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摘要:本文针对具有外部干扰,参数摄动和非连续未知非线性气动影响的一般高超声速飞行器纵向动力学问题,设计
了分布式鲁棒反步跟踪控制器. 为了处理复杂的系统,将标准反步控制和信号补偿方法结合起来构成一个“简单”的鲁
棒控制器. 该方法不仅可以保证闭环系统半全局鲁棒跟踪性能,也可保证系统跟踪误差以期望的收敛速度收敛到期望的
误差范围内.最后,带有非线性不确定性,外部干扰和参数扰动的仿真系统说明了该方法的有效性.
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Robust backstepping decentralized tracking control for the hypersonic
flight vehicle with nonlinear uncertainties

WANG Qing1, YU Yao1†, SUN Chang-yin2

(1. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. School of Automation, Southeast University, Nanjing Jiangsu 210096, China)

Abstract: In this paper, the design of robust backstepping decentralized tracking controller is addressed for the longitudinal dynamics
of a generic hypersonic flight vehicle with external disturbances, parameter perturbations, and non-continuous unknown nonlinear
aerodynamic influence. To deal with the complex system, the standard backstepping and signal compensation method are combined to
construct a ‘simple’ robust controller. The proposed method can not only ensure the semi-global robust practical tracking property of
the closed-loop system, but also guarantee the tracking error as small as desired with expected convergence rate. Simulation results with
nonlinear uncertainties, external disturbances and parameter perturbations illustrate the effectiveness of the methodology.
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1 Introduction
Hypersonic flight vehicles (HFVs) are widely con-

cerned due to the advantages of rapid flight speed, low
launch cost, and long running time, which can make
HFVs access space more reliably and efficiently. HFVs
are exploited to test the necessary disruptive technolo-
gy and develop a new weapon that can precisely strike
enemy targets in just an hour [1–4]. Compared with tra-
ditional flight vehicles, the research on hypersonic ve-
hicles is extremely challenging due to the facts such as
strong nonlinearity and high flight altitude.

Recently, with respect to the challenges mentioned
above, the design of guidance and control systems for
HFVs has attracted much attention. Based on the tech-
nique of input/output linearization, different kinds of
control strategies have been employed, such as lin-
ear output feedback control[5], observer-based control[6]

and neural network[7–8], and linear parameter-varying
control[9–10]. Despite the fact that these linear control
schemes could be effective for linear models near the
equilibrium point, they could lead to unstable behav-
ior when the flight states are far from the equilibrium
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point. Thus, for nonlinear dynamic models of HFVs,
various advanced nonlinear control strategies, such as
sliding mode control[11], robust control[12–14], guaran-
teed cost control[15], gain-scheduling control[16], fuzzy
control[17–19], and backstepping control[20–21], have
been developed for the control design of the longitu-
dinal dynamics of the HFVs. However, these nonlin-
ear control schemes required that the system parameters
should be precisely known and system nonlinearities
were smooth functions. Obviously, the designed con-
troller may exhibit undesired performance when great
parameter perturbations and highly complex nonlinear
uncertainties in HFVs are considered. To deal with
the possible problems encountered by the above con-
trol approaches, adaptive control[22–24] and disturbance
observer-based control methods were investigated in the
literature[25–26]. In [26–27], systems uncertainties were
caused by external disturbances and parameter pertur-
bations. The external disturbances were bounded by
constants with match or mismatch condition. In [28]
the high gain observer was investigated on flexible hy-
personic flight dynamics with lumped uncertainties.

Although these control methods discussed above
were proved to be efficient to the HFVs, they mainly fo-
cused on external disturbance or smooth nonlinear func-
tions. It was difficult for these methods to take into ac-
count external disturbances, great parameter perturba-
tions and non-continuous unknown nonlinear functions
together. Moreover, the tracking performances, such as
convergence rate, were not discussed.

Over the last 20 years, backstepping control has be-
come one of the most popular control methods for some
special classes of nonlinear systems, since it provides
a systematic procedure for designing a controller by a
step-by-step recursive algorithm. For better control per-
formance, different control strategies are combined to-
gether by taking advantage of their strengths respective-
ly[29–31]. Combined with backstepping control strategy,
many effective methods have been proposed for stabil-
ity analysis and controller design. However, backstep-
ping control has the drawback of the phenomenon of
“explosion of complexity” in the control law due to
repeated differentiations of the virtual control functi-
ons.

