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摘要:本文对非平衡有向拓扑下一阶多智能体系统的分布式优化问题进行研究.研究的智能体在与邻居的通信过程

中都有一个变化的时延.本文的目标是找到使得目标函数f(x) =
N∑
i=1

fi(xi)最小的智能体的状态.提出了一种基于有向

图的拉普拉斯矩阵的零特征值对应的左特征向量和智能体的局部信息的控制器.在这项研究中,去掉了fi(xi)的梯度有

界要求,并且不要求网络平衡.在某些假设下,所有智能体都达到相同的状态,同时最小化目标函数
N∑
i=1

fi(xi).最后,通

过数值模拟验证了本文的研究结果.
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Abstract: This paper studies the distributed optimization problem for the first-order multi-agent systems in unbalanced
directed topology. Each agent has a time delay in the communication process with its neighbors. Our goal is to find a

state of the agent that minimizes the objective function f(x) =
N∑
i=1

fi(xi). A controller based on the left eigenvector

corresponding to the zero eigenvalue of L of the graph G and the local information of each agent is proposed. In this study,
the bounded requirement of the gradient of fi(xi) is removed, and it does not require the network to be balanced. Under

some assumptions, all agents reach the same state while minimizing the objective function
N∑
i=1

fi(xi). Finally, a numerical

simulation illustrates the results of this article.
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1 Introduction
More and more scientists in the control field have

studied the distributed optimization of multi-agent sys-
tems[1–9]. The purpose of the optimization is to make
these agents reach a common state by using neighbor
information, and the common state is the optimal solu-
tion of a function f(x), where the function f(x) is a
sum of the function fi(xi). In other words, it focuses
on guiding all agents to cooperatively solve the global
optimization problem. Distributed optimization is wide-

ly used in industry, technology, economic, and social
fields, such as machine learning, smart grid, resource
allocation, etc.[10–13].

In the past, consensus is a fundamental and mean-
ingful research topic in the field of control, which
focuses on designing appropriate controllers to make
multiple agents reach a common state[14–17]. Further-
more, a large number of distributed optimization control
strategies based on consensus have been obtained and
analyzed. For example, a method based on consensus
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is proposed to compute the intersection of convex sets
in [2]. Ning et al.[4] studied the optimization strategy
of multiple agents based on the fixed-time consensus
method in a distributed manner. In some practical sys-
tems, the algorithm for optimizing the systems has been
studied in different ways such as sub-gradient, gradi-
ent and zero-gradient sum[1–9]. For continuous time dy-
namic systems, Nedic et al.[5] and Gharesifard et al.[6]

developed a new control framework to handle the opti-
mization problem of the multi-agent systems. In some
weight-balanced directed topological networks, Kia et
al.[7] designed a continuous-time consensus control law
to handle the optimization problem with discrete com-
munication in a distributed way.

In reality, in the process of information transmis-
sion, the communication delay between agents is in-
evitable, especially when the number of agents is large.
In order to solve this problem, some distributed opti-
mization schemes with communication delay are pro-
posed in [18–25]. For example, in [18–20], some
consensus-based methods are developed to deal with
the optimization in presence of communication delay.
In some practical applications, Chen et al.[21] and Yang
et al.[22] proposed the economic dispatch schemes with
delay effect, and these methods solve the economic
dispatch problem on time-varying digraphs. Moreover,
focus on a system composed of multiple agents with
constraint sets and delays, a distributed method was
proposed to do with optimization problems on weight-
balance directed graphs in [23]. Guo et al.[24] further
proposed the algorithms based on zero-gradient-sum
approach to successfully deal with distributed optimiza-
tion problems under fixed and time-varying delays re-
spectively, and gave the upper bounds of their delays.
Delays can be arbitrary, time-varying but bounded.

