∥2−

L3(
L1θM
4

− c1)∥e∥2−

L3(
L1L2

4
− c1L1 − c2L1|1− θ(t)| − c2)∥z∥2−

L3

[
∥e∥
∥z∥

]T


L1θM
4

Π(t)

Π(t)
L1L2

4


[
∥e∥
∥z∥

]
, (26)

where Π(t) = −1

2
(c1L1|1− θ(t)|+ c2L1θ(t)).

Note that |1−θ(t)|, θ(t) are bounded and c1, c2 are
two positive constants. The rest proof will be discussed
on the following two cases.

Case 1 There exist three positive constants L̂1, L̂2

and t∗, such that if L1(t) > L̂1, L2(t) > L̂2, t > t∗,
the following conditions hold:

L1θM
4

> c1,

L1L2

4
> c1L1 + c2L1|1− θ(t)|+ c2,

L1θM
4

L1L2

4
> Π2(t), ∀t ∈ [t∗,+∞).

(27)

Case 2 L1(t) 6 L̂1 or L2(t) 6 L̂2, ∀t ∈ [0,+∞).
Firstly, we consider the conditions in Case 1 hold.
From (26) and (27), it follows that

V̇ 6 −L1L3θM
2

∥e∥2 − L1L2L3

2
∥z∥2. (28)

Obviously, we can get lim
t→+∞

∥e∥2 = 0 and

lim
t→+∞

∥z∥2 = 0.

According to (28), we can obtain
V̇ 6 −c3(∥e∥2 + ∥z∥2),

where c3 is an appropriate positive constant.
Thus,w t

0
(∥e∥2 + ∥z∥2)dt 6

− 1

c3
(V (t)− V (0)) 6 V (0)

c3
< +∞.

From (6), it follows that

L̇2 =
y2 + x̂2

1

1 + y2 + x̂2
1

1

(L1L2)2n−3L2σ1
3

6
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y2 + x̂2
1

L2σ1
3

6 θ2u(e1 + z1)
2 + z21 6

(2θ2u + 1)(e21 + z21).

Then,

L2 − 1 6 (2θ2u + 1)
w t

0
(∥e∥2 + ∥z∥2)dt < +∞,

which means that L2 is bounded.
From (19), we have

L1 − 1 =
1

2(n− 1)
L

2(n−1)
2 − 1

2(n− 1)
+ L2 − 1.

(29)

Note that L2 is bounded. Thus, L1 is also bounded.
lim

t→+∞
e1(t) = 0 and lim

t→+∞
z1(t) = 0 imply that

|y| = θ(t)Lσ1
3 |e1 + z1| 6 C1L

σ1
3 , where C1 is an ap-

propriate positive constant. Due to L̇3 > 0, L3 > 1,
pσ1 < 1 and L1 is bounded, there exists t3 > 0 such
that

− αL2
3 + βL1(1 + (

|y|
θl

)p)2 6

− αL2
3 + C2L

2pσ1

3 + 2βL1 6 0,

∀t ∈ [t3,+∞), (30)

where C2 is an appropriate positive constant. Then,
we can obtain that L̇3 = 0, ∀t ∈ [t3,+∞) and
L3 is bounded. Therefore, we have lim

t→+∞
x(t) = 0,

lim
t→+∞

x̂(t) = 0. Note that L1, L2 and L3 are bound-

ed and lim
t→+∞

x̂(t) = 0. From (12), it follows that

lim
t→+∞

u(t) = 0.

Secondly, we proceed our discussion on Case 2.
From (29), we know that whatever L1(t) or L2(t)

is bounded, the other is also bounded.
According to (6), we have

∞ > L2 − 1 >

lim
t→+∞

1

(L1(+∞)L2(+∞))2n−3

w t

0

y2 + x̂2
1

1+y2+x̂2
1

1

L2σ1
3

dt.

By the Barbalat’s Lemma [25], we can get

lim
t→+∞

x2
1

L2σ1
3

= 0, lim
t→+∞

x̂2
1

L2σ1
3

= 0.

