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摘要:本文研究非最小相位系统的精确跟踪问题.理想情况下,非最小相位系统针对参考轨迹的精确跟踪可以通
过非因果稳定逆方法实现,但控制输入需从负无穷处开始作用. 而在实际情况下应用非因果稳定逆算法时,控制输
入通过延拓提前作用的时间是有限的,只能得到近似的跟踪效果.本文提出了一种基于最优状态转移的非因果稳定
逆算法,能够在实际情况下实现非最小相位系统对参考轨迹的精确跟踪,放松了稳定逆方法对系统的初始状态和延
拓时间的限制,而且在相同跟踪效果的条件下,比近似稳定逆方法的延拓时间更短. 对比仿真结果验证了所提方法
的性能.
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Non-causal stable inversion based on optimal state to state transition

ZHANG You-ling, LIU Shan†

(College of Control Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310027, China)

Abstract: Non-causal stable inversion method can be used to track the reference trajectory precisely under some strict
conditions for non-minimum phase systems; these conditions require the control input to start action from negative infinity
on the time axis. However, in the actual situation, the control input of the stable inversion method must be truncated and
only acts in a finite extended time interval; this results in an approximate tracking instead of the precise tracking. In this
paper, we propose for non-minimum phase systems a revised non-causal stable inversion method based on optimal state-to-
state transition, it can achieve a precise tracking of the reference trajectory in the actual situation, regardless of the arbitrary
initial system state or the arbitrary extended time. With the same tracking precision guaranteed, the proposed method has a
shorter extended time in comparison with the approximate stable inversion method. The better performance of the proposed
method is validated through simulation results.
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1 Introduction
Tracking problem is a hot topic. It is widely seen

in the areas of flexible manipulator [1], aircraft [2],
hard disk[3], etc., which are all non-minimum phase
systems. Inversion technique and output regulation
are regular methods to solve tracking problems. Non-
stable zeroes are canceled by the output regulation
method but it limits to asymptotic tracking[4]. While,
precise tracking with unique input and state is real-
ized by the inversion technique[5]. Classical inver-
sion technique functions well in the minimum phase
system but leads to divergent solutions in the non-
minimum phase system. However, Bounded solu-
tions can be obtained by the stable inversion method
in the non-minimum phase system proposed by Deva-

sia, etc.[6] and Chen, etc.[7]. Future information of the
reference trajectory is needed for the stable inversion
method, which ensures stability by giving up causal
characteristic, thus it is non-causal.

Since the stable inversion method was proposed,
its theory has been constantly improved and its appli-
cation has been increasingly extended. As seen from
its definition[6], zeroes were not allowed in the imagi-
nary axis. Devasia dealt with the asymptotic tracking
problems with zeroes in or near the imaginary axis[8]

and the precise tracking problems of nonlinear time
varying systems[9]. Sogo[10] analysed the stable in-
version method in the frequency domain by two-sided
Laplace transformation. Liu, etc.[11] proposed ex-
panded Laguerre basis function based iterative learn-
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ing control to approximate stable inversion solution.
Taylor,etc.[12] proposed the finite difference method
considering stable inversion as a two point bound-
ary value problem. Hunt,etc.[13] proposed a two-step
procedure method to handle control problems of per-
turbed model like aircraft where the stable inversion
method is applied in an error system. Since future in-
formation of the reference trajectory can be attained
by iterative learning, stable inversion method were of-
ten combined with iterative learning. Liu, etc.[14] pro-
posed the open-closed-loop optimal iterative learning
control based stable inversion. Its concepts of prolon-
gation and translation of the reference trajectory re-
vealed the necessary procedure of the stable inversion
method used in the actual situation.

Non-casual stable inversion was calculated offline
owing to the need of the whole reference trajectory.
Zou, etc.[15] proposed the preview-based stable inver-
sion to calculate the stable inversion solution online
using a finite window of trajectory rather than the
whole trajectory. In a word, the dynamic tracking
process of the time interval [ti, tf ] can be seen from
Devasia, etc.[6], while the dynamic tracking process
of the time interval [tf ,∞] can be seen form Zou[16].