The actual network environment is changeable and
complex, and the communication between nodes is di-
rected and asymmetric. Accordingly, unbalanced di-
rected network is more challenging than the weight-
balanced case and undirected case. It is meaningful to
handle distributed optimization problem of multi-agent
systems with communication delays in unbalanced di-
rected networks. To achieve this, three challenges will
be faced. Firstly, the stability analysis is usually com-
plex when the network is directed. Secondly, the anal-
ysis is more difficult to overcome the unbalance of the
network. Thirdly, once the communication delay is in-
troduced, the analysis becomes much more complex.
Most of the existing work has solved the optimization of
a system composed of multiple agents with communi-
cation delays in a distributed manner, but they are only
aimed at undirected and weight-balanced networks.

This paper proposes a new distributed optimiza-
tion controller which not only has communication de-
lay but also has unbalanced directed topology. Com-

pared with the existing relevant results, the contribu-
tions of this note are summarized as follows. Compared
with the distributed controller without the communi-
cation delay[1–9], this paper considers the multi-agent
with communication delay, and removes the bounded
requirement of the gradient of fi(xi). Compared with
[24], the optimization problem under directed topolo-
gy is studied. Compared with [18–24], the communi-
cation delay is time varying, the bounded requirement
of the gradient of fi(xi) is removed, and it does not
require the network to be balanced. In conclusion, com-
pared with previous research results, the main innova-
tions of this study are as follows. Firstly, the controller
has varying time communication delay. Secondly, the
network topology is directed and unbalance. Thirdly,
the controller relaxes the assumption of the local func-
tion fi(xi).

The basic structure of this article is as follows. In
Sec. 2, we introduce the basic principles and the state-
ment of graph theory. In Sec. 3, the theoretical results of
this study are given. In Sec. 4, we present a simulation
result of this research. In Sec. 5, we give the conclusion
of this article.

2 Notations and Preliminaries
In this section, we give some concepts used in this

article. Let R be the sets of real numbers, Rm repre-
sents the column vector of m-dimensional, 1N ∈ RN

represents the column vector of N-dimensional whose
element is 1, Rn×m is the matrix of size n×m, PX(s)
denotes the projection of the vector s onto the closed
convex set X , i.e., PX(s) = argmin

x∈X
∥x − s∥. If a

function f(s) : Rm → R satisfies: f(bs1 + (1− b)s2)
6 bf(s1) + (1 − b)f(s2), ∀s1, s2 ∈ Rm, b ∈ (0, 1),
f(s) is convex function. ∇f(x) is the partial derivative
of f(x). τ(t) is a function of communication delay and
arbitrary.

In this paper, we regard the information commu-
nication between multi-agents as a directed graph G.
The directed graph G is considered with the node set
V = {1, 2, . . . , N}, the edge set E and the adjacency
matrix A = [aij] ∈ RN×N . If there is communication
from agent j to agent i, (j, i) ∈ E . The adjacency ma-
trix A = [aij] ∈ RN×N of the graph G is defined as
1) aii = 0; 2) aji = 1 if (i, j) ∈ E ; 3) aji = 0 if
(i, j) /∈ E . Furthermore, L = [lij]N×N is called the
Laplacian matrix of the graph G which is denoted as lij

= −aij , if i ̸= j, otherwise lii =
N∑
j ̸=i

aij .

The eigenvalues of L is need to satisfy 0 = λ1(L)
6 λ2(L) 6 · · · 6 λN(L), and the eigenvalues of LTL
is need to satisfy 0 = λ1(L

TL) 6 λ2(L
TL) 6 · · · 6

λN(L
TL). P = [p1 p2 · · · pN ]T is the left eigenvector

corresponding to the zero eigenvalue of L, which satis-
fies PTL = 0; pi represents the ith element of the P
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vector, diag{p1, p2, · · · , pN} is a diagonal matrix with
p1, p2, · · · , pN as the elements on the diagonal. douti =

lii represents the out-degree of agent i and dini =
N∑
j ̸=i

aji

represents the in-degree of agent i. If douti = dini , G is
a balanced graph, otherwise G is an unbalanced graph.
The graph G containing at least one spanning tree is
connected. If there is always a path between any two
nodes in graph G, then the graph G is strongly connect-
ed.

