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摘要:本文研究了线性系统的事件触发输出反馈有限时间有界控制问题.与渐近稳定只定性地要求系统在采样间隔
有界不同,有限时间有界需要估计系统轨迹的上界以保证满足动态系统的定量要求.本文基于类李雅普诺夫函数给出了
保证闭环系统的有限时间有界性和避免芝诺现象的充分条件.这些充分条件可以转化为线性矩阵不等式,便于验证和实
际应用.此外,为了节约资源,提出了一种可变参数的事件触发规则,提高了设计灵活性.仿真结果验证了本文的主要结
论.
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Abstract: In this paper, event-triggered output feedback finite-time bounded control of linear systems is investigated.
Unlike asymptotic stability which only requires qualitatively that the system is bounded during inter-sample, for finite-time
boundedness, it is necessary to estimate the upper bound of the trajectory to ensure that the system meets the quantitative
requirements. Based on Lyapunov-like function, sufficient conditions are given to ensure finite-time boundedness of the
resultant closed-loop system and to avoid Zeno behavior in an emulation context. The conditions can be transformed into
linear matrix inequalities such that they are easy to be verified and used in practice. Moreover, an event-triggered rule with
variable parameters, which can improve the flexibility of design, is also proposed, aiming at conserving sources. Simulation
results are employed to verify main results proposed in this paper.
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1 Introduction
With the development of wire and wireless tech-

nologies, modern control systems have been operated
by digital communication networks. In standard con-
trol books such as [1–2], periodic control is presented
as the only choice for implementing feedback control
laws on digital platforms. However, classical sampled-
data control is based on performing sensing and actu-
ation periodically. For a type of large-scale resource-
constrained wireless embedded control systems, it is
desirable to limit the sensor and control computation
and communication to instances that the system needs

attention. Hence, an aperiodic digital control called
event-triggered control (ETC) [3–8] has been proposed
to avoid the waste of sources and the congestion of com-
puting devices or communication networks.

Up to present, for research on event-triggered con-
trol, most existing literatures focus on asymptotical sta-
bility (AS) [9–14]. It is well known that asymptotical
stability of a system is a qualitative analysis over an in-
finite time interval. However, in many practical appli-
cations, such as missile systems, analog computer sys-
tems, active and parametric networks, the main concern
is the quantitative behavior of the system over a fixed
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finite-time interval [15–19]. In these cases, finite-time
stability, which focuses its attention on the system be-
havior over a finite-time interval, is more practical than
asymptotical stability analysis of a system. In recent
years, finite-time stability was extended to finite-time
boundedness (FTB) [16, 18]. Most of existing result-
s focus on conventional feedback control or classical
sampled-data control and FTB of dynamical systems vi-
a event-triggered control is still in its embryonic stage.

ETC scheme, which is reactive and generates sen-
sor sampling and control actuation when the trigger-
ing condition based on current measurements is vio-
lated [6], has been widely applied to deal with many
control issues, such as state or output feedback con-
trol [5, 11–13, 20], because it can efficiently reduce the
update number of control signal so that communication
resources can be saved significantly. The first important
issue is that ETC schemes should guarantee a positive
minimum inter-event time (MIET) which is the mini-
mal time distance between any two consecutive even-
t time instants. Otherwise, Zeno behaviour occurs. It
was proven that for state feedback control of linear sys-
tems without external disturbances the positive MIET is
guaranteed to exist [5]. While, for an output feedback
controller in a similar setup, the positive MIET may
not exist [21]. Moreover, it was theoretically proven
that with arbitrary small external disturbances, the pos-
itive MIET possibly becomes zero even though it can
be ensured in the absence of external disturbances [22].
Hence, it is not an easy task to ensure that finite-time
boundedness of the closed-loop systems in ETC output
feedback scheme to avoid Zeno behaviour because for
FTB, the presence of external disturbances is a indis-
pensable part of the definition, which motivates this s-
tudy.