Another important issue associated with the control
of nonlinear systems, concerns convergence rate and
steady state tracking error bounds. A new robust adap-
tive controller for multi-input multi-output (MIMO)
feedback linearizable nonlinear systems, capable of
guaranteeing a prescribed performance, was developed
in [32]. By prescribed performance, the tracking er-
ror should be made as small as desired, with a maxi-
mum overshoot less than a sufficiently small prespeci-

fied constant, exhibiting convergence rate no less than
a prespecified value. Visualizing the prescribed per-
formance characteristics as tracking error constraints,
the key idea of the technique in [32] was to provide
an error transformation function that transforms the ori-
ginal“constrained” nonlinear system into an equiv-
alent“unconstrained”one. Stabilizing the equivalent
“unconstrained”system was sufficient to achieve pre-
scribed performance guarantees. However, a tangent
hyperbolic function which was generally used as the
transformation function, combined with prescribed sm-
ooth function to transform the tracking error, made the
controller design very complex. Furthermore, this tech-
nique had a singularity problem for a certain prescribed
performance condition[32–33].

In this paper, the main contributions are as fol-
lows: A“simple” robust controller is proposed to
deal with the uncertain MIMO nonlinear model with
non-continuous nonlinear uncertainties, parameter per-
turbations, external disturbances, unknown virtual con-
trol coefficients and strongly coupled interconnections.
The controller is constructed with less limitation, which
implies that the reference output is not required to be s-
mooth and the uncertain nonlinearities are not expected
to be continuous. The transient and steady state prop-
erties are explored. The tracking error can be made as
small as desired with expected convergence rate. The
whole designed controller has a simple structure, and
can be realized easily.

The signal compensation method was first proposed
in [34] to deal with robust output tracking problem for
linear time-invariant system with parameter perturba-
tions. This idea was further utilized to treat the control
problems for nonlinear time-varying systems[35–36]. In
this paper, signal compensation framework and back-
stepping design method are combined together to get
desired robust control property for HFVs.

The paper is organized as the following: Section 2
presents the longitudinal dynamics of a generic HFV.
In Section 3 the block-triangular form is formulated.
Section 4 proposes the robust controller design method.
The robust control properties are stated and the main
results are proven in Section 5. The simulation result
is given in Section 6. Finally, conclusions are stated in
Section 7.

2 The hypersonic model and strict-feedback
formulation

2.1 The hypersonic model
The model for the longitudinal dynamics of the hy-

personic vehicle is developed by National Aerospace
Plane Program. The longitudinal dynamics of the hy-
personic vehicle model can be described by a set of five-
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order differential equations taken from [26] and [27].

V̇ =
T cosα−D

m
− µ sin γ

r2
+ dV, (1)

ḣ = V sin γ, (2)

γ̇ =
L+ T sinα

mV
− (µ− V 2r) cos γ

V r2
+ dγ , (3)

α̇ = q − γ̇, (4)

q̇ =
Myy

Iyy
+ dq. (5)

The variables in the model of the longitudinal dynamics
of the HFVs are listed in Table 1.

Table 1 Aircraft model nomenclature

CT thrust coefficient
CL lift coefficient
CD drag coefficient

CM(q) pitch moment coefficient due to pitch rate
CM(α) pitch moment coefficient due to angle of attack
CM(δe) pitch moment coefficient due to elevator deflection

c̄ reference length
h altitude
Iyy moment of inertia
m mass

Myy pitching moment
q pitch rate
RE radius of the Earth
r radial distance from centre of the Earth
S reference area
V velocity
D drag
T thrust
L lift
α angle of attack
βc throttle setting
δe elevator deflection
γ flight-path angle
µ gravitational constant
ρ density of air

Where

q̄ =
1

2
ρV 2, T = q̄SCT, L = q̄SCL, D = q̄SCD,

Myy = q̄Sc̄[CM(α) + CM(δe) + CM(q)],

r = h+RE, CT = (1 +∆CT)CT0
,

CL = (1 +∆CL)CL0
, CD = (1 +∆CD)CD0

,

CM(α) = (1 + ∆CM(α))CM(α)0,

CM(δe) = (1 + ∆CM(δe))CM(δe)0,

CM(q) = (1 + ∆CM(q))CM(q)0.

