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Abstract: In this paper, the design of robust backstepping decentralized tracking controller is addressed for the longitudinal dynamics
of a generic hypersonic flight vehicle with external disturbances, parameter perturbations, and non-continuous unknown nonlinear
aerodynamic influence. To deal with the complex system, the standard backstepping and signal compensation method are combined to
construct a ‘simple’ robust controller. The proposed method can not only ensure the semi-global robust practical tracking property of
the closed-loop system, but also guarantee the tracking error as small as desired with expected convergence rate. Simulation results with
nonlinear uncertainties, external disturbances and parameter perturbations illustrate the effectiveness of the methodology.
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1 Introduction Recently, with respect to the challenges mentioned

Hypersonic flight vehicles (HFVs) are widely con- above, the design of guidance and control systems for
cerned due to the advantages of rapid flight speed, low HFVs has attracted much attention. Based on the tech-
launch cost, and long running time, which can make nique of input/output linearization, different kinds of
HFVs access space more reliably and efficiently. HFVs ~ control strategies have been employed, such as lin-

are exploited to test the necessary disruptive technolo- ear output feedback control®!, observer-based control'®!
. . 8 . .
gy and develop a new weapon that can precisely strike and neural network!”"*l, and linear parameter-varying
enemy targets in just an hour "4, Compared with tra- control® 1% Despite the fact that these linear control
ditional flight vehicles, the research on hypersonic ve- schemes could be effective for linear models near the
hicles is extremely challenging due to the facts such as  equilibrium point, they could lead to unstable behav-
strong nonlinearity and high flight altitude. ior when the flight states are far from the equilibrium
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point. Thus, for nonlinear dynamic models of HFVs,
various advanced nonlinear control strategies, such as
sliding mode control'!!, robust control!'>~'#! guaran-
teed cost control!’), gain-scheduling control%!, fuzzy
control"~1°1 and backstepping control®*2! have
been developed for the control design of the longitu-
dinal dynamics of the HFVs. However, these nonlin-
ear control schemes required that the system parameters
should be precisely known and system nonlinearities
were smooth functions. Obviously, the designed con-
troller may exhibit undesired performance when great
parameter perturbations and highly complex nonlinear
uncertainties in HFVs are considered. To deal with
the possible problems encountered by the above con-
trol approaches, adaptive control®>* and disturbance
observer-based control methods were investigated in the
literature>>~2%), In [26-27], systems uncertainties were
caused by external disturbances and parameter pertur-
bations. The external disturbances were bounded by
constants with match or mismatch condition. In [28]
the high gain observer was investigated on flexible hy-
personic flight dynamics with lumped uncertainties.

Although these control methods discussed above
were proved to be efficient to the HFVs, they mainly fo-
cused on external disturbance or smooth nonlinear func-
tions. It was difficult for these methods to take into ac-
count external disturbances, great parameter perturba-
tions and non-continuous unknown nonlinear functions
together. Moreover, the tracking performances, such as
convergence rate, were not discussed.

Over the last 20 years, backstepping control has be-
come one of the most popular control methods for some
special classes of nonlinear systems, since it provides
a systematic procedure for designing a controller by a
step-by-step recursive algorithm. For better control per-
formance, different control strategies are combined to-
gether by taking advantage of their strengths respective-
1y?°-311, Combined with backstepping control strategy,
many effective methods have been proposed for stabil-
ity analysis and controller design. However, backstep-
ping control has the drawback of the phenomenon of

“explosion of complexity” in the control law due to
repeated differentiations of the virtual control functi-
ons.

Another important issue associated with the control
of nonlinear systems, concerns convergence rate and
steady state tracking error bounds. A new robust adap-
tive controller for multi-input multi-output (MIMO)
feedback linearizable nonlinear systems, capable of
guaranteeing a prescribed performance, was developed
in [32]. By prescribed performance, the tracking er-
ror should be made as small as desired, with a maxi-
mum overshoot less than a sufficiently small prespeci-

fied constant, exhibiting convergence rate no less than
a prespecified value. Visualizing the prescribed per-
formance characteristics as tracking error constraints,
the key idea of the technique in [32] was to provide
an error transformation function that transforms the ori-
ginal “constrained” nonlinear system into an equiv-
alent “unconstrained” one. Stabilizing the equivalent