For ETC schemes, the joint design of the feedback
controller and the triggering condition is another impor-
tant issue. In asymptotical stability of the closed-loop
system via event-triggered control, emulation-based ap-
proaches are the common choice in practice [5, 9–10,
14]. Hence, in this paper, an emulation-based approach
is also used to consider the triggering condition with
a priori that the output feedback controller is given to
make the closed-loop system finite-time bounded. How-
ever, as everyone knows, the disadvantage of such an
emulation-based approach is that it is impossible to ob-
tain an optimal joint design of the feedback controller
and the triggering condition [10–11]. Hence, in this pa-
per, to overcome this disadvantage, a free parameter is
introduced in the design process of the triggering con-
dition to minimize the update number of control signals
while finite-time boundedness of the resultant closed-
loop system is still guaranteed.

Main contribution and innovation of this note are
listed as follows: 1) Event-triggered output feedback

finite-time bounded control for linear systems is dis-
cussed, and the ETC strategies, including the trig-
gering condition which can be tuned by regulating a
free parameter, is proposed for the first time, to the
best of authors’ knowledge. 2) Sufficient conditions for
finite-time boundedness of linear systems under event-
triggered control are presented by virtue of Lyapunov-
like function. The conditions are transformed into linear
matrix inequalities such that it is easy to be verified and
applied.

Notations: In this paper, N, Rn, Rn×n respective-
ly represent the sets of natural numbers, n-dimensional
vectors and n × n matrices. The superscript T stand-
s for matrix transposition. λmin(·) and λmax(·) denote
the minimum and maximum eigenvalues of a real sym-
metric matrix.

2 Problem formulation and preliminaries
Consider the following linear system:ẋ(t) = Ax(t) +Bu(t) +Dw(t),

y(t) = Cx(t),
(1)

where x(t) = [x1(t) x2(t) · · · xn(t)]
T ∈ Rn is the

state, u(t) ∈ Rm is the control input, w(t) ∈ Rq is
the disturbance input, y(t) ∈ Rp is the output signal.
The matrices A,B,C , and D are system matrices with
appropriate dimensions.

An observer-based state feedback controller is as
follows:

˙̂x(t) = Ax̂(t) +Bu(t)− L(y(t)− ŷ(t)),

ŷ(t) = Cx̂(t),

u(t) = Kx̂(t),

(2)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp are the state and the
output of the observer, L ∈ Rn×p and K ∈ Rm×n are
the observer and controller gains respectively.

Let e(t) = x(t) − x̂(t). Then, ė(t) = (A + LC)·
e(t) + Dw(t). On the other hand, the dynamics of
the observer with the state feedback controller u(t) =
Kx̂(t) is given by ˙̂x(t) = (A + BK)x̂(t) − Ley(t),
where ey(t) = Ce(t) is the output estimation error.

In this paper, the control input u is updated at cer-
tain instants {tk}k∈N instead of continuing implemen-
tation. Thus, the closed-loop system can be represented
by 

ẋ(t) = Ax(t) +Bu(tk) +Dw(t),

˙̂x(t) = Ax̂(t) +Bu(tk)− Ley(t),

u(tk) = Kx̂(tk), ∀t ∈ [tk, tk+1).

(3)

Let δ(t) = u(tk)−u(t) = K(x̂(tk)−x̂(t)), which
can be viewed as a measure of the difference between
sampled control input and continuous-time ones. Thus,
the closed-loop system (3) can be expressed in terms of
x̂ and e as follows:
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˙̂x(t) = (A+BK)x̂(t) +Bδ(t)− Ley(t).

(4)

In order to discuss the event-triggered output feed-
back finite-time bounded control of linear systems,
the following standard assumptions and definitions of
finite-time boundedness, which are cited from [18–19,
23–24], are listed as follows.

Assumption 1 [18–19, 23–24] External distur-
bances w(t) is time-varying and satisfiesw Tf

0
wT(t)w(t)dt 6 dw, dw > 0, [0, Tf ] is the fixed

time interval.

Definition 1 [18–19,23–24] Given positive con-
stants c1, c2, Tf with c1 < c2 and a positive-definite
matrixR. If ϵT(t0)Rϵ(t0) 6 c1, we have ϵT(t)Rϵ(t) <
c2, ∀t ∈ [0, Tf ], then linear system (1) is said to be
finite-time bounded with respect to (c1, c2, Tf , dw, R),
where ϵ(t) = (xT(t) x̂T(t))T.

3 Main results
In this section, finite-time boundedness of linear

system (1) via event-triggered output feedback control
is to be discussed.