According to [26], di(i = V, γ, q) are unknown ex-
ternal disturbances. ∆CT, ∆CL, ∆CD, ∆CM(α),
∆CM(δe), ∆CM(q) are aerodynamic parameter pertur-
bations. The nominal values of the parameters are listed
as follows:

CT0
=

{
0.02576β, β < 1,

0.02240 + 0.003360β, β > 1,

CL0
= 0.6203α,

CD0
= 0.6450α2 + 0.0043378α+ 0.003772,

CM(α)0 = −0.035α2+0.036616α+5.3621×10−6,

CM(δe)0 = 0.0292 (δe − α) ,

CM(q)0 =
c̄

2V
q
(
−6.796α2 + 0.3015α− 0.2289

)
.

The engine dynamics can be described as follows:

β̈ = −2ξωnβ̇ − ω2
nβ + ω2

nβc. (6)

The model is high nonlinear and inner coupling. In
the the longitudinal analytical model (1)–(5), parame-
ters m, µ, Iyy, ρ, S, c̄, RE are modeled with an addi-
tive perturbation [26]. In the design process, the bounds
of parameters perturbation need to be known, because
functions φij(i = 1, 2) introduced in (9) should be
known.

Assumption 1 γ is very small during the gliding
phase, so sin γ ≃ γ in (2) for simplification. The thrust
term T sinα is generally much smaller than L, so it can
be neglected in (3)[20–21].

2.2 Strict-feedback formulation
A) Velocity subsystem (1) can be rewritten as

ẋ11 = ϕ11(x11, x22, x23, d11)+

g11(x11, x23, d11)x12,

ẋ12 = ϕ12(x11, x12, d12) + g12(d12)x13,

ẋ13 = ϕ13(x11, x12, x13, d13) + g13(d13)u1,

y1 = x11,
(7)

where

x11 = V, x12 = β, x13 = β̇,

x22 = γ, x23 = α, u1 = βc.

y1 is the output, and d11, d12, d13 are external dis-
turbances of velocity subsystem.

Due to parameter perturbations and external distur-
bances d11, d12, d13, ϕ1j and g1j(j = 1, 2, 3) are nonli-
near uncertainties. Ignore the influence of disturbances,
the nominal values of ϕ1j and g1j can be described as
follows:

ϕn11 = −(D/m+ µ sinx22/r2) +

q̄S × 0.0224 cosx23/m,

gn11 = q̄S × 0.00336 cosx23/m, β > 1.

Otherwise ϕn11 = −(D/m + µ sinx22/r2), gn11 =
q̄S×0.02576 cosx23/m. ϕn12 = 0, gn12 = 1, ϕn13 =
−2ξωnx13 −ω2

nx12, gn13 = ω2
n with uncertain param-

eters defined above.
B) With Assumption 1, the dynamics of altitude
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subsystem (2)–(5) can be written as

ẋ21 = ϕ21(x21, d21) + g21(x11, d21)x22,

ẋ22 = ϕ22(x21, x22, x11, d22)+

g22(x11, d22)x23,

ẋ23 = ϕ23(x21, x22, x23, x11, d23)+

g23(d23)x24,

ẋ24 = ϕ24(x21, x22, x23, x24, x11, d24)+

g24(x11, d24)u2,

y2 = x21,

(8)

where x21 = h, x24 = q, u2 = δe. y2 is the output,
and d21, d22, d23 are external disturbances of altitude
subsystem.

Similarly, ϕ2j and g2j(j = 1, 2, 3, 4) are nonlinear
uncertainties. Ignore the influence of disturbances, the
nominal values of ϕ2j and g2j are as follows: ϕn21 = 0,
gn21=x11, ϕn22=−(µ−x2

11r) cosx22/(x11r
2), gn22=

0.6203q̄S/(mx11), ϕn23 = (µ−x2
11r) cosx22/(x11r

2)
−0.6203q̄Sx23/(mx11), gn23=1, ϕn24=q̄Sc̄[CM(α)
+CM(q)− 0.0292α]/Iyy, gn24 = 0.0292q̄Sc̄/Iyy with
uncertain parameters defined above.

x(t)=[x11(t) x12(t) x13(t) x21(t) x22(t) x23(t)
x24(t)]

T is the state vector of the system, u(t) = [u1(t)
u2(t)]

T is the control input vector, y(t) = [y1 y2]
T

is the output vector, d(t)=[d11(t) d12(t) d13(t) d21(t)
d22(t) d23(t) d24(t)]

T is the external disturbance vec-
tor, yd(t) = [yd1 yd2]

T is the reference output vector.
Assumption 2 There are positive constants η1

and η2 such that reference output |ydi(t)| 6 η1 and
|ẏdi(t)| 6 η2(i = 1, 2).

