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Abstract: In this paper, we study the distributed attitude consensus problem for multiple networked rigid body systems

in the case of communication time-delays together with jointly connected switching topologies. By constructing useful aux-

iliary vectors and choosing proper common Lyapunov-Krasovskii functions, we design two control laws for two different

cases respectively, i.e., the case with constant communication time-delays, and the case with time varying communication

time-delays. Numerical simulation shows that the proposed algorithms are effective to this kind of distributed attitude

consensus problem.
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1 Introduction
Over the past decade, there has been significant re-

search effort dedicated to attitude consensus control for

a group of rigid body systems. One of the most impor-

tant reasons to introduce multiple rigid bodies is that a

group of smaller and less-expensive rigid bodies work-

ing together can achieve the same goal as a single large

and expensive rigid body. For example, in interferom-

etry applications, it is often essential to control differ-

ent spacecraft to maintain the same or relative attitudes

during and after formation manoeuvres. Since the an-

gular velocity of the body can not be linearly integrat-

ed to obtain the attitude of the body directly[1] because

of the nonlinear dynamics, attitude consensus control

becomes a particularly interesting problem. The syn-

chronized multiple spacecraft rotations control problem

is solved with a passivity-based damping method in [2],

while the condition that the angular velocity is unknown

is considered in [3]. The other interesting problems in-

clude attitude consensus with time delay[4], with input

constraints[5] and in case of multiple leaders[6]. Certain-

ly, it will be more challenging if only a subset of group

agents have access to the virtual leader[7].

Since the biggest difference between multi-agent

systems and single-agent system lies in the communi-

cation network, the characteristics of networks decide

the performance of the whole system to a great exten-

t. Therefore, two interesting topics on attitude consen-

sus problem have been extensively studied. One is on

the communication time-delay, while the other is on the

switching topologies.

In practical applications, time delays inevitably

exist in the system and communication links, which

may degrade the control performance of the forma-

tion and even destabilize the entire system. Lyapunov-

like method is effective for time delay problems, i.e.,

constructing Lyapunov-Krasovskii function, Lyapunov-

Razumikhin function and set-valued Lyapunov func-

tion. Adaptive attitude synchronization problem of s-

pacecraft formation is studied in [8] with possible time

delay. By introducing a novel adaptive control archi-

tecture, the authors develop effective decentralized con-

trollers applying to the case with parameter uncertain-

ties and unknown external disturbances. However, the
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attitude dynamics are expressed by Euler-Lagrange for-

mula. In [9], the attitude synchronization problems are

discussed for leaderless multiple spacecraft in the pres-

ence of constant communication delays. In [10], at-

titude coordination control of spacecraft formation is

addressed in case that a constant reference attitude is

available to only a part of the spacecraft, where mul-

tiple communication delays between spacecraft is con-

sidered. However, all these literatures only consider the

case with constant time-delay.

In particular, the authors in [11] propose a virtu-

al systems-based approach that removes the require-

ment of the angular velocity measurements, based up-

on which the leaderless and leader-follower problems

with time-varying communication delays and undirect-

ed communication topology, and the leaderless prob-

lem under directed topology and constant communica-

tion delays are both solved. Then, this approach is ex-

tended to solve the cooperative attitude tracking con-

trol problem in [4]. Differently, the authors in [12]

deal with the cooperative attitude tracking problem with

time-varying delays as well as the delays between inter-

synchronization control parts and self-tracking control

parts. Moreover, in [13], a cooperative attitude control

scheme is developed with model uncertainties, exter-

nal disturbances and variable time delays, and the nov-

elty lies in the strategy to construct such a Lyapunov

function scarifying the L2-gain dissipative inequation

that ensures not only the stability of a cooperative atti-

tude tracking formation system but also an L2-gain con-

straint on the tracking performance. Distinguished from

the existing literature where the delayed relative attitude

is described via linear algorithm, the authors in [14] de-

velop a new control law with the nonlinear nature of

the employed quaternion based attitude coupling. How-

ever, most of the literature only consider the problem

with undirected topology. In [15] and [16], the more

complicated cases are considered even with unknown

mass moment of inertia matrix, bounded external dis-

turbances, actuator failures, and control saturation lim-

its. Note that all aforementioned literatures assume that

the communication topology is fixed.