Theorem 1 For linear system (4), given con-
troller and observer gains K and L, and a positive s-
calar T . If there are matrices P1 > 0, P2 > 0, Qδ > 0,
S1 > 0, S2 > 0, Qε > 0, constants α2 > α1 > 0,
β2 > β1 > 0 and the event-triggered sampling rule
with a parameter η defined by tk+1 = min{t > tk+T ,
s.t. f(δ(t), (x̂(t) ey(t))

T) > 0}, such that

ϕ =


φ11 φ12 φ13 φ14

∗ φ22 φ23 φ24

∗ ∗ φ33 φ34

∗ ∗ ∗ φ44

 < 0,

Φ =


φ∗

11 φ∗
12 φ∗

13 φ∗
14

∗ φ∗
22 φ∗

23 φ∗
24

∗ ∗ φ∗
33 φ∗

34

∗ ∗ ∗ φ∗
44

 < 0,

(λ2 + λ3)c1 + (λ4β1 + λ5β2)dw+w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds <

λ1c2e
−(α1+α2)Tf , (5)

then linear system (4) is finite-time bounded with re-
spect to (c1, c2, Tf , dw, R), where

φ11 = ATP1 + P1A− α1P1,

φ12 = P1BK − CTLTP2,

φ13 = P1B, φ14 = P1D, φ23 = P2B, φ24 = 0,

φ22 = (A+BK + LC)TP2+

P2(A+BK + LC)− α1P2,

φ33 = 0, φ34 = 0, φ44 = −β1S1,

φ∗
11 = ATP1 + P1A− α2P1 + CTQε3C,

φ∗
12 = P1BK − CTLTP2 − CTQε3C + CTQT

ε2,

φ∗
13 = P1B, φ∗

14 = P1D,

φ∗
22 = (A+BK + LC)TP2+

P2(A+BK + LC)− α2P2−

Qε2C − CTQT
ε2 + CTQε3C +Qε1,

φ∗
23 = P2B, φ∗

24 = 0, φ33 = −Qδ,

φ∗
34 = 0, φ∗

44 = −β2S2,

f(δ(t), (x̂(t) ey(t))
T) =

δT(t)Qδδ(t)− (x̂T(t) eTy (t))Qε(x̂(t) ey(t))
T − η,

f̃(δ(t), (x̂(t) ey(t))
T) =

δT(t)Qδδ(t)− (x̂T(t) eTy (t))Qε(x̂(t) ey(t))
T,

Qε =

(
Qε1 Qε2

∗ Qε3

)
, P =

(
P1 0

∗ P2

)
,

λ1 =
λmin(P )

λmax(R)
, λ2 =

λmax(P1)

λmin(R)
, λ3 =

λmax(P2)

λmin(R)
,

λ4 = λmax(S1), λ5 = λmax(S2).

Proof The proof procedure can be divided into t-
wo parts:

Part I Upper-bound estimation of Lyapunov-like
function.

Choose a Lyapunov-like function

V (x(t), x̂(t)) =

(
x(t)

x̂(t)

)T(
P1 0

0 P2

)(
x(t)

x̂(t)

)
. (6)

Taking derivative of V (x(t), x̂(t)) yields

V̇ =

ẋT(t)P1x(t) + xT(t)P1ẋ(t)+

˙̂xT(t)P2x̂(t) + x̂T(t)P2
˙̂x(t) =

xT(t)[ATP1 + P1A]x(t) + wT(t)DTP1x(t)+

xT(t)[P1BK − CTLTP2]x̂(t)+

xT(t)P1Bδ(t) + xT(t)P1Dw(t)+

x̂T(t)[KTBTP1 − P2LC]x(t)+

x̂T(t)[(A+BK + LC)TP2+

P2(A+BK + LC)]x̂(t)+

x̂T(t)P2Bδ(t) + δT(t)BTP1x(t)+

δT(t)BTP2x̂(t). (7)

For ETC design, the event-triggered time is sepa-
rated at least by T which is used to avoid Zeno phe-
nomenon. During [tk, tk + T ), the control is not updat-
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ed. After tk + T , event condition determines when the
control should be updated guaranteeing system perfor-
mance. Hence, upper-bound estimation in [tk, tk + T )
and [tk + T, tk+1) should be done respectively.

Step 1 Upper-bound estimation in [tk, tk + T ).