Little attention was paid to the dynamic process
in the time interval [−∞, ti] of the reference trajec-
tory about stable inversion method. Liu, etc.[14] used
the way of prolongation and translation of the refer-
ence trajectory originally defined in [ti, tf ] . Devasia,
etc.[6, 8] also expanded the reference trajectory to neg-
ative infinity as far as possible. Longer the expanded
trajectory was, better the tracking effect would be. It
was a way of approximate tracking in nature.

This paper analyses the dynamic process of the
stable inversion method in the time interval [−∞, ti]

and puts forward the concept of stable initial state de-
fined at t = ti and validate the equivalent precise
tracking in [ti, tf ] between the proposed method used
in the actual situation and the classical method de-
fined in the ideal situation. So precise tracking in the
actual situation is achieved by introducing the opti-
mal state to state transition technique in the proposed
method.

The proposed method is based on the optimal
state transition (OST) technique introduced from
Lewis, etc.[17]. Devasia, etc.[18–21] handled the out-
put transition problem of the continuous and discrete
linear system using OST technique. Wang, etc.[22]

found an optimal output transition trajectory by OST
technique thus solving a class of aperiodic tracking
transition problem with stable inversion method. This
paper also uses OST technique to handle the precise

tracking problem with stable inversion method in the
actual situation, which has achieved three achieve-
ments comparing with the classical stable inversion
method: 1) The expanded time interval of the ref-
erence trajectory is greatly decreased under uniform
overall tracking error interval; 2) Precise tracking
in the actual situation is achieved by the proposed
method while the classical stable inversion is defined
in the ideal situation and approximate tracking is ob-
tained in the actual situation; 3) Precise tracking in
[ti, tf ] is achieved regardless of an arbitrary initial
state or an arbitrary extended time .

This paper is organised as follows. Section 2 in-
troduces the stable inversion method and the system
state is decomposed; Section 3 proposes the concept
of Stable Initial State which is of vital importance
to achieve precise tracking; Section 4 introduces the
pre-action process of the classical stable inversion;
Section 5 introduces the OST technique; Section 6
gives the simulation results comparing the proposed
method and the classical method.

2 Stable inversion
A SISO linear system is considered in this paper:

ẋxx(t) = Axxx(t) +BBBu(t),

y(t) = CCCxxx(t).
(1)

Definition 1[23] Equation (1) is a non-mini-
mum phase linear time invariant system with no ze-
roes in the imaginary axis. As to the reference trajec-
tory yd satisfying y

(i)
d ∈ L1 ∩ L∞, i = 0, 1, · · · , r,

r is the smallest positive integer as CCCAr−1BBB ̸= 0

namely the relative degree. Bounded xxxd(t) and ud(t)

are existed satisfying

ẋxxd(t) = Axxxd(t) +BBBud(t),

yd(t) = CCCxxxd(t),

where A ∈ Rn×n, BBB ∈ Rn×1, CCC ∈ R1×n are known
parameters，then ud(t) → 0, xxxd(t) → 0 as t →
±∞. xxxd(t) and ud(t) are defined as the stable in-
version of the reference trajectory yd(t).

Definition 2 The relative degree is r, and then
the outer state is defined as the output and its deriva-
tives (till the (r − 1)th order).

ξξξ(t) = [y(t)
dy(t)

dt
· · · dr−1y(t)

dtr−1
]T. (2)

Definition 3 The original reference trajectory
is defined in the time interval [ti, tf ] of yd(t). yd(t) is
the extended reference trajectory defined in the time
interval t ∈ (−∞,∞). It’s continuous differentiable
from the first order till the r-th order with yd ≡ 0 for
∀t 6 ti and ∀t > tf .
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The system state is decomposed as the outer state
ξξξ(t) and the inner state ηηη(t) namely the internal dy-
namic by introducing an invertible matrix T1 as fol-
lows: [

ξξξ(t)

ηηη(t)

]
= T1xxx(t) (3)

and

Â = T1AT
−1
1 =

[
Â1 Â2

Â3 Â4

]
,

B̂BB = T1BBB =

[
B̂BB1

B̂BB2

]
, ĈCC = CCCT−1

1 .