Communication outage, new member’s joining or

quit-ting, radio silence or recovery will cause the

change of the communication topology, named switch-

ing topologies, which makes it more difficult to design

the control laws. Based on relative attitude information

and modified Rodriguez parameters, cooperative atti-

tude tracking problem is considered in [17] and a con-

trol law is given in the presence of a dynamic commu-

nication topology. This is extended in [18] to the condi-

tion that there exist both multiple time-varying commu-

nication delays and dynamically changing topologies.

Considering more complicating elements, the authors

in [19] present controllers that can render a spacecraft

formation consistent to a given trajectory globally with

dynamic information exchange graph and non-uniform

time-varying delays while coping with the parameter

uncertainties and unexpected disturbances. In [20], a 6-

DOF dynamics model of the spacecraft formation flying

is established in Euler-Lagrange form in the presence

of dynamic communication topology. Furthermore,

almost-global attitude synchronization is achieved in

[21] based on switching and uniform connection, how-

ever auxiliary variables are introduced which make the

controllers complicated. In [22], by utilizing Lyapunov

direct method and choosing a common Lyapunov func-

tion properly, the robustness of the designed position

and attitude coordinated controllers to communication

delays, switching topologies, parameter uncertainties

and external disturbances is guaranteed. However, all

the above literatures only consider the uniformly con-

nected switching topologies. It is worth mentioning

that, the attitude synchronization problem of multiple

rigid body agents in SO(3) is addressed in [23] with

directed and jointly strongly connected interconnection

topologies. And from the viewpoint of interior met-

rics, the authors in [24] provide a leaderless consensus

protocol for strongly convex geodesic balls and applies

it to the consensus problem of rotation attitudes un-

der switching and directed communication topologies.

Note that, these two do not consider communication

time delay.

Different from [8–16] only considering time delays,

[20–24] only considering dynamic topologies, and [18],

[19] considering time delays coupled with uniformly

connected switching topologies, we focus on the atti-

tude consensus problem in case of communication time-

delay together with jointly connected switching topolo-

gies. The difficulty lies in how to design the proper con-

trol law, which is not only used to the nonlinear attitude

dynamics, but also used to the attitude consensus prob-

lem under jointly connected switching topologies cou-

pled with varying time-delay. By constructing a proper

auxiliary vector, together with the common Lyapunov-

Krasovskii function method, we design different pro-

tocols for the connected agents and the isolated agents

respectively, and effectively solve the consensus prob-

lem.

The remainder of this paper is organized as follows.

In Section 2, we present the dynamics of rigid body atti-

tude, basic knowledge of graph theory, especially joint-

ly connected switching graphs, and the statement of at-

titude consensus problem. The details about the con-

struction of auxiliary vectors as well as derivation of

the controllers are presented in Section 3. In Section 4,

we show simulation results for four rigid bodies using

the control laws proposed in Section 3 and conclusion

follows in Section 5.

Notation R := (−∞,∞), R>0 := (0,∞), R�0 :
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= [0,∞). ‖A‖2 is the spectral norm of matrix A. |x|
stands for the standard Euclidean norm of the vector

x ∈ R
n. For any function f : R�0 → R

n, the L∞-norm

is defined as ‖f‖∞ = sup t � 0 |f(t)|, and the L2-norm

as ‖f‖22 =
� ∞

0
|f(t)|2 dt. The L∞ and L2 spaces are

defined as the sets {f : R�0 → R
n : ‖f‖∞ < ∞} and

{f : R�0 → R
n : ‖f‖2 < ∞} respectively.

2 Problem statement and background infor-
mation

2.1 Dynamics of multiple rigid bodies attitude
We consider a multiple rigid body system with n a-

gents, which are labeled as agent 1 to n. The attitude

dynamics of the ith agent is described by

σ̇i = G(σi)ωi,

ω̇i = J−1
i (−ω×

i Jiωi + ui),
(1)

where σi ∈ R
3 denotes the modified Rodrigues param-

eters (MRPs) representing the attitude of the ith agent,

ωi = [ωi1 ωi2 ωi3 ]T ∈ R
3 denotes the angular veloci-

ty of the ith agent, Ji and ui are the inertial matrix and

the external input torque of the ith agent respectively.