“unconstrained” system was sufficient to achieve pre-
scribed performance guarantees. However, a tangent
hyperbolic function which was generally used as the
transformation function, combined with prescribed sm-
ooth function to transform the tracking error, made the
controller design very complex. Furthermore, this tech-
nique had a singularity problem for a certain prescribed
performance condition*2-331,

In this paper, the main contributions are as fol-
lows: A “simple” robust controller is proposed to
deal with the uncertain MIMO nonlinear model with
non-continuous nonlinear uncertainties, parameter per-
turbations, external disturbances, unknown virtual con-
trol coefficients and strongly coupled interconnections.
The controller is constructed with less limitation, which
implies that the reference output is not required to be s-
mooth and the uncertain nonlinearities are not expected
to be continuous. The transient and steady state prop-
erties are explored. The tracking error can be made as
small as desired with expected convergence rate. The
whole designed controller has a simple structure, and
can be realized easily.

The signal compensation method was first proposed
in [34] to deal with robust output tracking problem for
linear time-invariant system with parameter perturba-
tions. This idea was further utilized to treat the control
problems for nonlinear time-varying systems®>>=¢. In
this paper, signal compensation framework and back-
stepping design method are combined together to get
desired robust control property for HFVs.

The paper is organized as the following: Section 2
presents the longitudinal dynamics of a generic HFV.
In Section 3 the block-triangular form is formulated.
Section 4 proposes the robust controller design method.
The robust control properties are stated and the main
results are proven in Section 5. The simulation result
is given in Section 6. Finally, conclusions are stated in
Section 7.

2 The hypersonic model and strict-feedback
formulation
2.1 The hypersonic model
The model for the longitudinal dynamics of the hy-
personic vehicle is developed by National Aerospace

Plane Program. The longitudinal dynamics of the hy-
personic vehicle model can be described by a set of five-
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order differential equations taken from [26] and [27]. B {0.02576B , B <1,
. Tcosa—D i o
7 — Teosa B usgl’y oy, 0 0.02240 + 0.00336085, 5 > 1,
i om r O, = 0.62030,
= Vsiny, ) @ oy, = 0.64500% + 0.0043378a + 0.003772,
P T;ma _ o “//’"2) BV vd, 3 Oul@) = —0.0350"40.0366160+5.3621x10~°,
m r
G—qo A, @  Om(o= 00_.0292 (0 — ),
.M C = —q(—6.7960” + 0.3015a — 0.2289) .
G = Iyy +dq. (5) M(Q)O 2VQ( a” + a )
i The engine dynamics can be described as follows:

The variables in the model of the longitudinal dynamics
of the HF Vs are listed in Table 1.

Table 1 Aircraft model nomenclature

Ct thrust coefficient
C lift coefficient
Cp drag coefficient
Cn(g)  pitch moment coefficient due to pitch rate
Cwm(a)  pitch moment coefficient due to angle of attack
Cwm(de)  pitch moment coefficient due to elevator deflection
reference length
altitude
moment of inertia
mass
pitching moment
pitch rate

radius of the Earth

radial distance from centre of the Earth
reference area

velocity

drag

thrust

lift

angle of attack

throttle setting

>0 hﬂ®<mﬁ§7@§3§>m

de elevator deflection

~y flight-path angle

s gravitational constant
p density of air
Where

1
q=5pV* T =qSCr, L =gSCvL, D = gSCb,

My, = ¢Sc[Cu(a) + Cu(de) + Culq)],
r=h+ Rg, Cr = (1+ ACy)Cr,,

Cr = (14 ACL)Cr,, Cn = (1+ ACh)Cp,,
Cu(a) = (14 ACu(a))Cu(@)o,

Cu(de) = (1 + ACwm(0e))Cr(de)o,

Cu(q) = (1 + ACm(9))Cn(q)o-

According to [26], d;(i = V,7~,q) are unknown ex-
ternal disturbances. ACT, ACL, ACp, ACu(«),
AC\(d,), ACw(q) are aerodynamic parameter pertur-
bations. The nominal values of the parameters are listed
as follows:

B = —26w.f — B + Wi (©)
The model is high nonlinear and inner coupling. In
the the longitudinal analytical model (1)—(5), parame-
ters m, p, Iyy, p, S, ¢, Ry are modeled with an addi-
tive perturbation [26]. In the design process, the bounds
of parameters perturbation need to be known, because
functions ¢;;(¢ = 1,2) introduced in (9) should be
known.
Assumption 1 -y is very small during the gliding
phase, so sin y ~ -y in (2) for simplification. The thrust
term 7" sin « is generally much smaller than L, so it can

be neglected in (3)120-211,

2.2 Strict-feedback formulation

A) Velocity subsystem (1) can be rewritten as

T11 = Q11(T11, Tz, Toz, diy)+
911($117$237d11)$12,

T1z = ¢12(x11,$12, d12) + 912(d12>x13,

T1g = ¢13(T11, T12, T13, di3) + gis(dis)u,

Y1 = T11,

(N
where
1y =V, 12 = f, 113 = B,
Tag =17, Toz = @, U = fe.
1 is the output, and dy1, di2, dy3 are external dis-
turbances of velocity subsystem.
Due to parameter perturbations and external distur-
bances dlla d12, d13, ¢1j and 915 (] = 17 27 3) are nonli-
near uncertainties. Ignore the influence of disturbances,

the nominal values of ¢;; and ¢;, can be described as
follows:

Gp11 = —(Dim + psin wgo/r?) +
@S x 0.0224 cos xo3/m,

gn11 = @S % 0.00336 cos xo3/m, 8 > 1.
Otherwise ¢,11 = —(D/m + psinxao/r?), gu1 =
QSXOO2576 COS Taz/m. ¢n12 = 0, gni2 = ]., ¢n13 =
—28w, 13 — WT19, gn13 = w? with uncertain param-
eters defined above.

B) With Assumption 1, the dynamics of altitude
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subsystem (2)—(5) can be written as

To = ¢21 (51321, d21) + g21 (JBM, d21)$22;

Top = Poa(T21, Taa, T11, dao)+
G22(Z11, da2) T3,

To3 = Pa3(T21, To2, Tog, T11, da3)+
923(d23)$247

Tog = ¢24($21,$22,33237$247 $11,d24)+
Goa(Z11, das)us,

Y2 = Tau,

where To7 = h, oy = ¢, us = .. Yo is the output,
and dy;, dag, das are external disturbances of altitude
subsystem.

Similarly, ¢o; and g2;(j = 1,2, 3, 4) are nonlinear
uncertainties. Ignore the influence of disturbances, the
nominal values of ¢; and go; are as follows: ¢,,2; = 0,
gn21==L11, ¢n22:—(,u—$%17”) COS$22/($117’2), Gn22=
0.6203GS/(mx11), Pnaz = (u—ax3,7) €O Tool(21177)
—0.6203GSxo3/(Mmx11), gnoz=1, Gn2a=qSc[Cn(a)
+Cwm(q) —0.0292a/1,y, gnoa = 0.0292¢S¢/1,, with
uncertain parameters defined above.

w(t)=[z11(t) T12(t) @13(t) 221(t) @22(t) @w23(t)
T4 (t)]T is the state vector of the system, u(t) = [u;(t)
uo(t)]* is the control input vector, y(t) = [y ya|*
is the output vector, d(t)=[d11(t) di2(t) di3(t) daoy(t)
doo(t) daz(t) dog(t)]" is the external disturbance vec-
tor, Yq(t) = [ya1 yaz)" is the reference output vector.

Assumption 2 There are positive constants 7,
and 7, such that reference output |yq;(t)| < 7; and
(1)) < o = 1,2).

Assumption 3 There is a positive constant 73
such that the external disturbance vector ||d(t)|| < 73

Remark 1 ¢;;(z,d;;) and g;;(x,d;;) are unknown
non-continues nonlinear functions caused by parameter per-
turbations, external disturbances and aerodynamic influences.
According to (7) and (8), there are known nonnegative-valued
functions ¢;;(x,7n3), such that |d>,;j(at,dij)| < @ij(x,m3).
That is

8)

|11 (211, T22, 223, d11)| < p11(T11, T22, T23,73),
|p12(711, 212, d12)| < p12(211, 712, M3),
|p13(711, 212, 213, d13)| < p13(211, 712,713, M3),

|21 (21, d21)| < p21(w21,73),

|p22 (221, w22, #11, do22)| < o2 (221,22, %11,7m3),  (9)
|p23(z21, 22, T23, T11, d23)| <
p23(T21, T22, 23, T11,M3),

|p24(x21, 222, T23, 24, T11, d24)|

< w24 (w21, To2, 23, T24, 211, 73),
where ¢;;(x,13)(i = 1,2) are known functions. From hyper-
sonic vehicle model (7) and (8), one has that g;;(x,d;;) >
gijn(t) > 0.