Substituting Eq.(3) to Eq.(1), We get

η̇ηη(t) = Â3ξξξ(t) + Â4ηηη(t) + B̂BB2u(t). (4)

Differentiating the output till the input is ap-
peared

dry(t)

dtr
= CArxxx(t) + CAr−1BBBu(t) =

Axxxx(t) +Byu(t), (5)

where By = CCCAr−1BBB, it is invertible because of the
well-defined relative degree assumption, the input can
be rewritten as

u(t) = B−1
y (

dry(t)

dtr
−Axxxx(t)). (6)

Substituting Eq.(3) into Eq.(6), we get

u(t) = B−1
y [y(r)(t)−Aξξξξ(t)−Aηηηη(t)], (7)

where
[
Aξ Aη

]
= AxT

−1
1 .

If the reference trajectory yd(t) is given and ex-
act tracking is maintained, y(t) = yd(t). Then the
outer state is written as

ξξξd(t) = [yd(t)
dyd(t)

dt
· · · dr−1yd(t)

dtr−1
]T. (8)

If a bounded solution ηd(t) can be found then the ex-
act tracing input can be written as

ud(t) = B−1
y [y

(r)
d (t)−Aξξξξd(t)−Aηηηηd(t)]. (9)

Then Eq.(4) becomes

η̇ηηd(t) = Ãηηηηd(t) + B̃ηYYY d(t), (10)

where

Ãη = Â4 − B̂BB2B
−1
y Aη,

B̃η = [Â3 − B̂BB2B
−1
y Aξ B̂BB2B

−1
y ],

YYY d(t) = [ξξξd(t) y
(r)
d (t)]T. (11)

The system is restricted to be hyperbolic, which
means none of the zeros of the system (1) lies on the
imaginary axis of the complex plane. Then there ex-
its a transformation T2 that the inner state equation
can be decomposed into the stable inner state equa-

tion and the unstable inner state equation.[
η̇ηηds(t)

η̇ηηdu(t)

]
=

[
Ãηs 0

0 Ãηu

] [
ηηηds(t)

ηηηdu(t)

]
+

[
B̃ηs

B̃ηu

]
YYY d(t),

(12)

where [
ηηηds(t)

ηηηdu(t)

]
= T2ηηηd(t), T2B̃η =

[
B̃ηs

B̃ηu

]
,

T2ÃηT
−1
2 =

[
Ãηs 0

0 Ãηu

]
.

The stable inner state equation is obtained from
Eq.(12) as

η̇ηηds(t) = Ãηsηηηds(t) + B̃ηsYYY d(t). (13)

Its result is

ηηηds(t) =
w t

−∞
eÃηs(t−τ)B̃ηsYYY d(τ)dτ . (14)

In the same way, the unstable inner state equation is
obtained from Eq.(12) as

η̇ηηdu(t) = Ãηuηηηdu(t) + B̃ηuYYY d(t). (15)

Since Ãηu has unstable eigenvalues, a divergent so-
lution will be obtained by forward causal integration,
while a convergent solution can be obtained by back-
ward non-causal integration. Its solution is

ηηηdu(t) = −
w ∞

t
e−Ãηu(τ−t)B̃ηuYYY d(τ)dτ. (16)

Remark 1 As to the stable inner state, the result by
forward integration is bounded while divergent by backward
integration. As to the unstable inner state, the result by forward
integration is divergent while bounded by backward integra-
tion.

3 Stable initial state
Definition 4 The actual physical system runs

from time t = t0(t0 < ti), so t0 is the initial point
and ti is defined in Definition 3. If the system state
xxx(t) is equal to xxxd(t) for t > ti from Definition 1, the
system state at ti is defined as Stable Initial State.

Stable inversion is a two point boundary value
problem[12], the system state is a zero vector when
time tends to positive or negative infinity. In the ideal
situation, the input always exists when t ∈ (−∞,∞),
while in the actual situation, the input functions from
t0, which violates the definition of the stable inver-
sion. However, when the system state at ti is Stable
Initial State, the desired tracking performance from
Definition 1 will appear in the following time interval
[ti,∞).