ω×
i is the skew-symmetric matrix with the form

ω×
i =

⎡
⎣

0 −ωi3 ωi2

ωi3 0 −ωi1

−ωi2 ωi1 0

⎤
⎦ . (2)

The matrix G(σi) is given by

G(σi) =
1

2
[
(1− σT

i σi)I3
2

+ σ×
i + σiσ

T
i ], (3)

which has the following properties[25–26]

σT
i G(σi)ωi =

1 + σT
i σi

4
σT
i ωi, (4)

G(σi)G
T(σi) = (

1 + σT
i σi

4
)2I3 = piI3. (5)

Remark 1 We hasten to point out that the use of MRPs

simplifies the analysis and formulas proving processing, since

there is no additional equality constraint to worry about. An-

other advantage is that MRPs can parameterize eigenaxis rota-

tions up to 360◦. In contrast, other three-dimensional parame-

terizations are limited to eigenaxis rotations of less than 180◦.

Refer to references [27–28] for more details.

Remark 2 The stability results presented in this paper

mean the stability of the corresponding kinematic parameters.

That is, the stability is guaranteed for all initial attitudes except

for the singular point Φi = ±360◦, where Φi is the principle

angle of the attitude of the ith rigid body.

2.2 Graph theory
Graphs can be conveniently used to represent the in-

formation flow between agents. Let G = {V , E ,A} be

an undirected graph or directed graph (digraph) of or-

der n with the set of nodes V(G) = {v1, v2, · · · , vn},

the set of edges E ⊆ V × V , and a weighted adja-

cency matrix A = {aij} with non-negative adjacency

elements aij . The node indices belong to a finite in-

dex set l = {1, 2, · · · , n}. An edge of G is denoted

by eij = (vi, vj), which is said to be incoming with

respect to vj and outgoing with respect to vi. For an

undirected graph, ∀i, j ∈ l, if (vi, vj) ∈ E(G), then

(vj , vi) ∈ E(G), but this does not hold for a digraph.

A directed path from node i to node j is a sequence

of edges of the form (i1, i2), (i2, i3), · · · , in a direct-

ed graph. A digraph Gs = {Vs, Es} is a subgraph of

G = {V , E} if Vs ⊆ V and Es ⊆ E∩(Vs×Vs). Given a

set of r digraphs {Gi = (V, Ei), i = 1, · · · , r}, the di-

graph G = (V, E) where E =
r⋃

i=1

Ei is called the union

of digraphs Gi, denoted by G =
r⋃

i=1

Gi, and this is also

used to the undirected graphs. The set of neighbors of n-

ode vi is the set of all nodes which point (communicate)

to vi, denoted by Ni = {vj ∈ V : (vi, vj) ∈ ε(G)}.

The graph adjacency matrix A = [aij ],A ∈ R
n×n, is

such that aij > 0 if j ∈ Ni and aij = 0 otherwise.

D = diag{d1, · · · , dn} ∈ R
n×n is called the degree

matrix of G, where di =
n∑

j=1

aij . The weighted Lapla-

cian matrix of G is L = D −A.

Given a piecewise constant switching signal �(t),
we can define a time-varying digraph G�(t) = (V , E�(t))
where E�(t) ⊆ V × V for all t � 0. G�(t) can be
called a dynamic digraph. On the other hand, given
a switching matrix A�(t) = [aij(t)] ∈ R

n×n satisfy-
ing, for any t � 0, aii(t) = 0, i = 1, · · · , n, and
aij(t) � 0, i, j = 1, · · · , n, we can always define a
dynamic digraph G�(t) so that A�(t) is the weighted ad-
jacency matrix of the digraph G�(t). We call G�(t) the
digraph of A�(t).

To model the jointly-connected topologies, we con-
sider an infinite sequence of continuous, bounded, non-
overlapping time intervals [tk, tk+1), k = 0, 1, 2, · · ·
with t0 = 0, T0 � tk+1 − tk � Tp for some constants
T0 and Tp. Assume that each interval [tk, tk+1) is com-

posed of the following non-overlapping subintervals
[t0k, t

1
k), · · · , [tj−1

k , tjk), · · · , [tmk−1
k , tmk

k ) with t0k = tk
and tmk

k = tk+1 for some nonnegative integer mk. The
topology switches at time instants t0k, t

1
k, · · · , tmk−1

k ,

which satisfy tjk−tj−1
k � τ, j = 1, · · · ,mk, with dwell

time τ a positive constant, so that during each subinter-
val [tj−1

k , tjk), the interconnection topology G�(t) does
not change. Note that in each interval [tk, tk+1), G�(t) is
permitted to be disconnected. The graphs are said to be
jointly connected across the time interval [t, t+Tp] with
Tp > 0 if the union of graphs G�(t) : s ∈ [t, t+ Tp] is

connected[29].