For simplicity of statement, in the sequel,
¢ii(x,dyj), gij(x, d;;) will be denoted as ¢;;(t), gi;(t),

respectively.

The control object is to design the robust controller
for systems (7) and (8) such that:

1) all the states in the closed-loop systems remain
bounded;

2) the tracking error ||y(t) — ya(t)|| can be made
as small as desired with expected convergence rate.

3 Robust control of hypersonic flight vehi-
cles

In this section, the design procedure of robust back-
stepping method for the sth subsystem is presented. For
the sth subsystem of (7) and (8), the controller design
procedure contains p; steps. At each backstepping step,
the subsystem is divided into a nominal model and the
equivalent disturbance. A nominal controller is design-
ed to stabilize the nominal model, and a robust compen-
sator is designed to suppress the effects of the equiva-
lent disturbance.

Step 1 The tracking error variable of the ith sub-
system is defined as z;1(¢) = x;1(t) — ya:(t). Then one
has that

Za(t) = gn(Dzia(t) + u (t), (10)

where éil(t) = ¢i1(t) — Yai(t). By viewing x;5(t) as a
virtual control input, design the virtual feedback control
law as

fa

Qi AL (t) (11)
gilN(t) gilN(t) e

where ay;; is a positive constant to be designed later.
Define z;5(t) = x2(t) — Zi2(t), one has
Zi(t) = —aazin(t) + ¢ (t) + fawa(t), (12)
where ¢;1(t) = ¢u(t) + gan(t)zia(t) + [ga(t) —
giin (t)]22(t), which is viewed as the equivalent dis-

turbance. To obtain robust tracking property, the robust
virtual compensating signal is designed as follows:

wi (t) = P (t). (13)

zin(t) +

S + le
From (12), one has

&ﬂ(t) = (54 u1)zi (t) — fawa(t). (14)

From (13) and (14), w;; (t) can be expressed as
Q;
wip (t) = —(1+ f)zﬂ(t). (15)

Remark 2 Dynamic surface control (DSC) method and
signal compensation method were typical techniques to solve
the problem of “explosion of complexity” **-", The nonli-
near functions were required to be smooth within DSC techni-
quel”!. The signal compensation method aims to design a ro-
bust compensator to approximate and restrain the effect of
nonlinear uncertainties, which are not required to be continu-
ous®!, If fi1 is sufficiently large, the robust compensator f;;
w;1 would approximate and weaken the effects of the equiva-
lent disturbance ¢A5i1 () to achieve robust tracking property.
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Step j(2 < j < p;) Define z;;(t) = x;;(t) — The real control input u,(t) for ith subsystem is
Z;;(t). Then one has an error subsystem constructed as
2ij(t) = 9ij ()i () + &35 (1) — 245(t) = w;(t) = — ai’”(t) Zip, (£) + fip"’(t) Wiy, (). (20)
915 (D341 (£) + 61 (1), (16) o e et
Similarly, the robust virtual compensating signal
where ) is desiened
i1y w;), (t) is designed as
Tij(t) = — — 0 zig-1) (1) +
9i(i-1)N Wip, (t)= T f ¢zpi( ) =
fii-) i
7“&'(;‘4)@)7 Qip,
9iG-nn (1) —(1+ =)z, (8), @1
2
QGi-1)
But) = 0uy(t) = sz (4 where
f( N + aj N ¢7;Pi (t) = ¢’iﬂi (t) + [giﬁi (t) - g’iPiN(t)] uz(t)
— tj [d)z(J n(t)+ The whole controller can be described as
-1 ()
fiG—nwigi—1)(@)]- ui(t) = — ai’”t Zip, () + fip'it w;, (1),
A virtual control input x;;41)(t) is constructed to = Jiv tN< ) ; Gipun (1)
stabilize the jth error subsystem Zn(t) = za(t) - yd;g ()’ :
i(j—1
) i 25 (t) = @) + ——— <21 (1) -
Tigrn(t) = ———752;(t) + i wi;(t), ’ ’ giGi—on(8)
gijn (t) gijn (1) fiGi-1) )
— D (),
amn gi(j_l)N(t) (3-1)
then j:2737"'7pi7
. 2 Qi .
Zq'(t) = _Oéijzij(t) + ¢ij(t> + fijwij(t), wij(t) = —( SJ )Zij(t), 3=12,--ps
where 1=1,2.
But) = By (1) + [0 (t) — g () g (1) + 22
ij\U) = Pij ij\l) — Gij Li(j .
J J Yii YigN G+ Remark 3 From equation (22), one has that the con-
9iin (£)Zig+1) (1) troller is decentralized. The whole designed controller is linear