On those topics, we study a system of multiple a-
gents composed of N agents (indexed by 1, 2, · · · , N ).
The dynamic description of each agent in the system is
as follows

ẋi(t) = ui(t), i ∈ N, (1)

where xi(t) ∈ Rn, ui(t) ∈ Rn represent the state and
the controller of agent i respectively.

Our goal is to design a controller for the system (1)
so that each agent can track a common state and opti-
mize the global objective function. In other words, this
problem can be expressed as

minimize f(x) =
N∑
i=1

fi(xi), s.t. xi = xj, (2)

where xi(t) ∈ Rn is the state vector of the agent i,
fi(xi) : Rn → R represents the local objective func-
tion of the agent i.

In order to solve the above-mentioned distributed
optimization problem, the following lemmas and as-
sumptions are needed.

Lemma 1[26] Given a positive matrix ϕ ∈
RN×N , ∀a ∈ RN , b ∈ RN , it has that

2ab 6 aTϕ−1a+ bTϕb. (3)

In particular, when ϕ ∈ RN×N is an identity ma-
trix, 2ab 6 aTa+ bTb.

Lemma 2[27] Let D be a symmetric matrix, it is
represented as

D =

[
D1 D2

DT
2 D3

]
, (4)

where D1 and D3 are square matrix. D < 0 iff D1 < 0,
D3 −DT

2 D
−1
1 D2 < 0 or D3 < 0, D1 −D2D

−1
3 DT

2 <
0.

Lemma 3[28] Let p= [p1 p2 · · · pN ]T be the left
eigenvector corresponding to the zero eigenvalue of L
and Λ = diag{p1, p2, · · · , pN}, where pi ∈ R, pi > 0
(i = 1, 2, · · · , N). Then there is any positive vector γ

∈ RN×1 such that min
γTx=0,x̸=0

xTL̄x

xTx
>

λ2(L̄)

N
, where

λ2(L̄) is the second smallest eigenvalue of matrix L̄ and
L̄ , ΛL + LTΛ.

Lemma 4[29] The continuously convex and dif-
ferentiable function f(s) is minimized iff ∇f(s) = 0.

Lemma 5 Let X be a convex and closed set and
fi(s) is a convex function, from the convexity of fi(s),
the following inequality hold

∇fi(x)
T(x− y) > fi(x)− fi(y),

where x ∈ Rn and y ∈ X .

Assumption 1 Let τ(t) be a continuously dif-
ferentiable function, and it satisfies 0 6 τ(t) 6 d and
τ̇(t) 6 h 6 1.

Assumption 2 The graph G is a connected and
unbalanced directed graph.

Assumption 3 Let Xi = {s1 ∈ Rn|∇fi(s1) =

0} be a nonempty and bounded set, then, fi(s) is a con-
vex function.

Assumption 4 Let X = {s2 ∈ Rn|
N∑
i=1

∇fi(s2)

= 0} be a closed convex and nonempty set.

Assumption 5 In this paper, α(t) is need to sat-
isfy the following conditions:

lim
t→+∞

∥α(t)∥ = 0, (5)
w +∞

0
∥α(t)∥dt = +∞. (6)

Lemma 6 Suppose that Assumption 1 and 2

hold. If d <
λ2(L̄)

(
γmax

4
+

2

1− h
)NλN(LTL)

, the follow-

ing inequality holds: −B 0 −ΛL
0 −dLTL LTL

−ΛL LTL LTL

 < 0, (7)

where B = 2ΛL− d(ΛL)TΛL− 2d

1− h
LTL.

Proof According to Lemma 3, there exists a vec-
tor with positive entries 1N such that ξT(t)1N = 0.

Then, we have 2ξ(t)ΛLξ(t) >
λ2(L̄)

N
ξ(t)ξ(t), where

L̄ = ΛL+ LTΛ and 2ξ(t)ΛLξ(t) = ξ(t)L̄ξ(t). Thus,

if d <
λ2(L̄)

(
γmax

4
+

2

1− h
)NλN(LTL)

, we have

− ξ(t)Bξ(t) <

− (
λ2(L̄)

N
− d

4
L̄TL̄− 2d

1− h
LTL)ξ(t)ξ(t) < 0,

where γmax = max(p1, p2, · · · , pN) and B = 2ΛL−

d(ΛL)TΛL− 2d

1− h
LTL. Furthermore, −B < 0.