Assumption 1 The communication topologies
are undirected, and the collection of graphs in each in-
terval [tk, tk+1) is jointly connected.

2.3 Problem statement
Consider the attitude dynamics of the multiple rigid

body systems given by (1), the attitude consensus is
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reached if

lim
t→∞

|σi(t)− σj(t)| → 0,

lim
t→∞

|ωi(t)− ωj(t)| → 0, i, j ∈ l.
(6)

Before presenting our main results, we give the fol-

lowing useful lemmas at first.

Lemma 1[30] Define variables e(t) = xd(t) −
x(t), ẋr(t) = ẋd(t) + Γe(t), r(t) = ẋr(t) − ẋ(t) =
ė(t) + Γe(t), where xd(t), x(t) ∈ R

m, Γ ∈ R
m×m

is a positive definite matrix. Let e(t) = h(t) ∗ r(t),
where ∗ denotes the convolution product and h(t) =
L−1(H(s)) with H(s) being an m × m strictly prop-

er, exponentially stable transfer function, L−1 denotes

the inverse transfermation of the Laplace manipulator.

Then, r(t) ∈ L2 implies that e(t) ∈ L2 ∩ L∞,

ė(t) ∈ L2, e is continuous and |e(t)| → 0 as t → ∞.

Besides, if |r(t)| → 0 as t → ∞, then |ė(t)| → 0.

Lemma 2 [31] Let ti(i = 0, 1, 2, · · · ) be a se-

quence satisfying t0 = 0, ti+1 − ti � τ > 0. Suppose

that a scalar continuous V (t) : [0,+∞) → R satisfies

1) V (t) is lower bounded;

2) V̇ (t) is differentiable and non-positive on each

interval [ti, ti+1);

3) V̈ (t) is bounded over [0,+∞) in the sense that

there exists a positive constant ξ such that

sup
ti�t�ti+1,i=0,1,2,···

|V̈ (t)| � ξ. (7)

Then V̇ (t) → 0 as t → +∞.

3 Main results
In this section, we deal with the distributed attitude

consensus problem with time-delay and jointly con-

nected switching topologies in two cases, i.e., constan-

t time-delay coupled with jointly connected topologies

and varying time-delay coupled with jointly connect-

ed topologies. By constructing proper auxiliary vec-

tors, we establish different effective control protocols

to solve both the two problems.

3.1 Attitude consensus with constant time-delay
and switching topologies

We associate each agent with the following auxil-

iary signal

ei = σ̇i + cσi, (8)

where c is a positive constant.

Note that for jointly connected topologies, there

may exist isolated agents during some time intervals.

Therefore, we divide the whole system into two subset-

s, i.e., the connected agent set lc and the isolated agent

set ls, where lc
⋃
ls = l and lc

⋂
ls = ∅. The control

law is designed as (9), where j ∈ Ni, aij(t) is the i, j
entry of the weighted adjacency matrix A�(t),

ηi = 1/
n∑

j=1

aij(t), ηj = 1/
n∑

i=1

aji(t),

γ > 0 is a constant,

ei(t− T ) = σ̇i(t− T ) + cσi(t− T ),

and T > 0 is the constant time-delay.

ui =

⎧⎪⎪⎨
⎪⎪⎩

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ

n∑
j=1

aij(t)(
ηi + ηj

2
ei − ηjej(t− T ))], i ∈ lc,

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ(ei − ei(t− T ))], i ∈ ls.

(9)

Combining (1)(5)(8) and (9), the derivative of ei
can be written as

ėi =

⎧⎪⎨
⎪⎩
−γ

n∑
j=1

aij(t)(
ηi + ηj

2
ei − ηjej(t− T )), i ∈ lc,

−γ [ei − ei(t− T )] , i ∈ ls.

(10)

The results are as follows:

Theorem 1 Under Assumption 1, with the con-

trol input (9), the attitude consensus of system (1) is

achieved as (6).

Proof Define a Lyapunov-Krasovskii function

as V (t) =
n∑

j=1
Vi(t) for the system, where

Vi(t) =
γ

2

� t

t−T
eTi (τ)ei(τ)dτ +

1

2
eTi ei. (11)

It is worth noting that V (t) is continuously differen-

tiable in spite of the existence of the switching topolo-

gies.

According to the control input (9), we divide V (t)
into two parts, i.e., V (t) = Vc(t) + Vs(t), where

Vc(t) =
∑
i∈lc

Vi(t), Vs(t) =
∑
i∈ls

Vi(t).