Theorem 1 According to Definition 4, the sys-
tem state xxx(t) equals to the desired state xxxd(t) for
t > ti, if and only if Stable Initial State is in the fol-
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lowing form:

xxx(ti) = T−1
1

 000r×1

T−1
2

[
000

ηηηu(ti)

]
n×1

, (17)

ηηηu(ti) = −
w ∞

ti
e−Ãηu(τ−t)B̃ηuYYY d(τ)dτ.

Proof
Necessity The system state at time ti from

Eq.(3) is

xxx(ti) = T−1
1

[
ξξξ(ti)r×1

ηηη(ti)

]
n×1

. (18)

The inner state can be decomposed as

ηηη(ti) = T−1
2

[
ηηηs(ti)

ηηηu(ti)

]
. (19)

Then the system state at time ti can be synthe-
sized as

xxx(ti) = T−1
1

 ξξξ(ti)r×1

T−1
2

[
ηηηs(ti)

ηηηu(ti)

]
n×1

.

The components of the ideal state xxxd(t) can be
seen from Eqs.(8)(14)(16), the outer state at time xi
is

ξξξd(ti) = [yd(ti)
dyd(ti)

dt
· · · dr−1yd(ti)

dtr−1
]T. (20)

The stable inner state at time xi is

ηηηds(ti) =
w ti

−∞
eÃηs(ti−τ)B̃ηsYYY d(τ)dτ. (21)

The start time point of the system (1) is t0, we
get yd(ti) = 0 from Definition 3, then ξξξd(ti) = 000

(seeing Eq. (20)). So we get YYY d(t) = 000 for t 6 ti
from Eq. (11), then ηηηds(ti) = 000 (seeing Eq. (21)). In
a word, the outer state and the stable inner state are
all zero vectors.

The unstable inner state at time ti is

ηηηdu(ti) = −
w ∞

ti
e−Ãηu(τ−ti)B̃ηuYYY d(τ)dτ. (22)

The outer state and inner state in the ideal situa-
tion are obtained in advance. As seen from the known
conditions

ξξξ(ti) = ξξξd(ti), ηηηs(ti) = ηηηds(ti), ηηηu(ti) = ηηηdu(ti),

for t > ti. So Stable Initial State can be synthesized
as

xxx(ti) = T−1
1

 000r×1

T−1
2

[
000

ηηηu(ti)

]
n×1

,

ηηηu(ti) = −
w ∞

ti
e−Ãηu(τ−ti)B̃ηuYYY d(τ)dτ.

The necessity condition has been proved.
Sufficiency As seen from the known condi-

tions, we get the actual state components

xxx(ti) = T−1
1

 000r×1

T−1
2

[
000

ηηηu(ti)

]
n×1

,

ηηηu(ti) = −
w ∞

ti
e−Ãηu(τ−ti)B̃ηuYYY d(τ)dτ.

The desired state components are obtained from
the above analysis in the necessity part of the proof.
So we get ξξξd(ti) = 000, ηηηds(ti) = 000. The calculation
way of the outer state and the stable inner state is for-
ward causal integration. Then we get ξξξ(t) = ξξξd(t)

and ηηηs(t) = ηηηds(t) for t > ti.
The unstable inner state in the actual situation

can be obtained by forward integration.

ηηηu(t) =

eÃηu(t−ti)ηηη(ti) +
w t

ti
eÃηu(t−τ)B̃ηuYYY d(τ)dτ =

−eÃηu(t−ti)
w ∞

ti
e−Ãηu(τ−ti)B̃ηuYYY d(τ)dτ +w t

ti
eÃηu(t−τ)B̃ηuYYY d(τ)dτ =

−
w ∞

t
e−Ãηu(τ−t)B̃ηuYYY d(τ)dτ. (23)

The unstable inner state in the ideal situation is
obtained from Eq.(16) as

ηηηdu(ti) = −
w ∞

ti
e−Ãηu(τ−ti)B̃ηuYYY d(τ)dτ.

Thus ηηηu(t) = ηηηdu(t), system statexxx(t) in the ac-
tual situation is the same asxxxd(t) in the ideal situation
for t > ti. The sufficiency has been proved.