If let D1 = −B,D2 = [0,−ΛL] and D3 =[
−dLTL LTL
LTL LTL

]
.

It follows from Lemma 2 that (7) is equivalent to
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the following inequality:[
−dLTL LTL
LTL LTL+ LTΛB−1ΛL

]
< 0.

From Lemma 2, it is clear that the above formula
holds.

Remark 1 In this study, the communication de-
lay is considered. Compared with [18–24], the bounded
requirement of the gradient of fi(xi(t)) is removed, and
it does not require the network to be balanced.

3 Main results
In this section, we design a novel optimization con-

troller to make all agents realize consensus and mini-
mize the global objective functions. The controller has
two parts. The first part is the summation function,
which is used to achieve consistency. The second part
is the sub-gradient to achieve global optimization. The
distributed controller is given by:

ui(t) =−
N∑
i=1

aij(xi(t− τ(t))− xj(t− τ(t)))−

α(t)
∇fi(xi)

pi
, (8)

where τ(t) is the time-varying communication delay;
xi(t − τ(t)) ∈ Rn represents the state vector of the
agent i at time t − τ(t); α(t) is a function that is re-
quired to meet Assumption 6; ∇fi(xi) is the gradient
of fi(xi); p = [p1 p2 · · · pN ]T satisfies pTL = 0 and
pT1N = 1; pi is the ith element of the p. The pi in the
controller is to eliminate imbalance of graph G.

Let ξi(t) = xi(t) − x̄, where x̄ =
N∑
j=1

pjxj(t).

Then, according to pTL = 0 and pTL = 1, from (1)
and (8), we have

ξ̇i(t) =−
N∑
i=1

aij(ξi(t− τ(t))− ξj(t− τ(t)))−

α(t)[
∇fi(xi)

pi
−

N∑
k=1

∇fk(xk)]. (9)

Let

ξ(t) = [ξ1(t) ξ2(t) · · · ξN(t)]T,

∇f = α(t)[
∇f1(x1)

p1
−

N∑
k=1

∇fk(xk)

∇f1(x2)

p2
−

N∑
k=1

∇fk(xk) · · ·

∇fN(xN)

pN
−

N∑
k=1

∇fk(xk)]
T,

the equation of (9) can be written as

ξ̇(t) = −Lξ(t− τ(t))−∇f. (10)

Below, we will give the main theorem and prove it.

Theorem 1 If Assumption 1–5 are satisfied, the
control law (8) solve the optimization problem (2) in a

distributed way.

Proof Firstly, in order to prove that each agent
asymptotically reaches the same state, a Lyapunov-
Krasovskii functional is selected.

V (t) = V1(t) + V2(t) + V3(t), (11)

where the positive definite functions V1(t), V2(t), V3(t)
are defined as

V1(t) = ξTΛξ, (12)

V2(t) =
2d

1− h

w t

t−τ(t)
ξ(s)TLTLξ(s)ds, (13)

V3(t) =
w 0

−d

w t

t+θ
ξ̇(s)Tξ̇(s)dsdθ, (14)

where τ(t) is a function of communication delay and
arbitrary and satisfies 0 6 τ(t) 6 d; d is the upper
bound of τ(t); τ̇(t) is the derivative of τ(t) and satis-
fies τ̇(t) 6 h 6 1; Λ is a diagonal matrix, and Λ =
diag{p1, p2, · · · , pN}.