The derivative of Vc(t) is given by

V̇c(t) =
γ

2

∑
i∈lc

[eTi ei − eTi (t− T )ei(t− T )] +
∑
i∈lc

eTi ėi =

γ

2

∑
i∈lc

ηi
n∑

j=1
aij(t)[e

T
i ei − eTi (t− T )ei(t− T )]−

γ
∑
i∈lc

eTi
n∑

j=1
aij(t)[

ηi + ηj
2

ei − ηjej(t− T )] =

− γ

2

∑
i∈lc

n∑
j=1

aij(t)ηje
T
i ei =

+ γ
∑
i∈lc

n∑
j=1

aij(t)ηje
T
i ej(t− T )−
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γ

2

∑
i∈lc

n∑
j=1

aij(t)ηie
T
i (t− T )ei(t− T ) =

− γ

2

∑
i∈lc

n∑
j=1

aij(t)ηj [ei − ej(t− T )]T×

[ei − ej(t− T )] , (12)

and the derivative of Vs(t) is given by

V̇s(t) =
γ

2

∑
i∈ls

[
eTi ei − eTi (t− T )ei(t− T )

]
+

∑
i∈ls

eTi ėi =

γ

2

∑
i∈ls

[
eTi ei − eTi (t− T )ei(t− T )

]−

γ
∑
i∈ls

eTi [ei − ei(t− T )] =

− γ

2

∑
i∈ls

[
eTi ei + e2i (t− T )− 2eTi ei(t− T )

]
=

− γ

2

∑
i∈ls

[ei − ei(t− T )]T [ei − ei(t− T )], (13)

where we have used the fact that
∑
i∈lc

n∑
j=1

aij(t)ηie
T
i (t− T )ei(t− T ) =

∑
i∈lc

n∑
j=1

aij(t)ηje
T
j (t− T )ej(t− T ),

which is based on the assumption that G�(t) is undi-

rected.

It is obvious that V (t) � 0 and V̇ (t) � 0,

then it follows that lim
t→∞V (t) = V (+∞) exists, thus

ei ∈ L∞ and ei − ej(t − T ) ∈ L2. Note that

ei = σ̇i + cσi, the Laplace transfer function from ei
to σi is H(s) = 1/(s + c). As c > 0, the transfer

function H(s) is stable. Because ei ∈ L∞, we get

that σi(t) ∈ L∞, and σ̇i(t) ∈ L∞, thus ėi(t) ∈ L∞
according to (10). Taking the derivatives of V̇c(t) and

V̇s(t), we can get that

V̈c(t) = −γ
∑
i∈lc

n∑
j=1

aij(t)ηj [ei − ej(t− T )]T×

[ėi − ėj(t− T )] , (14)

V̈s(t) = −γ
∑
i∈ls

[ei − ei(t− T )]T [ėi − ėi(t− T )].

(15)

Obviously, the boundedness of V̈ (t) is dependen-

t on the boundedness of ei(t), ei(t − T ), ėi(t) and

ėi(t− T ). Based on the above analysis, we conclude

that all these signals are bounded, then V̈ (t) is bound-

ed. By invoking Lemma 2, we get lim
t→∞ V̇ (t) = 0.

Next, we will show that the control goal (6) can

be reached. From Assumption 1, there exists M > 0
such that ∀k � M , in particular we choose k such

that the time interval [tk, tk+1) encompasses some

time intervals across which the agents are jointly con-

nected. For the connected agents, the connectivity of

the network across the time interval guarantees that

lim
t→∞ ei − ej(t− T ) = 0. Define σij = σi−σj(t−T ),

we get that ei−ej(t−T ) = σ̇ij+cσij . As ei−ej(t−
T ) ∈ L2, we conclude that σi − σj(t − T ) → 0 and

σ̇i − σ̇j(t− T ) → 0 according to Lemma 1.

Similarly, for the isolated agents, we get that

σi(t − T ) = σi and σ̇i(t − T ) = σ̇i as t → +∞.