Remark 2 Stable Initial State is defined in the ac-
tual situation. The specific form is given in Theorem 1, and the
proven process displays the calculation method.

4 Pre-action
Definition 5 The system dynamic process be-

fore time ti is defined as the pre-action process and ti
is the beginning point of the original reference trajec-
tory from Definition 3. The pre-action time interval is
(−∞, ti] in the ideal situation but [t0, ti] in practice.

In the ideal situation from Definition 1, when in-
put functions from time negative infinity to time t0.
Then the system state changes from zero to the spec-
ified state at the same time. That’s the pre-action pro-
cess, which is a necessary procedure since the unsta-
ble internal dynamic is computed by backward time
integration.

But in the actual situation, pre-action time is fi-
nite. Because the input of pre-action decays over time
and becomes zero when time decreases to negative in-
finity in the limiting case. So the pre-action process
can be truncated at time t0 when the input signal is
sufficient small.
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Owning to the non-causality, pre-action is a nec-
essary process which is done by non-causal stable in-
version technique.

Pre-action process is the side-effect of the sta-
ble inversion, its time interval is roughly judged by
method of trial according to Theorem 2.

Theorem 2 Let all the eigenvalues of coef-
ficient matrix Ãηu extracted from Eq.(15) lie to the
right of the line Re(s) = α in the complex plane for
positive α. Let ∥B̃ηuYYY d(·)∥ < β and there exists ma-
trix M to satisfy the formula ∥ud(t)∥∞ < Meα(t−ti)

for ∀t 6 ti.
Proof Positive constant matrix Mu is existed

according to the conditions of Theorem 2 to satisfy[8]

∥eÃηu(t−τ)∥∞ < Mue
α(t−τ), ∀t < τ. (24)

From Definition 3, y(r)d (t) ≡ 000, ξξξd ≡ 000, ηηηds(t) ≡
000 for ∀t 6 ti can be obtained. Thus the input ud(t)
is only related to the unstable inner state ηηηdu(t). Let
AηT

−1
2 =

[
Aηs Aηu

]
and apply Eq.(9) and Eq.(16),

when t 6 ti we get

∥ud(t)∥∞ =

∥B−1
y [y

(r)
d (t)−Aξξξξd(t)−Aηηηηd(t)]∥∞ =

∥B−1
y [y

(r)
d (t)−Aξξξξd(t)−Aηsηηηds(t)−

Aηuηηηdu(t)]∥∞ =

∥B−1
y Aηuηηηdu(t)∥∞ 6

∥B−1
y ∥∞∥Aηu∥∞ ×

∥
w +∞

t
e−Ãηu(τ−t)B̃ηuYYY d(τ)dτ∥∞ <

βMu∥B−1
y ∥∞∥Aηu∥∞

w +∞

ti
eα(t−τ)dτ =

βMu

α
∥B−1

y ∥∞∥Aηu∥∞eα(t−ti) :=

Meα(t−ti). (25)

The proof is done as we let

M =
βMu

α
∥B−1

y ∥∞∥Aηu∥∞.

Let ε be a sufficient small positive real number,
and ∥ud(t)∥∞ < Meα(t−ti) < ε.

Then the time interval of pre-action △t = ti − t

can be obtained by method of trial.
Generally, the initial state xxx(t0) is zero. The

time interval of the pre-action process will be larger if
xxx(t0) is nonzero. Because the system state error will
converge to zero by a large section of time as the co-
efficient matrix A is Hurwitz. Unfortunately, neither
xxx(t0) is zero nor nonzero, bad tracking effect will ap-

pear when the time interval of pre-action is not large
enough. Because large system state error at t0 will se-
riously influence the tracking effect in the following
trajectory.
5 Optimal state to state transition

As to pre-action, the reference trajectory has
been extended from [ti, tf ] to (−∞,+∞) along the
real axis in the complex plane according to Definition
3. The time interval of pre-action needs to be cho-
sen large enough, otherwise, bad tracking effect will
appear in [ti, tf ]. Furthermore, the time interval can
not be chosen flexibly. Those are two disadvantages
existed in the classical stable inversion method.