Introduce the following change of coordinates:

εi =
xi − x̂i

L∗
1
i−1Li−1+σ1

3

, i = 1, · · · , n, (31)

ξi =
x̂i

(L∗
1L

∗
2)

i−1Li−1+σ1
3

, i = 1, · · · , n, (32)

where L∗
1 and L∗

2 are two positive constants satisfying

L∗
1 > max{L1(+∞),

24

θM
c2n3∥PL∥2L∗

2
2(n−1),

12

θM
(L∗

2
2(n−1) + 3)c2n3∥PL∥2,

12

θM
,

24

θM
∥PL∥

√
n

n∑
i=1

aiL1}, (33)

L∗
2 > L2(+∞). (34)

From (1) (4) (31) and (32), we have

ε̇ = L∗
1L3ALε+ L∗

1L3θ(t)Lε1 − L1L3θ(t)ΓLε1−
L̇3

L3

D1ε+ L1L3(1− θ(t))ΓLξ1 + F ∗, (35)

and

ξ̇ = L∗
1L

∗
2L3ALξ + L∗

1L
∗
2L3θ(t)Lξ1+

L1L3θ(t)ΓELε1 − L1L3(1− θ(t))ΓELξ1+

D3

u

(L∗
1L

∗
2)

n−1Ln−1+σ1
3

− L̇3

L3

D1ξ, (36)

where

ε = (ε1 · · · εn)
T, ξ = (ξ1 · · · ξn)

T,

D3 = (0 0 · · · 1)T,

Γ = diag{1, L1

L∗
1

, · · · , (L1

L∗
1

)n−1},

E = diag{1, 1

L∗
2

, · · · , ( 1

L∗
2

)n−1},

F ∗ =



f1
Lσ1

3

f2

L∗
1L

1+σ1
3
...
fn

L∗
1
n−1Ln−1+σ1

3


.

The derivative of the function V5(t) = εTPLε is
given by

V̇5(t) 6
L∗

1L3ε
T(AT

LPL + PLAL)ε+

2L∗
1L3|θ(t)|∥L∥∥PL∥∥ε∥|ε1|+

2L1L3|θ(t)|∥Γ∥∥L∥∥PL∥∥ε∥|ε1|+

2L1L3|1− θ(t)|∥Γ∥∥L∥∥PL∥∥ε∥∥ξ1∥−
L̇3

L3

εT(D1PL + PLD1)ε+ 2∥PL∥∥ε∥∥F ∗∥ 6

− 7

12
θML

∗
1L3∥ε∥2 + c4L

∗
1L3|θ(t)|2|ε1|2+

c4L
∗
1L

∗
2L3|1− θ(t)|2|ξ1|2 +

θM
12

L∗
1L

∗
2L3∥ξ∥2+

1

L3

(1 + |x1(t− τ(t))|p)2∥ε(t− τ(t))∥2+

1

L3

(1 + |x1(t− τ(t))|p)2L1(t− τ(t))∥ξ(t−

τ(t))∥2 − 1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥ε∥2, (37)
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where c4 =
24

θM
∥L∥2∥PL∥2.

Calculate the derivative of the function V6(t) =

ξTPLξ. Then,

V̇6(t) 6
L∗

1L
∗
2L3ξ

T(AT
LPL + PLAL)ξ+

2L∗
1L

∗
2L3|θ(t)|∥L∥∥PL∥∥ξ∥|ξ1|+

2L∗
1L3|θ(t)|∥Γ∥∥E∥∥L∥∥PL∥∥ξ∥|ε1|+

2L∗
1L3|1− θ(t)|∥Γ∥∥E∥∥L∥∥PL∥∥ξ∥∥ξ1∥+

2ξTPLD3

u

(L∗
1L

∗
2)

n−1Ln−1+σ1
3

−

L̇3

L3

ξT(D1PL + PLD1)ξ 6

− 7

12
θML

∗
1L

∗
2L3∥ξ∥2 + c4L

∗
1L

∗
2L3|θ(t)|2|ξ1|2+

c4L
∗
1L

∗
2L3|θ(t)|2|ε1|2+

c4L
∗
1L

∗
2L3|1− θ(t)|2|ξ1|2−

1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥ξ∥2. (38)

Consider the following Lyapunov-Krasovskii func-

tional:

V9(t) = V5(t) + V6(t) + V7(t) + V8(t),

where

V7(t) =
1

1− τ̂

1

L3

n∑
i=1

w t

t−τ(t)
~(s)ε2i (s)ds,

V8(t) =
1

1− τ̂

1

L3

n∑
i=1

w t

t−τ(t)
~(s)L1(s)ξ

2
i (s)ds.

Note that L3 > 1,
1− τ̇

1− τ̂
> 1 and L̇3 > 0. Similar

to (24), it follows that

V̇7(t) 6
1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥ε∥2−

1

L3

(1 + |x1(t− τ(t))|p)2∥ε(t− τ(t))∥2.

(39)

Similar to (39), we have

V̇8(t) 6
1

1− τ̂
L1

1

L3

(1 + (
|y|
θl

)p)2∥ξ∥2−

1

L3

(1 + |x1(t− τ(t))|p)2L1(t−

τ(t))∥ξ(t− τ(t))∥2. (40)

Based on (37)–(40), we obtain

V̇9(t) =

V̇5(t) + V̇6(t) + V̇7(t) + V̇8(t) 6

− 7

12
θML

∗
1L3∥ε∥2 + c4L

∗
1L3|θ(t)|2|ε1|2+

c4L
∗
1L

∗
2L3|1− θ(t)|2|ξ1|2 +

θM
12

L∗
1L

∗
2L3∥ξ∥2−

7

12
θML

∗
1L

∗
2L3∥ξ∥2 + c4L

∗
1L

∗
2L3|θ(t)|2|ξ1|2+

c4L
∗
1L

∗
2L3|θ(t)|2|ε1|2+

c4L
∗
1L

∗
2L3|1− θ(t)|2|ξ1|2 6

− 1

3
θML

∗
1L3∥ε∥2 −

1

3
θML

∗
1L

∗
2L3∥ξ∥2−

L∗
1L3(

θM
4
∥ε∥2 − c4|θ(t)|2|ε1|2−

c4L
∗
2|θ(t)|2|ε1|2)− L∗

1L
∗
2L3(

θM
6
∥ξ∥2−

2c4|1− θ(t)|2|ξ1|2 − c4|θ(t)|2|ξ1|2). (41)

Note that |θ(t)|, |1−θ(t)| are bounded. There exist
appropriate positive constants C3, C4, C5 such that (41)
can be rewritten as

V̇9(t) 6
− C3L3(∥ε∥2 + ∥ξ∥2)−

L3(C4(∥ε∥2 + ∥ξ∥2)− C5(|ε1|2 + |ξ1|2)).

Thus, if ∥ε∥2 + ∥ξ∥2 > C5

C4

(|ε1|2 + |ξ1|2), we

have V̇9 6 0. ∥ε∥2 + ∥ξ∥2 is ultimately bounded by
C5

C4

(|ε1|2 + |ξ1|2). Due to

lim
t→+∞

x2
1

L2σ1
3

= lim
t→+∞

x̂2
1

L2σ1
3

= 0,

we have lim
t→+∞

|ε1|2 = 0, lim
t→+∞

|ξ1|2 = 0. It is obvious

that the ultimate bound of ∥ε∥2 + ∥ξ∥2 becomes to 0 as
t → +∞.

Therefore, we have lim
t→+∞

∥ε∥ = 0, lim
t→+∞

∥ξ∥ = 0.

Similar to (30), we known that L3 is bounded. Then,
lim

t→+∞
x(t) = lim

t→+∞
x̂(t) = 0. Note that L1, L2 and L3

are bounded and lim
t→+∞

x̂(t) = 0. According to (12), it

follows that lim
t→+∞

u(t) = 0. �

5 Numerical simulations
In this section, we use two simulation examples

to demonstrate the effectiveness of our adaptive anti-
measurement-disturbance controller design for nonlin-
ear systems with time-varying, time-delay growth rate.
In addition, the third example is applied to compare the
performance of our method with the method proposed
in [12].