For these isolated agents, taking agent s as an exam-

ple, it will not always be isolated in the time interval

[tk, tk+1). Assume that agent s becomes connected

with agent j at time instant tmk
k . It can be concluded

that σs(t
mk
k ) = σs(t

mk
k − T ), also ∃ε > 0 and ε → 0

for σs(t
mk
k +ε) = σs(t

mk
k ), which is based on the con-

tinuity of σs(t). It thus follows that σs(t
mk
k +ε−T ) =

σj(t
mk
k +ε) and σj(t

mk
k +ε−T ) = σs(t

mk
k +ε). Then

we can get that

σj(t
mk
k + ε) = σj(t

mk
k + ε− T ) = σs(t

mk
k + ε),

which implies that σs(t
mk
k ) = σj(t

mk
k ). Similarly, we

get that σ̇s(t
mk
k ) = σ̇j(t

mk
k ) as tmk

k → +∞. From all

the above analysis, we can conclude that

lim
t→∞ |σi(t)− σj(t)| → 0,

lim
t→∞ |σ̇i(t)− σ̇j(t)| → 0, i, j ∈ l.

(16)

This completes the proof.

Remark 3 The attitude consensus control problems are

also studied in [18] and [19] with communication time de-

lays and dynamically changing topologies. However, the dy-

namically changing topologies are uniformly connected, which

means that the topology is always connected and there is no

isolated agent during each time interval [tmk , tm+1
k ).

Remark 4 For uniformly connected switching topolo-

gies, each agent keeps connected all the time, and therefore

there are no isolated agents, but this does not hold for jointly

connected switching topologies. In order to prevent the diver-

gence of the isolated agents, we design different control laws

for the connected and isolated agents respectively as (9). The

control input for the isolated agents uses the difference infor-

mation of the isolated agents between the current and the past.

Remark 5 By setting T = 0 and following the same

lines of the proof of Theorem 1, it is straightforward to ver-

ify that the consensus problem (6) can also be solved for the

time-delay free case.

3.2 Attitude consensus with varying time-delay
and switching topologies

Denote T (t) as the varying time delay from the

jth agent to the ith agent. Suppose that the time delay

is differentiable, bounded and satisfies

Ṫ (t) � � < 1, (17)

where � is a nonnegative constant. Also, we assume

that T̈ (t) is bounded. Define a positive constant gain
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dependent on the maximum changing rate of delay as

d2 < 1−�. (18)

We design the input for the ith agent as (19),

where j ∈ Ni, aij(t) is the i, j entry of the weighted

adjacency matrix A�(t),

ηi = 1/
n∑

j=1
aij(t), ηj = 1/

n∑
i=1

aji(t),

γ > 0 is a constant, ei(t − T (t)) = σ̇i(t − T (t)) +

cσi(t−T (t)), and T (t) is the varying communication

time-delay.

ui =

⎧⎪⎪⎨
⎪⎪⎩

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ

n∑
j=1

aij(t)(
ηi + d2ηj

2
ei − d2ηjej(t− T (t)))], i ∈ lc,

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ(

d2 + 1

2
ei − d2ei(t− T (t)))], i ∈ ls.

(19)

Combining (1) (5) (8) and (19), the derivative of ei can be written as

ėi =

⎧⎪⎪⎨
⎪⎪⎩

−γ
n∑

j=1
aij(t)(

ηi + d2ηj
2

ei − d2ηjej(t− T (t))), i ∈ lc,

−γ[
d2 + 1

2
ei − d2ei(t− T (t))], i ∈ ls.

(20)

Then we get the following result:

Theorem 2 Under Assumption 1, and with the

control input as (19), the attitude consensus of system

(1) is achieved as (6).

Proof Define a Lyapunov-Krasovskii func-

tion as V (t) =
n∑

j=1
Vi(t) for the system, where

Vi(t) =
γ

2

� t

t−T (t)
eTi (τ)ei(τ)dτ +

1

2
eTi ei. (21)

Obviously, V (t) is continuously differentiable in spite

of the switching topologies, because V (t) is indepen-

dent of the switching topologies and V̇ (t) exists.

According to the control input (19), we divide

V (t) into two parts, i.e., V (t) = Vc(t)+Vs(t), where

Vc(t) =
∑
i∈lc

Vi(t), Vs(t) =
∑
i∈ls

Vi(t).