In order to overcome the two defects, OST based
stable inversion technique is proposed here. In Sec-
tion 3, the proposed Stable Initial State is an important
condition to ensure precise tracking in the following
trajectory. In this Section, We will use the optimal
state to state transition technique to transit the initial
state xxx(t0) to Stable Initial State defined at ti. Then
precise tracking in [ti, tf ] can be obtained. Further-
more, the time interval of the pre-action process can
be designed flexibly.

Definition 6 Under the condition of finite time
interval, bounded input uref and state xxxref are ob-
tained to transit system state from xxx(t1) to xxx(t2) with
minimum input energy. The problem above is called
the optimal state to state transition problem.

The input energy function transiting xxx(t1) to
xxx(t2) is defined as

J(t1, t2, u) =
w t2

t1
uTRudt. (26)

The solution of Eq.(26) is solved in paper[17] as

u(t) =

R−1BBBTeA
T(t2−t)G−1

(t1,t2)
[xxx(t2)− eA(t2−t1)xxx(t1)].

(27)

R is an positive definite symmetric real matrix.
A and B are given parameters. G(t1,t2) is a control-
lable and invertible Gramian matrix.

G(t1,t2) =
w t2

t1
eA(t2−τ)BBBR−1BBBTeA

T(t2−τ)dτ.

(28)

6 Simulation example
Consider the system (1) with the coefficient ma-

trixes[15] chosen as

A =


0 1 0 0

−3.656 −0.436 3.573 −0.091

0 0 0 1

3.245 −0.126 −3.259 −0.076

 ,
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BBB =


0

21.9027

0

3.588

 , CCC =
[
0 1 0 1

]
, D = 0.

The original reference trajectory[11] is chosen as

y = 0.1t2(6− t) sin(0.5πt), for t ∈ [0, 6].

(29)

6.1 Calculate stable initial state
According to Theorem 1, apart from ηηηu(ti), the

other parts of the system state are zero vectors, so Sta-
ble Initial State is seen as follows:

xxx(ti) = T−1
1

 000r×1

T−1
2

[
000

ηηηu(ti)

]
n×1

, (30)

ηηηu(ti) = −
w ∞

ti
e−Ãηu(τ−t)B̃ηuYYY d(τ)dτ. (31)

As seen from above equations, only three condi-
tions including coefficient matrixes, reference trajec-
tory and time ti are needed to calculate Stable Initial
State. Let the initial time t0 = −2. Yd defined in
Eq.(11) is obtained from Eq.(29). Then we can get
the key coefficient matrixes in Eq.(15) as

Ãηu =

[
0 1.0000

−23.4649 0.3332

]
,

B̃ηu =

[
0 0 0

23.4673 0.3729 6.1044

]
.

Then we can get the Stable Initial State from
Eqs.(30)–(31) as follows:

ηu (ti) =

[
0.8015

6.4655

]
,

xxx (ti) = T−1
1


0r×1

T−1
2

 0

0.8015

6.4655



n×1

. (32)

Eq.(32) is the Stable Initial State.
6.2 Simulation under zero and nonzero initial

state
As seen from Figs.1–2, the solid line denotes the

actual output trajectory starting from t = −2 and the
dashed line denotes the reference trajectory. In the
time interval [−2, 0], the optimal state to state tran-
sition technique functions well transiting the initial
state at t0 to Stable Initial State at ti. In the time in-
terval [0, 6], we get the desirable output trajectory.

Figure 1 denotes the output tracking at zero ini-
tial state xxx(t0) =

[
0 0 0 0

]T while Fig.2 denotes
the output tracking at a nonzero initial state

xxx(t0) =
[
1.5 1.2 1.1 0.3

]T
.

Fig. 1 Output tracking results of the proposed method
with zero initial state case

Fig. 2 Output tracking results of the proposed method with
nonzero initial state case

Figure 3 denotes the input signal which is dis-
continuous at t0 = 0. In the time interval [−2, 0],
we get the minimum input energy and it is the opti-
mal state to state transition process. But in the time
interval [0, 6], we get the desired input by non-causal
stable inversion technique.