Example 1 Consider the following SISO nonlin-
ear system (3) with sensor uncertainty:

ẋ1 = x2,

ẋ2 = u− x1 − µ(1− x2
1)x2,

y = θ(t)x1,

(42)
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where µ is an unknown constant. In this example, we
select θ(t) = 1 + 0.5 sin t and θ(t) = 1.4 + sin t. It
is obvious that system (42) satisfies Assumption 1 with
p = 2, c = max{1, |µ|}, τ(t) = 0 and Assumption 2
with θl = 0.4, θu = 2.6. Compared with the exam-
ples in literatures [10] and [11], the growth rate of our
nonlinear system is no longer a known or an unknown
constant, but a time-varying function related to the out-
put. Meanwhile, the range of θ(t) is not in the vicinity
of 1 as in [11], but has been greatly enlarged.

According to Lemma 3, we choose κ = 10. Thus,
b2 = 1.1, ρ1 = 1.6, ρ2 = 1.21. Then, let l0 = 150, l1 =
151.6 and l2 = 165.55. Based on Theorem 1, set a1 =
4, a2 = 4, σ1 = 0.45. From (17), we get

Q =

[
1.125 0.125

0.125 0.1563

]
.

Then, π1 = 0.4, π2 = 0.8, λmin(PL) = 0.3496,
λmin(Q) = 0.1404, τ̂ = 0. According to (8) and (9),
we choose α= 7, β = 30. Construct the following con-
troller for the system (42):

˙̂x1 = x̂2 + 151.6L1L3(y − x̂1),

˙̂x2 = u+ 165.55(L1L3)
2(y − x̂1),

u = −4(L1L2L3)
2x̂1 − 4L1L2L3x̂2,

L̇1 =
y2 + x̂2

1

1 + y2 + x̂2
1

L2 + 1

L1L2L0.9
3

, L1(0) = 1,

L̇2 =
y2 + x̂2

1

1 + y2 + x̂2
1

1

L1L2L0.9
3

, L2(0) = 1,

L̇3 = max{−7L2
3 + 30L1(1 + (

y2

0.42
))2, 0},

L3(0) = 1.

(43)

The initial conditions are given as x1(0) = 1,
x2(0) = 2, x̂1(0) = 2, x̂2(0) = 1, L1(0) = 1,
L2(0) = 1, L3(0) = 1 and the parameter µ = 3. The
simulation results are shown in Fig. 1, which verifies
that the proposed method is correct and effective.

 / s
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Fig. 1 The trajectories of the states of the closed-loop
system with different measurement disturbance

Example 2 In order to verify that our method is
still effective in the presence of time delay, we consider
a two-stage chemical reactor system [26] as follows:

ẋ1 =
1−Rβ

Vα

x2 −
1

Cα

x1 −Kαx1,

ẋ2 =
Eα

Vβ

u− 1

Cβ

x2 −Kβx2+

Rα

Vβ

x1(t− τ(t)) +
Rβ

Vβ

x2(t− τ(t)),

y = θ(t)x1,

(44)

where x1 and x2 are the compositions, u and y are
the input and output, Rα and Rβ are the recycle flow
rates, Cα and Cβ are the reactor residence times, Eα is
the feed rate, Vα and Vβ are the reactor volumes, Kα

and Kβ are the reaction functions. So as to facilitate
the simulation, we choose the following parameters as
Rα = Rβ = 0.5, Kα = Kβ = 0.5, Vα = Vβ = 0.5,
Cα = Cβ = 2, Eα = 0.5. Then, the system (44) can
be transformed into

ẋ1 = x2 − x1,

ẋ2 = u− x2 + x1(t− τ(t)) + x2(t− τ(t)),

y = θ(t)x1.