The robust virtual compensating signal is designed as
follows:

wi;(t) = s+ f” ¢U( ).
Note that él](t) = (S + Oéij)Zij(t) — fijwij (t),
w;;(t) can be expressed as
wi; (t) = —( )zz-j (t). (18)

Step p; Define z;,,(t) = x;,,(t) — T, (t). Its
derivative is
Zip; (t)= Gip; (t)uq(t) + qfim (t) — Lip, (t) =
where
5 Qi(p;—1)
Tip, (1) = ————=Zi(pi—1) (1) +
8 gi(ﬁffl)N(t) (pim )
fitpi-1)
— Wi, 1) (),
Gitp—nn (1) Y
B (1) = (1) — (1)
8 8 Gi(pi—1)n () (b=t

fitoi—1) + Qi(pi—1)
: S [¢z 1 (t) +
gl(ﬁi—l)N(t) (vim)

Fitpi—1)Wi(p,—1) (B)]-

time-invariant, and can be realized easily.
4 Robust property

At the beginning of this section, several Lemmas
are introduced firstly.

Lemmal ¢;;(t)(i=1,2;5=1,2,---,p;) sat-

isfy that

[pu ()| < euilll]l; llwll, misms, for, f22),

G120 < @rz(ll 2], [lwll, 1, 3, fi1, for, foz),

|13 < Gus(l[2]]; [wlls ms s, fir, frz, for, fa2),

@21 ()] < ar (2], [[wll, 11, m3),

P22 (t)| < Paa(|[ 2], [[wl], 11, M3, for),

|23 (t)] < Pas(I| 2] [|wll, 71, M35 fo1, fa2),

@24 ()] < Paalll 2], [[wl], 71, M35 for, faz, fa3),

where ¢;; are known nonnegative functions.
Proof From the definitions of z;; it follows that

‘xil(t)_ _Zﬂ(t)_ . 0
xiQ(t) Zi?(t) gle(t) za (t)
= - . +
' . Ai(pi—1) .
Lip, t Zip; t — ~Ri(pi— t
i P,( )_ I P ( )_ _gi(pi—l)N(t) (p 1)( )_
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[ 0 1 [yai(t)] Lemma 3 For any given positive constant €4, if

[l w (1) 0 positive constants f;; satisfy the inequalities f;(;41) >

giin (1) n fijs andfi1 > fao, then
: s
Fitp—1) y 5l < el lwlD(l=]* + lwl* + 1),
D, @) |0 &
L i(pi—1)n (1) 1t - (23)

From dynamic model (7) and (8) and controller
(22), the conclusions of Lemma 1 hold.

Let
a9y
ig(t) = b (t) = (24 5 = Wfigws (1)

Lemma 2 For ¢;;(t)(i = 1,2;5 = 1,2,---,
pi; — 1), the following inequalities hold:

[ (O] < @u Iz lwlls m, n2,m3, for, fo2),

[V12()] < Srzll 25 [[wlls mas m2s mas fr1s far, f22),
[a ()] < @uz(llzls lwlly 71y 125 M35 f11s fr2s fors fo),
21 (O)] < @ar (|2l 1wll, 71, m2,m3),

|22 (D) < o2 (|2, lwlls 11, m2, M3 for),

|23 ()] < @as (|2, lwlls mu, m2, M35 for,s fo2),

[P0 (t)| < Paall2ls [lwlls 715 M2y M3, fors faz, f23),

where ¢,; are known nonnegative functions.