Based on (6) and (7), it yields

V̇ − α1V <

xT(t)[ATP1 + P1A− α1P1]x(t)+

wT(t)DTP1x(t) + xT(t)[P1BK−

CTLTP2]x̂(t) + xT(t)P1Bδ(t)+

xT(t)P1Dw(t) + x̂T(t)[KTBTP1−

P2LC]x(t) + x̂T(t)[(A+BK + LC)TP2+

P2(A+BK + LC)− α1P2]x̂(t)+

x̂T(t)P2Bδ(t) + δT(t)BTP1x(t)+

δT(t)BTP2x̂(t) + β1w
T(t)S1w(t)−

β1w
T(t)S1w(t) =

ζT(t)ϕζ(t) + β1w
T(t)S1w(t), (8)

where ζ(t) = (xT(t) x̂T(t) δT(t) wT(t))T.
Thus, we have V̇ − α1V 6 β1w

T(t)S1w(t). Inte-
grating both sides of this inequality for t ∈ [tk, tk+T ),

V (t) 6 eα1(t−tk)V (tk) +
w t

tk
β1w

T(s)S1w(s)ds.

(9)

Step 2 Upper-bound estimation in [tk+T, tk+1).

As that of Case 1, it is not difficult to get that

V̇ − α2V − f(δ(t), (x̂(t) ey(t))
T) <

xT(t)[ATP1 + P1A− α2P1 + CTQε3C]x(t)+

wT(t)DTP1x(t) + xT(t)[P1BK − CTLTP2+

CTQT
ε2 − CTQε3C]x̂(t) + xT(t)P1Bδ(t)+

xT(t)P1Dw(t) + x̂T(t)[KTBTP1 − P2LC+

Qε2C − CTQε3C]x(t)+

x̂T(t)[(A+BK + LC)TP2+

P2(A+BK + LC)− α2P2 −Qε2C−

CTQT
ε2 + CTQε3C +Qε1]x̂(t)+

x̂T(t)P2Bδ(t) + δT(t)BTP1x(t)+

δT(t)BTP2x̂(t)− δT(t)Qδδ(t)+

β2w
T(t)S2w(t)− β2w

T(t)S2w(t) + η =

ζT(t)Φζ(t) + β2w
T(t)S2w(t) + η. (10)

Hence, one obtains V̇ − α2V − f(δ(t), (x̂(t)·
ey(t))

T) 6 β2w
T(t)S2w(t)+η. Integrating both sides

of this inequality for t ∈ [tk + T, tk+1), it holds that

V (t) 6 eα2(t−(tk+T ))V (tk + T )+

w t

tk+T
[f̃(δ(t), (x̂(t) ey(t))

T)+

β2w
T(t)S2w(t)]ds. (11)

Part II Finite-time boundedness analysis.

Using the iterative method, for t ∈ (0, Tf ) and
t > tk + T , based on (9) and (11), it yields

V (t) 6
eα2(t−(tk+T ))V (tk + T )+w t

tk+T
[f̃(δ(s), (x̂(s) ey(s))

T)+

β2w
T(s)S2w(s)]ds 6

eα2(t−(tk+T ))eα1TV (tk)+

eα2(t−(tk+T ))
w tk+T

tk
β1w

T(s)S1w(s)ds+w t

tk+T
[f̃(δ(s), (x̂(s) ey(s))

T)+

β2w
T(s)S2w(s)]ds 6

eα2(t−(tk+T ))eα1T eα2(tk−(tk−1+T ))V (tk−1 + T )+

eα2(t−(tk+T ))eα1T×w tk

tk−1+T
[f̃(δ(s), (x̂(s) ey(s))

T)+

β2w
T(s)S2w(s)]ds+

eα2(t−(tk+T ))
w tk+T

tk
β1w

T(s)S1w(s)ds+w t

tk+T
[f̃(δ(s), (x̂(s) ey(s))

T)+

β2w
T(s)S2w(s)]ds 6

eα1N
T
η T eα2(t−NT

η T )[V (t0)+

β1λmax(S1)
w Tf

0
wT(s)w(s)ds+

β2λmax(S2)
w Tf

0
wT(s)w(s)ds+w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds] 6

e(α1+α2)Tf [V (t0) + (β1λ4 + β2λ5)dw+w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds],

or for t ∈ (0, Tf ) and t < tk + T ,

V (t) 6 e(α1+α2)Tf [V (t0) + (β1λ4 + β2λ5)dw+w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds],

where NT
η denotes the maximum number of events trig-

gered with respect to parameters T and η.