(45)

In this example, we choose a non-directed θ(t) =
0.4 + 1.6| cos t|. It is easy to verify that system (45)
satisfies Assumption 1 with p = 2, c = 1 and Assump-
tion 2 with θl = 0.4, θu = 2. According to Lemma 3,
we choose κ= 10, thus, b2 = 1.1, ρ1 = 1.6, ρ2 = 1.21.
Then, let l0 = 40, l1 = 41.6 and l2 = 44.55.

Based on Theorem 1, set a1 = 4, a2 = 4, σ1 =
0.45, τ(t) = 0.8. From (17), we get

Q =

[
1.125 0.125

0.125 0.1563

]
.

Then, π1 = 0.4, π2 = 0.8, λmin(PL) = 0.3496,
λmin(Q) = 0.1404, τ̂ = 0. From (8) and (9), we choose
α = 7, β = 20. Construct the following controller:

˙̂x1 = x̂2 + 41.6L1L3(y − x̂1),

˙̂x2 = u+ 44.55(L1L3)
2(y − x̂1),

u = −4(L1L2L3)
2x̂1 − 4L1L2L3x̂2,

L̇1 =
y2 + x̂2

1

1 + y2 + x̂2
1

L2 + 1

L1L2L0.9
3

, L1(0) = 1,

L̇2 =
y2 + x̂2

1

1 + y2 + x̂2
1

1

L1L2L0.9
3

, L2(0) = 1,

L̇3 = max{−7L2
3 + 20L1(1 +

y2

0.42
)2, 0},

L3(0) = 1.

(46)
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The initial conditions are given as x1(0) = 1, x2(0)

= 1, x̂1(0) = 0, x̂2(0) = 0, L1(0) = 1, L2(0) =

1, L3(0) = 1 and the parameter µ = 3. The simula-
tion results are shown in Fig. 2. Obviously, our pro-
posed method is also effective for nonlinear systems
with time-delay.
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Fig. 2 The trajectories of the states of the closed-loop system

Example 3 In order to compare the effectiveness
of our method with the method proposed in [12], we
consider the following nonlinear system [12]:

ẋ1 = x2 + d1 sinx1,

ẋ2 = u+ d2 ln(1 + x2
1),

y = (1.5 + 1.1 sin t)x1,

(47)

where d1, d2 are two unknown bounded time-varying
functions and θ(t) = 1.5 + 1.1 sin t. As in [12], the
following output feedback controller is constructed:

˙̂x1 = x̂2 + 151.5L1(y − x̂1),

˙̂x2 = u+ 299L2
1(y − x̂1),

u = −4(L1L2)
2x̂1 − 4L1L2x̂2,

L̇1 =
|y|+ |x̂1|+ |x̂2|

1 + |y|+ |x̂1|+ |x̂2|
L2 + 1

L1L2

, L1(0) = 1,

L̇2 =
|y|+ |x̂1|+ |x̂2|

1 + |y|+ |x̂1|+ |x̂2|
1

L1L2

, L2(0) = 1.

(48)

The initial conditions are given as x1(0) = 1, x2(0)

= 2, x̂1(0) = 2, x̂2(0) = 1, L1(0) = 1, L2(0) = 1,
L3(0) = 1 and the parameters d1 = 1 + cos t, d2 = 2

− sin(20t). The simulation results are shown in Fig. 3.
It can be seen that the system (47) under our presented
output feedback controller has a faster convergent speed
than that under the controller (48).
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 / s

Fig. 3 The trajectories of the states of the closed-loop
system with different methods

6 Conclusion
In this paper, we studied anti-measurement-

disturbance stabilization for a class of nonlinear system-
s with unknown growth rate, unknown measurement un-
certainty, and time-delay. First, a useful matrix inequal-
ity was developed. Then, by using three time-varying
gains, an output feedback controller was designed to
stabilize the nonlinear system. Based on the obtained
matrix inequality and a specially constructed Lyapunov-
Krasovskii functional, we derived sufficient condition-
s to ensure the closed-loop system was asymptotically
stable. Finally, numerical simulations were applied to
verify the correctness of our theoretic results.
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