Assumption 3 There is a positive constant η3
such that the external disturbance vector ∥d(t)∥ 6 η3.

Remark 1 ϕij(x, dij) and gij(x, dij) are unknown
non-continues nonlinear functions caused by parameter per-
turbations, external disturbances and aerodynamic influences.
According to (7) and (8), there are known nonnegative-valued
functions φij(x, η3), such that

∣∣ϕij(x, dij)
∣∣ 6 φij(x, η3).

That is

|ϕ11(x11, x22, x23, d11)| 6 φ11(x11, x22, x23, η3),

|ϕ12(x11, x12, d12)| 6 φ12(x11, x12, η3),

|ϕ13(x11, x12, x13, d13)| 6 φ13(x11, x12, x13, η3),

|ϕ21(x21, d21)| 6 φ21(x21, η3),

|ϕ22(x21, x22, x11, d22)| 6 φ22(x21, x22, x11, η3),

|ϕ23(x21, x22, x23, x11, d23)| 6
φ23(x21, x22, x23, x11, η3),

|ϕ24(x21, x22, x23, x24, x11, d24)|
6 φ24(x21, x22, x23, x24, x11, η3),

(9)

where φij(x, η3)(i = 1, 2) are known functions. From hyper-
sonic vehicle model (7) and (8), one has that gij(x, dij) >
gijN (t) > 0.

For simplicity of statement, in the sequel,
ϕij(x, dij), gij(x, dij) will be denoted as ϕij(t), gij(t),

respectively.
The control object is to design the robust controller

for systems (7) and (8) such that:
1) all the states in the closed-loop systems remain

bounded;
2) the tracking error ∥y(t) − yd(t)∥ can be made

as small as desired with expected convergence rate.

3 Robust control of hypersonic flight vehi-
cles
In this section, the design procedure of robust back-

stepping method for the ith subsystem is presented. For
the ith subsystem of (7) and (8), the controller design
procedure contains ρi steps. At each backstepping step,
the subsystem is divided into a nominal model and the
equivalent disturbance. A nominal controller is design-
ed to stabilize the nominal model, and a robust compen-
sator is designed to suppress the effects of the equiva-
lent disturbance.

Step 1 The tracking error variable of the ith sub-
system is defined as zi1(t) = xi1(t)−ydi(t). Then one
has that

żi1(t) = gi1(t)xi2(t) + ϕ̃i1(t), (10)

where ϕ̃i1(t) = ϕi1(t)− ẏdi(t). By viewing xi2(t) as a
virtual control input, design the virtual feedback control
law as

x̂i2(t) = − αi1

gi1N(t)
zi1(t) +

fi1
gi1N(t)

wi1(t), (11)

where αi1 is a positive constant to be designed later.
Define zi2(t) = xi2(t)− x̂i2(t), one has
żi1(t) = −αi1zi1(t) + ϕ̂i1(t) + fi1wi1(t), (12)

where ϕ̂i1(t) = ϕ̃i1(t) + gi1N(t)zi2(t) + [gi1(t) −
gi1N(t)]xi2(t), which is viewed as the equivalent dis-
turbance. To obtain robust tracking property, the robust
virtual compensating signal is designed as follows:

wi1(t) = − 1

s+ fi1
ϕ̂i1(t). (13)

From (12), one has

ϕ̂i1(t) = (s+ αi1)zi1(t)− fi1wi1(t). (14)

From (13) and (14), wi1(t) can be expressed as

wi1(t) = −(1 +
αi1

s
)zi1(t). (15)

Remark 2 Dynamic surface control (DSC) method and
signal compensation method were typical techniques to solve
the problem of“explosion of complexity”[36–37]. The nonli-
near functions were required to be smooth within DSC techni-
que[37]. The signal compensation method aims to design a ro-
bust compensator to approximate and restrain the effect of
nonlinear uncertainties, which are not required to be continu-
ous[36]. If fi1 is sufficiently large, the robust compensator fi1
wi1 would approximate and weaken the effects of the equiva-
lent disturbance ϕ̂i1(t) to achieve robust tracking property.
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Step j(2 6 j < ρi) Define zij(t) = xij(t) −
x̂ij(t). Then one has an error subsystem