Proof From the definition of ¢;;(¢) and 1;;(t)
(i = 1,2), and from (22), one has that

gir (1)

Vi (t) = gi1 (t) zia(t) — ail[gﬂN(t) — 1z, () +
¢11(t) ydz(t)
Yij (1) = gi; (1) zig+1) (1) —
95 _ 1, )
aza[ng(t) 1z () + @i (8)+

fii- 1)(f1(J y +dGg-n)
gz(] 1)N(t)

042

gz(] l)N(t)
Yigg—1)(t),

Gig—1) (Dwii—1)(t) — Zij—1)+

fig—1) + @uig—1)
gii—1n (1)

_ - _ o Gip: (t) . .
wlm (t) - 1Pi [gipi,N(t) 1] 197( )

a?pﬁl
Gitpi—1)N (1)
fi(ﬂz‘*l)(fi(mfl) + ai(ﬁifl))
giz(pifl)N(t)
Gitpi—1) () Wi(p,—1) () + Pip, (1) +
Jitpi=1) + Qigp—1)
9itpi—1)N (1) Vo)
From Lemma 1, the conclusions of Lemma 2 hold.
QED.

Zi(pi—1)T

X

where @(||z||, ||w]|) is a nonnegative function.

Proof According to Lemma 2, for any positive
constant €;;, there exist sufficiently large positive con-
stants f;;, such that if the inequalities f;;j11) > fi;,
and f1; > fy hold, then

5 () _
—— <eie(l2l lwlD =l + flw]* + 1).
Jij
2 pi
Choose €5 = Y Y €;;, then the conclusions of
i=1j=1
Lemma 3 hold. QED.

Theorem 1 Under Assumption 1-3, the closed-
loop system has semi-global robust tracking pro-
perty, that is, for any constants ¢ > 0, r, > O and , >
0, if ||z(to) l|lw(to)|| < 7w, there exist suf-
ficiently large constants f;;(¢ = 1,2) and constant
T > to, such that if f;(;11) > fi;, and fi; > fo the
states x(t), z(t) and w(t) are bounded and, moreover

Bl <e, lw®)l<e, t>T

If the initial values z(to) and w(t,) are zero, then

lz()| <& w@)| <e t>t

Proof Consider the following Lyapunov function
candidate:

v-5f
wh‘(jé_ ) e P [Zij(t>:| P {1 1}
R Y wi(t)|” |1 2]

From Lemma 3, by taking the time derivative of V'
along the trajectories of the closed-loop system, one ob-
tains that

V= ZZVMZ

=1 j=
2 pi
-2

=

p 2{ ;22 () + ovjzij (t)wi; (£)+

w5 () + wig ()i (1)} =
— Z Z{Oéwvw + o225 (t) + 2w (85 (t)+

95() , >
2[gijN(t) fij aij]wij(t)} <
7 (1)
_Zz{a11m7+az7 1]()_ ; +
i=1j= ij

(fij - 20‘11;‘)“’1‘2;' ()} <
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—aV —alz®)]* - (f — 2a)[w(®)|*+
s@(lzO1; o@D (2@ + [w @) + 1),

where

e 1<i<g,nl%j<pl{aij}v
‘= 1<iér2r}%)<(jgpi{aij}a
i = min {fza}

1€iK2, 1<5<ps
Consid L9 in R?" defined
onsider a set {2(r,, 1) in efined as

Qra,m) =

{(Z((?))\rb SV <, 2(t) € R w(t) € R}

Let X = max(z,uw)en(r.,n) P2, [[w]). Choos-
ing f and e satisfying

f>2a+3 (24)
and
«
f—-2a-=
pary  a L 2

3 < min Y. 0 ) (25)

v {2x/\p2 2x X J
respectively, where A, = Apax(P), then for any

40

(w(t)) € 2(r,, ), one has

allzOI + (£ = 2a)[lw(®)|*~

sz, lw@® DAz + lw®)]* + 1) =
%I!Z(t)ll2 + %Hw(t)ll2 — o[z, [w®))+
%HZ(t)Hz(l _ 26¢90(||Z(t0)[!, Hw(t)ll))Jr

(f—25é—3)||w(t)||2(1—6¢¢(||z(t)‘, Hw(t)”)) >

i—2a—%
2
VO o+ Sle@IPA - =)+
(f — 20— D)0 - —2—5) > 0.