The derivatives of V1(t), V2(t) and V3(t) along the
system (1) are given by

V̇1(t) = 2ξTΛξ̇ =

− 2ξTΛLξ(t− τ(t))− 2ξTΛL∇f, (15)

V̇2(t) =
2d

1− h
ξTLTLξ − 2d(1− τ̇(t))

1− h
×

ξT(t− τ(t))LTLξT(t− τ(t)) 6
2d

1− h
ξTLTLξ−

2dξT(t− τ(t))LTLξT(t− τ(t)), (16)

V̇3(t) = dξ̇T(t)ξ̇(t)−
w t

t−d
ξ̇T(s)ξ̇(s)ds =

dξT(t− τ(t))LTLξ(t− τ(t))+

2dξT(t− τ(t))LTL∇f+

∇fTLTL∇f −
w t

t−d
ξ̇T(s)ξ̇(s)ds. (17)

According to ξ(t− τ(t)) = ξ(t)−
w t

t−τ(t)
ξ̇(s)ds,

Lemma 1, and Assumption 1, the equation (15) can be
rewritten by

V̇1(t) =

− 2ξTΛL[ξ(t)−
w t

t−τ(t)
ξ̇(s)ds]− 2ξTΛL∇f 6

− 2ξTΛL[ξ(t) + τ(t)ξT(ΛL)TΛLξ(t)+w t

t−τ(t)
ξ̇T(s)ξ̇(s)ds]− 2ξTΛL∇f 6

− 2ξTΛL[ξ(t) + dξT(ΛL)TΛLξ(t)+w t

t−d
ξ̇T(s)ξ̇(s)ds]− 2ξTΛL∇f. (18)

Under Assumption 5, combined the result of (16),
(17) and (18), we have

V̇ (t) =
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V̇1(t) + V̇2(t) + V̇3(t) 6
− ξ(t)[2ΛL− d(ΛL)TΛL− 2d

1− h
LTL]ξ(t)−

dξT(t− τ(t))LTLξ(t− τ(t))− 2ξTΛL∇f+

2dξT(t− τ(t))LTL∇f +∇fTLTL∇f =[
ξ(t) ξ(t− τ(t)) ∇f

]
· −B 0 −ΛL

0 −dLTL LTL
−ΛL LTL LTL

 ξ(t)
ξ(t− τ(t))

∇f

 6

0, (19)

where B = 2ΛL−d(ΛL)TΛL− 2d

1− h
LTL. It should

be pointed out that the last formula above holds because
of Lemma 6.

Thus, according to Lasalle invariance principle, we
get ξ(t) = 0, ξ(t − τ(t)) = 0 and ∇f = 0 as t → 0.

That is xi(t) =
N∑
i=j

pjxj(t), xi(t− τ(t)) =
N∑
j=1

pjxj(t

− τ(t)). In a word, the state of all agents tends to be the
same.

Next, we will prove that this state is the optimal
state such that minimizes f(x).

Based on the above proof result and Assumption 4,

we will prove that xi(t) =
N∑
i=j

pjxj(t) is the optimal
state.

We know x̄(t) =
N∑
i=1

pixi(t), applying the above

proof results and equation (8), we have

˙̄x(t) =
N∑
i=1

piẋi(t) =

− α(t)
N∑
i=1

∇fi(xi(t)) =

− α(t)
N∑
i=1

∇fi(x̄(t)). (20)

Because X is closed convex set and PX(x̄(t))
∈ X , there exists a positive constant M1 such that

∥PX(x̄(t))∥ 6 M1. And ∥xi(t) −
N∑
i=j

pjxj(t)∥ → 0

as t → +∞, then there exists a constant T1 such that
for all t > T1, ∥xi(t)∥ is bounded. Furthermore, there
exists M2 > 0 and t > T1 such that ∥x̄(t)− PX(x̄(t))∥
6 M2. Then, there exists M > 0 and t > T2 such that
∥x̄(t) − PX(x̄(t))∥2 6M .

Construct a positive condition function as follows

W (t) = (x̄(t)− PX(x̄(t)))
T(x̄(t)− PX(x̄(t))).

(21)

The time derivative of W (t) is

Ẇ (t) = 2(x̄(t)− PX(x̄(t)))
T ˙̄x(t) =

− 2α(t)
N∑
i=1

(x̄(t)− PX(x̄(t)))
T∇fi(x̄(t)).