In summary, one obtains V (t) 6 e(α1+α2)Tf [V (t0)

+ (β1λ4+β2λ5)dw+
w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds].

Meanwhile,

V (t) = xT(t)P1x(t) + x̂T(t)P2x̂(t) >
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λmin(P )

λmax(R)
ϵT(t)Rϵ(t) = λ1ϵ

T(t)Rϵ(t), (12)

and

V (t0) 6
λmax(P1)

λmin(R)
[xT(t0)Rx(t0) + x̂T(t0)Rx̂(t0)]+

λmax(P2)

λmin(R)
[xT(t0)Rx(t0) + x̂T(t0)Rx̂(t0)] 6

(λ2 + λ3)c1, (13)

where R̄ =

(
R 0

∗ R

)
.

Thus, it yields

ϵT(t)Rϵ(t) 6 V (t)

λ1

<

V (t0)+(β1λ4+β2λ5)dw+
w Tf

0
f̃(δ(s), (x̂(s) ey(s))

T)ds

λ1

·

e(α1+α2)Tf .

By virtue of equation (5), it is not difficult to get

ϵT(t)Rϵ(t) 6 λ1c2
λ1

× e−(α1+α2)Tf × e(α1+α2)Tf 6 c2.

Thus, Theorem 1 is proved. 2
Remark 1 It is well known that asymptotic sta-

bility is a qualitative analysis but finite-time bounded-
ness is a quantitative one, and AS of the system does not
mean FTB of the system and vice visa [15, 18,23]. But,
in the framework of event-triggered control, the differ-
ence of AS and FTB should be noted extraordinarily.
For AS, the overall energy trend needs to be downward
to guarantee asymptotical stability of the system, for
example, during the period between two updated time
such as [tk, tk+1) the energy V (x(t)) of the system is
required to decline [5] or be bounded during [tk, tk+T )
and comes down during [tk + T, tk+1) [11]. Fig. 1(a)
shows the case as that in [11]. During [tk, tk + T ),
the energy V (x(t)) of the system is only required to
be bounded but not declined, the system is AS but not
FTB. However, for FTB, the energy V (x(t)) of the sys-
tem does not need to decline, but the upper-bound esti-
mation of the Lyapunov-like function V (x(t)) should
be known to guarantee finite-time boundedness of the
closed-loop system, Fig. 1(b).

Remark 2 From Theorem 1, it is not difficult to
see that the event-triggered sampling rule designed in
this paper includes two parts, time condition and even-
t condition. Time condition can effectively avoid Zeno
phenomenon for the sampling time separated at least by
T . Event condition is proposed to coordinately deter-
mine the next update time of control signal. It is worth
mentioning that the free parameter η in event condition,
which is used to coordinately regulate the number of up-
dates of the controller, is put forward for the first time,
to the best of our knowledge.

2 ( )
2

1 ( )

( )

 ( + )

 ( )

 ( +1)

 ( )
 ( + )

 ( +1)

(a) Asymptotic stable

 ( )

1 ( )

2 2 ( )

 ( + )

 ( )
 ( +1)

 ( ) ( + )
 ( +1)

(b) Finite-time bounded

Fig. 1 Difference between asymptotic stable and finite-
time bounded

Remark 3 For update ways of control signal, it
is mainly affected by the adjustment of two free param-
eters in the event triggered sampling rules, which are T
in time condition and η in event condition, respective-
ly. In terms of the update forms of control signal, it can
be divided into periodic update and aperiodic update,
e.g. see Fig. 5(a): aperiodicity and Fig. 5(c): periodici-
ty. On the other hand, according to the update influence
of control signal on the finite-time boundedness of sys-
tem, it can be regarded as effective control signal and
invalid control signal. In Fig. 3, for Case 1 and Case
2, the system is Un-FTB (UFTB), so the corresponding
updated control signal is invalid control signal. Howev-
er, for Case 3, the system is FTB, so the updated control
signal at this time is the effective control signal.

4 Illustrative example
In this section, simulation results are presented to

show the validity of the method proposed in this paper.