Define e2i (t− T (t)) � eTi (t− T (t))ei(t− T (t)),
then the derivative of Vc(t) is given by

V̇c(t) =
γ

2

∑
i∈lc

[eTi ei − (1− Ṫ (t))e2i (t− T (t))] +
∑
i∈lc

eTi ėi =

γ

2

∑
i∈lc

ηi
n∑

j=1
aij(t)[e

T
i ei − (1− Ṫ (t))e2i (t− T (t))]−

γ
∑
i∈lc

eTi
n∑

j=1
aij(t)[

ηi+d2ηj
2

ei−d2ηjej(t−T (t))] �

γ

2

∑
i∈lc

ηi
n∑

j=1
aij(t)[e

T
i ei − d2e2i (t− T (t))]−

γ
∑
i∈lc

eTi
n∑

j=1
aij(t)[

ηi+d2ηj
2

ei−d2ηjej(t−T (t))] =

− γ

2

∑
i∈lc

n∑
j=1

aij(t)ηjd
2[eTi ei + e2j (t− T (t))]+

γ

2

∑
i∈lc

n∑
j=1

aij(t)ηjd
2[2eTi ej(t− T (t))] =

− γ

2

∑
i∈lc

n∑
j=1

aij(t)ηjd
2[ei − ej(t− T (t))]2. (22)

Similarly, the derivative of Vs(t) is given by

V̇s(t) =

γ

2

∑
i∈ls

[eTi ei−(1−Ṫ (t))e2i (t− T (t))]+
∑
i∈ls

eTi ėi �

γ

2

∑
i∈ls

[eTi ei − d2e2i (t− T (t))] +
∑
i∈ls

eTi ėi =

− γ

2

∑
i∈ls

d2[ei − ei(t− T (t))]2,

(23)

where we have used the fact that
∑
i∈lc

n∑
j=1

aij(t)ηie
T
i (t− T (t))ei(t− T (t)) =

∑
i∈lc

n∑
j=1

aij(t)ηje
T
j (t− T (t))ej(t− T (t)). (24)

It is obvious that V (t) � 0 and V̇ (t) � 0, then it

follows that lim
t→∞V (t) = V (+∞) exists. Similarly,

we get that ei ∈ L∞ and ei− ej(t−T (t)) ∈ L2, thus

σi ∈ L∞, σ̇i ∈ L∞ and ėi ∈ L∞. Then we conclude

that V̈ (t) is bounded on each non-switching time in-

terval. By invoking Lemma 2, we get lim
t→∞ V̇ (t) = 0.

Then, it follows that

lim
t→∞

γ

2

∑
i∈lc

n∑
j=1

d2aij(t)ηj |ei − ej(t− T (t))|2 = 0

(25)

and

lim
t→∞

γ

2

∑
i∈ls

n∑
j=1

d2|ei − ei(t− T (t))|2 = 0. (26)

With similar analysis, we can get that σi−σj(t−
T (t)) → 0 and σ̇i − σ̇j(t− T (t)) → 0 as t → ∞ for

the connected agents as well as the isolated agents.
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Therefore we can conclude that

lim
t→∞ |σi(t)− σj(t)| → 0,

lim
t→∞ |σ̇i(t)− σ̇j(t)| → 0, i, j ∈ l.

(27)

This completes the proof.

Remark 6 In (19), if we set Ṫ (t) = 0 and d = 1, then

(19) equals to (9), which means that the constant time delay is

a special case of the varying time delay.

Remark 7 In (19), we can also extend the varying time

delay to the non-identical time delays. Define Ti(t) as the com-

munication delay transmitted from the ith agent to its neigh-

bors, which also satisfies (17) and (18). If the control input is

designed as (29) and the Lyapunov-Krasovskii function is cho-

sen as

V (t) =
n∑

j=1
[
γ

2

� t

t−Ti(t)
eTi (τ)ei(τ)dτ +

1

2
eTi ei], (28)

then the problem will be solved with similar process.

ui =

⎧⎪⎪⎨
⎪⎪⎩

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ

n∑
j=1

aij(t)(
ηi + d2ηj

2
ei − d2ηjej(t− Ti(t)))], i ∈ lc,

ω×
i Jiωi − JiG

T
i

pi
[Ġiωi + cσ̇i + γ(

d2 + 1

2
ei − d2ei(t− Ti(t)))], i ∈ ls.