(22)

Let ρ = min
s∈∪Xi

N∑
i=1

(fi(s) − fi(PX(s))). From the

definition of Xi, we know that ρ > 0. Then from Lem-
ma 5, we get

Ẇ (t) 6− 2α(t)
N∑
i=1

(fi(x̄(t))− fi(PX(x̄(t)))) 6

− 2α(t)ρ. (23)

Since
w +∞

0
∥α(t)∥dt = +∞, then for all ε > 0

there exists T3 > T2 > 0 such that
w T3

T2

∥α(t)∥dt > M − ε

2ρ
.

Thus, for all t > T3,w t

T2

Ẇ (t)dt 6 −2ρ
w t

T2

α(t)dt 6 −(M − ε).

Because ∀t > T2, 0 6 W (t) 6 M , then we have

W (t) 6 W (T2)− (M − ε) 6 ε.

Hence, lim
t→+∞

W (t) = 0. That is, x̄(t) ∈ X . Ac-

cording to Assumption 4, x̄(t) =
N∑
i=1

pixi(t) is the op-

timal state of all agents.

4 Numerical simulations and application
A simulation to verify the effectiveness of the theo-

retical results of this paper is given in this section. The
motion of eight agents in two-dimensional space is sim-
ulated. In the algorithm (8), the function of communi-

cation delay is chosen as τ(t) =
38 + sin t

160
satisfying

Assumption 1. The function of α(t) is chosen as α(t)

=
1

t+ 1
satisfying Assumption 6. We assume the adja-

cency matrix A = [aij] as follows:

A =



0 0 1 1 0 0 1 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0


. (24)

The state of agent i is defined as xi(t) = [xi1(t)

xi2(t)]
T and the initial state is chosen as follows:

xij(0) =

{
−0.5× i− 0.1× j, i = 1, 2, 3, 4,

0.5× (i− 4) + 0.1× j, i = 5, 6, 7, 8,

where j = 1, 2. The local objective function of agent i
(i = 1, 2, 3, 4, 5, 6, 7, 8) is assumed as follows.

f1(x1) =
1

2
x2
11 +

1

2
x2
12,

f2(x2) =
1

2
(x21 + 1)2 +

1

2
x2
22,
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f3(x3) =
1

2
x2
31 +

1

2
(x32 + 1)2,

f4(x4) =
1

2
(x41 + 1)2 +

1

2
(x42 + 1)2,

f5(x5) =
1

4
x4
51 +

1

4
x4
52,

f6(x6) =
1

4
(x61 + 1)4 +

1

4
x4
62,

f7(x7) =
1

4
x4
71 +

1

4
(x72 + 1)4,

f8(x8) =
1

4
(x81 + 1)4 +

1

4
(x82 + 1)4,

Obviously, each local objective function is continu-
ously convex and differentiable. Therefore, the objec-

tive function f(x) =
8∑

i=1

fi(xi) is also continuously

convex and differentiable, and the optimal solution is
unique. According to Lemma 4 and by using simple
calculations, we can get the optimal value x∗ = [x∗

i1

x∗
i2] = [−1

2
− 1

2
] that minimizes the global objective

function. Figure 1 shows the motion trajectories of 8
agents under the action of the controller (1). It is clear
to see that 8 agents tend to the same position and the
state of 8 agents converge to the optimal point.

Fig. 1 The states of 8 agents

5 Conclusion
We study the optimization problem of a first-order

system composed of multiple agents with communica-

tion delay and directed topology. The communication
network does not require to be balanced. Each agent has
states information from its neighborhood. The goal is to
find the common state of all agents that minimizes the
objective function f(x). Based on the characteristics of
P and the local communication of neighborhood, we
propose a controller to do with the optimization prob-
lem. Under Assumptions 1–5 and from the convexity of
fi(xi), all agents reach consensus while minimizing the
function f(x). Finally, a simulation is given to illustrate
the theoretical results of this article.
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