żij(t) = gij(t)xi(j+1)(t) + ϕij(t)− ˙̂xij(t) =

gij(t)xi(j+1)(t) + ϕ̃ij(t), (16)

where

x̂ij(t) =−
αi(j−1)

gi(j−1)N(t)
zi(j−1)(t)+

fi(j−1)

gi(j−1)N(t)
wi(j−1)(t),

ϕ̃ij(t) = ϕij(t)−
α2

i(j−1)

gi(j−1)N(t)
zi(j−1)(t)+

fi(j−1) + αi(j−1)

gi(j−1)N(t)
[ϕ̂i(j−1)(t)+

fi(j−1)wi(j−1)(t)].

A virtual control input xi(j+1)(t) is constructed to
stabilize the jth error subsystem

x̂i(j+1)(t) = − αij

gijN(t)
zij(t) +

fij
gijN(t)

wij(t),

(17)

then

żij(t) = −αijzij(t) + ϕ̂ij(t) + fijwij(t),

where

ϕ̂ij(t) = ϕ̃ij(t) + [gij(t)− gijN(t)]xi(j+1)(t) +

gijN(t)zi(j+1)(t).

The robust virtual compensating signal is designed as
follows:

wij(t) = − 1

s+ fij
ϕ̂ij(t).

Note that ϕ̂ij(t) = (s + αij)zij(t) − fijwij(t),
wij(t) can be expressed as

wij(t) = −(1 +
αij

s
)zij(t). (18)

Step ρi Define ziρi
(t) = xiρi

(t) − x̂iρi
(t). Its

derivative is

żiρi
(t) = giρi

(t)ui(t) + ϕiρi
(t)− ˙̂xiρi

(t) =

giρi
(t)ui(t) + ϕ̃iρi

(t), (19)

where

x̂iρi
(t) =−

αi(ρi−1)

gi(ρi−1)N(t)
zi(ρi−1)(t) +

fi(ρi−1)

gi(ρi−1)N(t)
wi(ρi−1)(t),

ϕ̃iρi
(t) = ϕiρi

(t)−
α2
i(ρi−1)

gi(ρi−1)N(t)
zi(ρi−1)(t) +

fi(ρi−1) + αi(ρi−1)

gi(ρi−1)N(t)
[ϕ̂i(ρi−1)(t) +

fi(ρi−1)wi(ρi−1)(t)].

The real control input ui(t) for ith subsystem is
constructed as

ui(t) = − αiρi

giρiN(t)
ziρi

(t) +
fiρi

giρiN(t)
wiρi

(t). (20)

Similarly, the robust virtual compensating signal
wiρi

(t) is designed as

wiρi
(t) =− 1

s+ fiρi

ϕ̂iρi
(t) =

−(1 +
αiρi

s
)ziρi

(t), (21)

where

ϕ̂iρi
(t) = ϕ̃iρi

(t) + [giρi
(t)− giρiN(t)]ui(t).

The whole controller can be described as

ui(t) = − αiρi

giρiN(t)
ziρi

(t) +
fiρi

giρiN(t)
wiρi

(t),

zi1(t) = xi1(t)− ydi(t),

zij(t) = xij(t) +
αi(j−1)

gi(j−1)N(t)
zi(j−1)(t)−

fi(j−1)

gi(j−1)N(t)
wi(j−1)(t),

j = 2, 3, · · · , ρi,
wij(t) = −(1 +

αij

s
)zij(t), j = 1, 2, · · · , ρi,

i = 1, 2.
(22)

Remark 3 From equation (22), one has that the con-
troller is decentralized. The whole designed controller is linear
time-invariant, and can be realized easily.