(29)

Remark 8 Since V̇ (t) contains variable Ṫ (t), the ex-

pression of V̈ (t) is complicated and can be given as follow:

V̈c(t) =

γ

2

∑

i∈lc

ηi
n∑

j=1
aij(t)[2e

T
i ėi + T̈ (t)e2i (t− T (t))−

2(1− Ṫ (t))2eTi (t− T (t))ėi(t− T (t))]−

γ
∑

i∈lc

n∑

j=1
aij(t)[(ηi + d2ηj)e

T
i ėi − d2ηj ė

T
i ej(t−

T (t))− d2ηj(1− Ṫ (t))eTi ėj(t− T (t))], (30)

V̈s(t) =

γ

2

∑

i∈ls

[2eTi ei + T̈ (t)e2i (t− T (t))− 2(1−

Ṫ (t))2eTi (t− T (t))ėi(t− T (t))]−
γ
∑

i∈ls

[(d2 + 1)eTi ėi−

d2ėTi ei(t− T (t))− d2(1− Ṫ (t))eTi ėi(t− T (t))]. (31)

4 Numerical example
In this section, we present a numerical example

with four rigid bodies to illustrate the effectiveness

of our algorithm. Due to space limitation, we only

consider the second case in this simulation, i.e., vary-

ing communication time delays coupled with jointly

connected topologies. The dynamic equation of each

follower is modeled by (1).

Fig.1 shows the switching topologies that charac-

terize the interaction among the agents. In our simula-

tion, we choose aij = 1, i = 1, · · · , 4, j = 1, · · · , 4,

if agent j is a neighbor of agent i, and aij = 0 oth-

erwise. To make our problem interesting, we assume

that the communication graph G�(t) associated with

these rigid bodies is dictated by the following switch-

ing signal:

�(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, λτ � t < (λ+ 0.25)τ ,

2, (λ+ 0.25)τ � t < (λ+ 0.5)τ ,

3, (λ+ 0.5)τ � t < (λ+ 0.75)τ ,

4, (λ+ 0.75)τ � t < (λ+ 1)τ ,

(32)

where τ = 1 s, λ = 0, 1, 2, · · · . The signal �(t) de-

fines four fixed graphs Gi(i = 1, 2, 3, 4) as shown in

Fig.1. Note that Assumption 1 is satisfied even though

G�(t) is disconnected at any time t � 0.

Fig. 1 The switching topologies that characterizes the interac-

tion among the four agents

The initial attitudes of the four rigid bodies are set

to be respectively, σ1 = [4, 3, 4]T, σ2 = [0, 3, 1]T,

σ3 = [5, 1, 2]T, σ4 = [−5, 2, 4]T, and the initial

angular velocities are set to be respectively, ω1 =
[5, 3, 6]T, ω2 = [3, 2, 4]T, ω3 = [4, 1, 6]T, ω4 =
[1, 5, 2]T. The communication delay is set to be

T (t) = 0.5 + 0.1 sin t, and the control parameters

are chosen as c = 10 and γ = 10.

Fig.2 shows the attitude errors between agent 1

and agent 2, 3, 4 by using the control input (9). We

see that the attitudes of the four agents converge to

the same value. From Fig.3, we can see that the angu-

lar velocities of the four agents converge to the same

value. Fig.4 shows the sliding-mode vector errors be-

tween agent 1 and agent 2, 3, 4. We can see that the

sliding-mode vector errors si − s1(i = 2, 3, 4) con-

verge to zero, just as what we demonstrate in Theo-

rem 2.
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Fig. 2 The attitude error σi − σ1(i = 2, 3, 4)

Fig. 3 The angular velocity error ωi − ω1(i = 2, 3, 4)

Fig. 4 The auxiliary vector error ei − e1(i = 2, 3, 4)

Remark 9 The attitude and angular velocity states of the

agents show the jumping phenomenon because of the switch-

ing topologies, whose period is synchronous with the switching

signal �(t).

Remark 10 Consentability of the systems is not only re-

lated to the protocol design, but also effected by the average

dwell time[32]. In this paper, we just assume that the average

dwell time is sufficiently long, so that we only focus on the the

design of the control algorithms.

5 Conclusions
In this study, we highlight the distributed attitude

consensus problem for multiple rigid body system-

s under jointly connected switching topologies cou-

pled with constant and varying communication time

delays. Two distributed control algorithms are pro-

posed based upon the distributed auxiliary vectors,

and the consensus is achieved which renders the at-

titudes and the angular velocities of the agents to the

same values. Numerical simulations are performed

to support the theoretical analysis. Compared with

previous algorithms, the proposed algorithms are able

to achieve attitude consensus under jointly connected

topologies, even coupled with time delays. However,

the requirement on two-hop neighbors’ information is

conservative. Future work should be focused on the

distributed attitude consensus problem in the case of

directed topology together with heterogeneous time

delays on the basis of the present study.
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