Example 1 Consider the following linear system
with an event-triggered output feedback controller:
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ẋ(t) =

 0 0.08

−2 −1

x(t)+

0

1

u(tk) +

1 0

0 1

w(t),

y(t) = (1 0)x(t),

(14)

where u(tk) = Kx̂(tk), x̂(0) = 0 and w(t) =
(0.35 sin t 0.25 cos t)T.

Let α1 = 0.1, α2 = 0.3, β1 = 0.2, β2 = 0.6,
dw = 1.0, Tf = 9 s, R = I, c1 = 0.2, c2 = 1.0.

As will be readily seen from Fig. 2(a), Case 1, linear
system (14) is AS, but it is not FTB. To make linear sys-
tem (14) FTB, let K = (3 −6) and L = (−0.5 −6)T.
With η = 0.2, statuses of control signal are exhibited
in Table 1, and responses of xT(t)Rx(t) are shown in
Fig. 2. From Fig. 2(a), Case 2, it can be seen that with
the initial control values un-updated, linear system (14)
is still not finite-time bounded, which means that con-

trol input needs more updation. If control signal updates
according to an appropriate event-triggered condition,
the closed-loop linear system is finite-time bounded, see
it in Fig. 2(a), Case 3. So, the effectiveness of the pro-
posed method is proved.

Table 1 Control signal with η = 0.2

K T /s Control signal

Case 1 (3 −6) 9 u(t) ≡ 0

Case 2 (3 −6) 9 u(t) ≡ Kx̂(t0)

Case 3 (3 −6) 1.5 u(t) = Kx̂(tk), k = 1, · · · , 6

Moreover, based on numerical calculation, maxi-
mum effective values of T and η, T̄max and η̄max, can
be found. For linear system (14) with K = (3 −6) and
L = (−0.5 − 6)T, T̄max = 2.2 s and η̄max = 17.1.
Linear system (14) is FTB as long as 0 < T 6 2.2 s
and η 6 17.1. And in Fig. 3, T = 1.5 s, η = 0.18 and
T = 2.0 s, η = 10 are respectively chosen.
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Fig. 3 System response with different parameters

For linear system (14) with K = (3 − 6) and
L = (−0.5 − 6)T, in case of continuous control, the
system is not FTB, as shown in Fig. 4(a) and Fig. 4(c),
but with an appropriate event-triggered control strate-
gy, the system may achieve FTB as shown in Fig. 4(b)
and Fig. 4(d) with T = 1.0 s, η = 15. On the other

hand, for linear system (14), and the parameters c1, c2
and K changed to be c1 = 0.04, c2 = 1.0. and K =
(0.1 − 10), then the system is FTB with continuous
control, as shown in Fig. 5(a) and Fig. 5(c), but for in-
appropriate ETC, the closed-loop system is not FTB, as
shown in Fig. 5(b) and Fig. 5(d).
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Fig. 5 State response and control input with continuous and inappropriate ETC strategies

5 Conclusion
Finite-time boundedness of linear systems via

event-triggered output feedback control have been ad-
dressed. Based on Lyapunov-like function, sufficient
conditions have been presented to ensure FTB of the
resultant closed-loop system via ETC. Moreover, an
appropriate event-triggered rule with tunable parame-
ters has been proposed to avoid Zeno behavior and to
guarantee system performance. How to extend the pro-
posed method to switched linear systems needs further
research.

References:
[1] ASTROM K J, WITTENMARK B. Computer-Controlled Systems:

Theory and Design, 2nd ed. New Jersey: Prentice Hall, 1990.

[2] FRANKLIN G. Feedback Control of Dynamic Systems. New Jersey:
Prentice Hall, 2007.

[3] ASTROM K J, BERNHARDSSON B. Comparison of periodic and
event based sampling for first-order stochastic systems. IFAC Pro-
ceedings Volumes, 1999, 32(2): 5006 – 5011.

[4] ARZEN A. A simple event-based pid controller. IFAC Proceedings
Volumes, 1999, 32(2): 8687 – 8692.

[5] TABUADA P. Event-triggered real-time scheduling of stabilizing
control tasks. IEEE Transactions on Automatic Control, 2007, 52(9):
1680 – 1685.

[6] HEEMELS W P M H, JOHANSSON K H, TABUADA P. An intro-
duction to event-triggered and self-triggered control, 2012 the 51st
IEEE Conference on Decision and Control (CDC). Maui, HI, USA:
IEEE, 2012: 3270 – 3285.