4 Robust property
At the beginning of this section, several Lemmas

are introduced firstly.
Lemma 1 ϕij(t)(i = 1, 2; j = 1, 2, · · · , ρi) sat-

isfy that

|ϕ11(t)|6 φ̃11(∥z∥, ∥w∥, η1, η3, f21, f22),
|ϕ12(t)|6 φ̃12(∥z∥, ∥w∥, η1, η3, f11, f21, f22),
|ϕ13(t)|6 φ̃13(∥z∥, ∥w∥, η1, η3, f11, f12, f21, f22),
|ϕ21(t)|6 φ̃21(∥z∥, ∥w∥, η1, η3),
|ϕ22(t)|6 φ̃22(∥z∥, ∥w∥, η1, η3, f21),
|ϕ23(t)|6 φ̃23(∥z∥, ∥w∥, η1, η3, f21, f22),
|ϕ24(t)|6 φ̃24(∥z∥, ∥w∥, η1, η3, f21, f22, f23),

where φ̃ij are known nonnegative functions.
Proof From the definitions of zij it follows that
xi1(t)

xi2(t)

...

xiρi
(t)

=

zi1(t)

zi2(t)

...

ziρi
(t)

−


0
αi1

gi1N(t)
zi1(t)

...
αi(ρi−1)

gi(ρi−1)N(t)
zi(ρi−1)(t)

+
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0
fi1

gi1N(t)
wi1(t)

...
fi(ρi−1)

gi(ρi−1)N(t)
wi(ρi−1)(t)


+


ydi(t)

0

...

0

 .

From dynamic model (7) and (8) and controller
(22), the conclusions of Lemma 1 hold.

Let

ψij(t) = ϕ̂ij(t)− [
gij(t)

gijN(t)
− 1]fijwij(t).

Lemma 2 For ψij(t)(i = 1, 2; j = 1, 2, · · · ,
ρi − 1), the following inequalities hold:

|ψ11(t)|6 φ̂11(∥z∥, ∥w∥, η1, η2, η3, f21, f22),
|ψ12(t)|6 φ̂12(∥z∥, ∥w∥, η1, η2, η3, f11, f21, f22),
|ψ13(t)|6 φ̂12(∥z∥, ∥w∥, η1, η2, η3, f11, f12, f21, f22),
|ψ21(t)|6 φ̂21(∥z∥, ∥w∥, η1, η2, η3),
|ψ22(t)|6 φ̂22(∥z∥, ∥w∥, η1, η2, η3, f21),
|ψ23(t)|6 φ̂23(∥z∥, ∥w∥, η1, η2, η3, f21, f22),
|ψ24(t)|6 φ̂24(∥z∥, ∥w∥, η1, η2, η3, f21, f22, f23),
where φ̂ij are known nonnegative functions.

Proof From the definition of ϕ̂ij(t) and ψij(t)
(i = 1, 2), and from (22), one has that

ψi1(t) = gi1(t)zi2(t)− αi1[
gi1(t)

gi1N(t)
− 1]zi1(t)+

ϕi1(t)− ẏdi(t),

ψij(t) = gij(t)zi(j+1)(t)−

αij[
gij(t)

gijN(t)
− 1]zij(t) + ϕij(t)+

fi(j−1)(fi(j−1) + αi(j−1))

g2i(j−1)N(t)
×

gi(j−1)(t)wi(j−1)(t)−
α2

ij

gi(j−1)N(t)
zi(j−1)+

fi(j−1) + αi(j−1)

gi(j−1)N(t)
ψi(j−1)(t),

ψiρi
(t) = − αiρi

[
giρi

(t)

giρiN(t)
− 1]ziρi

(t)−

α2
iρi−1

gi(ρi−1)N(t)
zi(ρi−1)+

fi(ρi−1)(fi(ρi−1) + αi(ρi−1))

g2i(ρi−1)N(t)
×

gi(ρi−1)(t)wi(ρi−1)(t) + ϕiρi
(t)+

fi(ρi−1) + αi(ρi−1)

gi(ρi−1)N(t)
ψi(ρi−1)(t)

From Lemma 1, the conclusions of Lemma 2 hold.
QED.

Lemma 3 For any given positive constant εϕ, if
positive constants fij satisfy the inequalities fi(j+1) ≫
fij , andf11 ≫ f22, then
2∑

i=1

ρi∑
j=1

ψ2
ij(t)

fij
6 εϕφ̄(∥z∥, ∥w∥)(∥z∥2 + ∥w∥2 + 1),

(23)
where φ̄(∥z∥, ∥w∥) is a nonnegative function.

Proof According to Lemma 2, for any positive
constant εij , there exist sufficiently large positive con-
stants fij , such that if the inequalities fi(j+1) ≫ fij ,
and f11 ≫ f22 hold, then

ψ2
ij(t)

fij
6 εijφ̄(∥z∥, ∥w∥)(∥z∥2 + ∥w∥2 + 1).