Fig. 3 Input trajectory of the proposed method with
zero initial state

6.3 Comparison
In this section, the classical stable inversion

method is compared with the proposed stable in-
version method. The classical method includes the
pre-action process displaying in the bottom parts of
the following figures leading to approximate track-
ing and the proposed method includes the OST tech-
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nique showing in the top parts of the following fig-
ures. The solid line denotes the actual output trajec-
tory while the dashed line denotes the desired output
trajectory. Pre-action or OST method functions be-
fore t0 = 0 while non-causal stable inversion func-
tions in the time interval [0, 6].
6.3.1 Comparison under uniform extended time

interval
As seen from the bottom parts of Figs.4–6, the

tracking effect will be better and better when the ex-
tended time becomes larger and larger. In Fig.4, the
tracking effect is deteriorative when the extended time
is 2 s, but grows better as the extended time grows.
However, precise tracking in [0, 6] failed owning to
the fact that the extended time is finite rather than in-
finity.

Fig. 4 Comparison of the two methods about output tracking
when the extended time is 2 s

Fig. 5 Comparison of the two methods about output tracking
when the extended time is 5 s

Fig. 6 Comparison of the two methods about output tracking
when the extended time is 10 s

In the top parts of Figs.4–6, however, precise
tracking in [0, 6] is obtained regardless of the ex-
tended time. Furthermore, the output frequency and
amplitude fluctuate smaller and smaller before t0 = 0

when the extended time named as the transition time
becomes shorter and shorter. As seen from the top
parts of the above figures, little frequency and ampli-
tude fluctuation appear with a appropriate transition
time like Fig.4.

In a word, when considering the time interval
[0, 6], OST based stable inversion always gets the
precise tracking effect but stable inversion with pre-
action needs a large enough extended time. What’s
more, OST based stable inversion gets a better over-
all tracking effect defined in the whole time interval
when the extended time is short to some extent.

In Fig.7, the comparison between the two meth-
ods when the initial state is nonzero is considered.
Regardless of the initial state and extended time, pre-
cise tracking is always obtained in [0, 6]. But the clas-
sical method gets a worse tracking effect in [0, 6] in
Fig.5 and Fig.7.

Further more, OST based stable inversion also
gets better overall tracking performance compared
with the classical method when the overall time inter-
val is [−5, 6]. And the overall tracking performance
is defined by a norm of tracking error.
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Fig. 7 Comparison of the two methods about output
tracking under nonzero initial state when the
extended time is 5 s

6.3.2 Comparison under uniform tracking error
interval

In this section, we’ll compare the extended time
of the two methods with the same tracking error inter-
val. The reference trajectory before t = 0 is extended
as zero output trajectory. So the whole tracking error
is the absolute value of (y − yd).

As seen from Figs.8–10 and Table 1, OST based
stable inversion has a shorter extended time under
uniform tracking error interval. When the whole
tracking error limits to the interval (22, 24), OST
based stable inversion needs only 0.8 s extended time
while the classical method needs 30 s extended time.
A shorter extended time under condition of uniform
tracking performance is obtained.

Fig. 8 Comparison of the extended time between the proposed
method with error of 22.7003 and time of 0.8 s and the
classical method with error of 23.9856 and time of 30 s

Fig. 9 Comparison of the extended time between the proposed
method with error of 39.8824 and time of 2 s and the
classical method with error of 39.7489 and time of 23 s

Fig. 10 Comparison of the extended time between the
proposed method with error of 105.0993 and
time of 3.5 s and the classical method with
error of 100.4227 and time of 17.8 s

Table 1 Extended time under uniform tracking error

error interval
method

(22, 24) (39, 40) (100, 106)

OST 0.8 s 2 s 3.5 s
Pre-action 30 s 23 s 17.8 s

7 Conclusions
The proposed OST based non-causal stable in-

version method can enable precise tracking come true
under condition of an arbitrary extended time or an
arbitrary initial state in the actual situation. The pre-
action based classical stable inversion achieves pre-
cise tracking in the ideal situation and achieves de-
sirable tracking in the actual situation with an appro-
priate extended time. However, the proposed method
can cut down the extended time with the same overall
tracking error or tracking performance.
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