— 20 — =
I Qo 2

Therefore, for any given constants € > 0, r, > 0
and r,, > 0, if choose 71, = Ap1e2 with Ay = Apin (P)
and r, > max {ry, Ao (r? +1r2)}, then V(ty) < 7a,
and one can find sufficiently large positive constant f
satisfying inequality (24) and sufficiently small positiVE
constant €, satisfying inequality (25) such that

V(0 < —av(o), v () ) € 2t 2o

which implies that z(¢) and w(t) are bounded, and con-
verge exponentially to the following domain and stay in

it
2(t)
(D) 10 < 2 Twto)l <),

From above analysis it follows that for any given
constants ¢ > 0, 7, > 0and r, > 0, if ||2(¢o)| <

7., ||lw(to)|| < rw, one can find sufficiently large con-
stants f;;(i = 1,2) and positive constant T > t,, such
that if fi(j-‘rl) > fij and fll > f22, then Z(t), w(t)
and x(t) are bounded, and [|z(¢)|| < e, [|[w(t)]| <
g, t > T. If the initial values z(to) and w(t,) are zero,
then |[2(£)]| <&, |lw(®)|| <e, t >t  QED.
Remark 4 The reference output vector yq(t) could be
non-smooth. The uncertain nonlinearities g;;(t) and ¢;;(t) are
not required to be continuous. The tracking error can be made
as small as expected by choosing robust controller parameters
appropriately.
S Simulation results

To verify the tracking performance of the proposed
robust controller for the generic hypersonic vehicle, the
same controller is applied to the longitudinal dynamic
model of HFVs in two different cases with both param-
eter uncertainties and external disturbances. The robust
controller is constructed by equation (22) with expect-
ed convergence rate c;; = 0.5(¢ = 1,2) and robust
controller parameters fi; = 300, fi» = 600, fi3 =
8000, fo; = 100, fae = 100, fo3 = 300, foy = 600.
For simulation, the initial values of the states are set
as vy = 7850 ft/s, hg = 86000 ft, oy = 0.0659 rad,
Yo = 0, go = 0P8, The nominal values of the parame-
ters are listed as follows!26]:

m = 9375 slugs, p = 1.39 x 10%6 ft*/s2,
I, =7 x 10° slugs - ft?,

p = 0.24325 x 10~* slugs/ft®,

S = 3603 ft?, ¢ = 80 ft,

Rp = 20903500 ft.

The tracking commands of velocity varies from
7850 ft/s to 8250 ft/s, while altitude varies from
86000 ft to 87000 ft.

Casel The uncertain parameters (m, u, Iyy, p, S,
¢, Rg) are set to be 20% additive perturbations of nom-
inal values. The external disturbances are considered
and taken as d;; = (7 + j)sin(nt/(i + 7))(i = 1,2).
The tracking curves and the steady state tracking error
of the velocity and altitude are plotted in Figs. 1-4.

8300 T T T T T T T T T
8250
8200
8150
8100
8050
8000
7950
7900
7850 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45 50

t/s

Velocity / (ft-s™)

Fig. 1 Velocity tracking curve
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Fig. 7 Steady state tracking error of velocity
Fig. 4 Steady state tracking error of altitude

3 T T
Case 2 The uncertain parameters (m, u, Iyy, p, e | )
S, ¢, Rg) are subject to —20% additive perturbations of ‘\o‘ n H n ” ” n
nominal values. The external disturbances are 5 1t
an
0, 0 <t <20, é ol
dy; = 5(t — 20), 20 <t < 40, £
! 5 g -l
—2(t — 60) + 100, 40 < ¢, | | ! |
T 2 L)
J=12,3,
da; = (2+j) sin(7t/(2+j), j =1,2,3,4. 50 100 150 200
The tracking curves and the steady state tracking error t/s

of the closed-loop system are plotted in Figs. 5-8. Fig. 8 Steady state tracking error of altitude
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The same robust controller is applied to the H-
FVs under different flight conditions. From the sim-
ulation results, it is obvious that the proposed robust
control method could achieve excellent robust tracking
performance with nonlinear uncertainties, external dis-
turbances and strongly coupled interconnections.

6 Conclusions

In this paper, a “simple” robust controller is ap-
plied to deal with the control problem of HFVs. The
problem is challenging due to the uncertain MIMO non-
linear model with uncertainties, disturbances, and the
couplings among the subsystems. By combining back-
stepping technology with signal compensation method,
the proposed controller can ensure the robust s practical
tracking property of the closed-loop system and guaran-
tee the tracking error as small as desired with expected
convergence rate. Finally, simulation results are giv-
en to verify the effectiveness of of the proposed robust
controller.
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