Choose εϕ =
2∑

i=1

ρi∑
j=1

εij , then the conclusions of

Lemma 3 hold. QED.
Theorem 1 Under Assumption 1–3, the closed-

loop system has semi-global robust tracking pro-
perty, that is, for any constants ε > 0, rz > 0 and rw >
0, if ∥z(t0)∥ 6 rz, ∥w(t0)∥ 6 rw, there exist suf-
ficiently large constants fij(i = 1, 2) and constant
T > t0, such that if fi(j+1) ≫ fij , and f11 ≫ f22 the
states x(t), z(t) and w(t) are bounded and, moreover

∥z(t)∥ 6 ε, ∥w(t)∥ 6 ε, t > T.

If the initial values z(t0) and w(t0) are zero, then

∥z(t)∥ 6 ε, ∥w(t)∥ 6 ε, t > t0.

Proof Consider the following Lyapunov function
candidate:

V =
2∑

i=1

ρi∑
j=1

Vij,

where

Vij = [zij(t) wij(t)] P

[
zij(t)
wi(t)

]
, P =

[
1 1
1 2

]
.

From Lemma 3, by taking the time derivative of V
along the trajectories of the closed-loop system, one ob-
tains that

V̇ =
2∑

i=1

ρi∑
j=1

V̇ij =

−
2∑

i=1

ρi∑
j=1

2{αijz
2
ij(t) + αijzij(t)wij(t)+

fijw
2
ij(t) + wij(t)ϕ̂ij(t)} =

−
2∑

i=1

ρi∑
j=1

{αijVij + αijz
2
ij(t) + 2wij(t)ψij(t)+

2[
gij(t)

gijN(t)
fij − αij]w

2
ij(t)} 6

−
2∑

i=1

ρi∑
j=1

{αijVij + αijz
2
ij(t)−

ψ2
ij(t)

fij
+

(fij − 2αij)w
2
ij(t)} 6
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− αV − α∥z(t)∥2 − (f − 2ᾱ)∥w(t)∥2+
εϕφ̄(∥z(t)∥, ∥w(t)∥)(∥z(t)∥2 + ∥w(t)∥2 + 1),

where
α = min

16i62, 16j6ρi

{αij},

ᾱ = max
16i62, 16j6ρi

{αij},

f = min
16i62, 16j6ρi

{fij}.

Consider a set Ω(ra, rb) in R2n defined as

Ω(ra, rb) =

{( z(t)
w(t)

)|rb 6 V 6 ra, z(t) ∈ Rn, w(t) ∈ Rn}.

Let χ = max(z,w)∈Ω(ra,rb) φ̄(∥z∥, ∥w∥). Choos-
ing f and εϕ satisfying

f > 2ᾱ+
α

2
(24)

and

εϕ 6 min{ αrb
2χλp2

,
α

2χ
,
f − 2ᾱ− α

2
χ

}, (25)

respectively, where λp2 = λmax(P ), then for any(
z(t)
w(t)

)
∈ Ω(ra, rb), one has

α∥z(t)∥2 + (f − 2ᾱ)∥w(t)∥2−
εϕφ̄(∥z(t)∥, ∥w(t)∥)(∥z(t)∥2 + ∥w(t)∥2 + 1) =
α

2
∥z(t)∥2 + α

2
∥w(t)∥2 − εϕφ̄(∥z(t)∥, ∥w(t)∥)+

α

2
∥z(t)∥2(1− 2εϕφ̄(∥z(t)∥, ∥w(t)∥)

α
)+

(f−2ᾱ−α
2
)∥w(t)∥2(1−εϕφ̄(∥z(t)∥, ∥w(t)∥)

f−2ᾱ−α
2

) >

α

2λp2

V (t)− εϕχ+
α

2
∥z(t)∥2(1− 2εϕχ

α
)+

(f − 2ᾱ− α

2
)∥w(t)∥2(1− εϕχ

f − 2ᾱ− α

2

) > 0.

Therefore, for any given constants ε > 0, rz > 0
and rw > 0, if choose rb = λp1ε

2 with λp1 = λmin(P )
and ra > max {rb, λp2(r

2
z + r2w)}, then V (t0) 6 ra,

and one can find sufficiently large positive constant f
satisfying inequality (24) and sufficiently small positive
constant εϕ satisfying inequality (25) such that

V̇ (t) 6 −αV (t), ∀
(
z(t)
w(t)

)
∈ Ω(ra, rb), (26)

which implies that z(t) andw(t) are bounded, and con-
verge exponentially to the following domain and stay in
it

{
(
z(t)
w(t)

)∥∥z(t)∥ 6 ε, ∥w(t)∥ 6 ε}.