[7] HETEL L, FITER C, OMRAN H, et al. Recent developments on the
stability of systems with aperiodic sampling: An overview. Automat-
ica, 2017, 76: 309 – 335.

[8] DOLK V S, BORGERS D P, HEEMELS W P M H. Output-based
and decentralized dynamic event-triggered control with guaranteed
Lp-gain performance and zeno-freeness. IEEE Transactions on Au-
tomatic Control, 2017, 62(1): 34 – 49.

[9] TALLAPRAGADA P, CHOPRA N. On event triggered tracking for
nonlinear systems. IEEE Transactions on Automatic Control, 2013,
58(9): 2343 – 2348.

[10] GOMMANS T M P, ANTUNES D, DONKERS T, et al. Heemels.
Self-triggered linear quadratic control. Automatica, 2014, 50(4): 1279
– 1287.

[11] TARBOURIECH S, SEURET A, SILVA J M G D, et al. Observer-
based event-triggered control co-design for linear systems. IET Con-
trol Theory and Applications, 2016, 10(18): 2466 – 2473.



No. 8 YANG Zhong-lin et al: Event-triggered output feedback finite-time bounded control of linear systems 1505

[12] PERALEZ J, ANDRIEU V, NADRI M, et al. Event-triggered output
feedback stabilization via dynamic high-gain scaling. IEEE Transac-
tions on Automatic Control, 2018, 63(8): 2537 – 2549.

[13] FERDINANDO M D, PEPE P. Sampled-data emulation of dynamic
output feedback controllers for nonlinear time-delay systems. Auto-
matica, 2019, 99: 120 – 131.

[14] BRUNNER F D, HEEMELS W P M H, ALLGWER F. Event-
triggered and self-triggered control for linear systems based on reach-
able sets. Automatica, 2019, 101: 15 – 26.

[15] DORATO P. Short-time stability in linear time-varying systems, rel.
tec. New York: Polytechnic Institute of Brooklyn, 1961.

[16] AMATO F, ARIOLA M, DORATO P. Technical communique: Finite-
time control of linear systems subject to parametric uncertainties and
disturbances. Automatica, 2001, 37(9): 1459 – 1463.

[17] BAYAT F, MOBAYEN S, JAVADI S. Finite-time tracking control of
nth-order chained-form non-holonomic systems in the presence of
disturbances. ISA Transactions, 2016, 63: 78 – 83.

[18] AMATO F, ARIOLA M, COSENTINO C. Technical communique:
Finite-time stabilization via dynamic output feedback. Automatica,
2006, 42(2): 337 – 342.

[19] AMATO F, AMBROSINO R, ARIOLA M, et al. On the finite-time
boundedness of linear systems. Automatica, 2019, 107: 454 – 466.

[20] KOIKE R, ENDO T, MATSUNO F. Output-based dynamic event-
triggered consensus control for linear multiagent systems. Automati-
ca, 2021, 133: 109863.

[21] DONKERS M C F, HEEMELS W P M H. Output-based event-
triggered control with guaranteed-gain and improved and decen-
tralized event-triggering. IEEE Transactions on Automatic Control,
2012, 57(6): 1362 – 1376.

[22] BORGERS D P, HEEMELS W P M H. Event-separation properties
of event-triggered control systems. IEEE Transactions on Automatic
Control, 2014, 59(10): 2644 – 2656.

[23] AMATO F, AMBROSINO R, ARIOLA M, et al. Finite-time stability
and control. Lecture Notes in Control & Information Ences. London:
Springer Verlag, 2014.

[24] LIN X Z, LI X L, LI S H, et al. Finite-time boundedness for switched
systems with sector bounded nonlinearity and constant time delay.
Applied Mathematics and Computation, 2016, 274: 25 – 40.

作者简介:
杨杨杨中中中林林林 硕士研究生,研究方向为切换系统的有限时间稳定性,

E-mail: zly 626539@163.com;

魏魏魏自自自航航航 硕士研究生,研究方向为受约束非线性切换系统反馈镇

定问题, E-mail: zh wei5944@163.com;

林林林相相相泽泽泽 教授,博士生导师,研究方向为控制理论与控制技术、机

器人与智能控制、深度学习算法及其应用等, E-mail: xzlin@njau.edu.

cn.