From above analysis it follows that for any given
constants ε > 0, rz > 0 and rw > 0, if ∥z(t0)∥ 6

rz, ∥w(t0)∥ 6 rw, one can find sufficiently large con-
stants fij(i = 1, 2) and positive constant T > t0, such
that if fi(j+1) ≫ fij and f11 ≫ f22, then z(t), w(t)
and x(t) are bounded, and ∥z(t)∥ 6 ε, ∥w(t)∥ 6
ε, t > T . If the initial values z(t0) and w(t0) are zero,
then ∥z(t)∥ 6 ε, ∥w(t)∥ 6 ε, t > t0. QED.

Remark 4 The reference output vector yd(t) could be
non-smooth. The uncertain nonlinearities gij(t) and ϕij(t) are
not required to be continuous. The tracking error can be made
as small as expected by choosing robust controller parameters
appropriately.

5 Simulation results
To verify the tracking performance of the proposed

robust controller for the generic hypersonic vehicle, the
same controller is applied to the longitudinal dynamic
model of HFVs in two different cases with both param-
eter uncertainties and external disturbances. The robust
controller is constructed by equation (22) with expect-
ed convergence rate αij = 0.5(i = 1, 2) and robust
controller parameters f11 = 300, f12 = 600, f13 =
8000, f21 = 100, f22 = 100, f23 = 300, f24 = 600.
For simulation, the initial values of the states are set
as v0 = 7850 ft/s, h0 = 86000 ft, α0 = 0.0659 rad,
γ0 = 0, q0 = 0[38]. The nominal values of the parame-
ters are listed as follows[26]:

m = 9375 slugs, µ = 1.39× 1016 ft3/s2,

Iyy = 7× 106 slugs · ft2,
ρ = 0.24325× 10−4 slugs/ft3,

S = 3603 ft2, c̄ = 80 ft,

RE = 20903500 ft.

The tracking commands of velocity varies from
7850 ft/s to 8250 ft/s, while altitude varies from
86000 ft to 87000 ft.

Case 1 The uncertain parameters (m, µ, Iyy, ρ, S,
c̄, RE) are set to be 20% additive perturbations of nom-
inal values. The external disturbances are considered
and taken as dij = (i + j) sin(πt/(i + j))(i = 1, 2).
The tracking curves and the steady state tracking error
of the velocity and altitude are plotted in Figs. 1–4.

Fig. 1 Velocity tracking curve
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Fig. 2 Altitude tracking curve

Fig. 3 Steady state tracking error of velocity

Fig. 4 Steady state tracking error of altitude

Case 2 The uncertain parameters (m, µ, Iyy, ρ,
S, c̄,RE) are subject to −20% additive perturbations of
nominal values. The external disturbances are

d1j =


0, 0 6 t < 20,

5(t− 20), 20 6 t < 40,

−5

7
(t− 60) + 100, 40 6 t,

j = 1, 2, 3,

d2j = (2 + j) sin(πt/(2 + j), j = 1, 2, 3, 4.

The tracking curves and the steady state tracking error
of the closed-loop system are plotted in Figs. 5–8.

Fig. 5 Velocity tracking curve

Fig. 6 Altitude tracking curve

Fig. 7 Steady state tracking error of velocity

Fig. 8 Steady state tracking error of altitude
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The same robust controller is applied to the H-
FVs under different flight conditions. From the sim-
ulation results, it is obvious that the proposed robust
control method could achieve excellent robust tracking
performance with nonlinear uncertainties, external dis-
turbances and strongly coupled interconnections.

6 Conclusions
In this paper, a“simple” robust controller is ap-

plied to deal with the control problem of HFVs. The
problem is challenging due to the uncertain MIMO non-
linear model with uncertainties, disturbances, and the
couplings among the subsystems. By combining back-
stepping technology with signal compensation method,
the proposed controller can ensure the robust s practical
tracking property of the closed-loop system and guaran-
tee the tracking error as small as desired with expected
convergence rate. Finally, simulation results are giv-
en to verify the effectiveness of of the proposed robust
controller.
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