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摘要:网络演化博弈的优化问题是混合值逻辑网络的一个自然推广. 本文研究了一类网络演化博弈的优化控制问题,
其中每个控制个体在极大化自己的收益时只能获取到邻域信息.首先,利用矩阵的半张量积,将局部信息约束下控制网
络演化博弈的动力学转化为相应的代数形式. 然后得到了局部信息约束下确定型网络演化博弈的最优控制序列. 最后,
基于动态规划的解,研究了局部信息约束下概率型网络演化博弈的优化控制问题,得到了最优控制序列的简单计算公
式. 两个数值例子验证了本文的理论结果.
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Dynamics and optimization of control networked evolutionary games
with local information
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Abstract: The optimization of networked evolutionary games (NEGs) is a natural extension of optimization for mix-
valued logical networks. This paper studies the optimization problem for a class of control NEGs, where each controller
can only use the information of its neighbors so as to maximize its payoff over a finite or infinite number of time steps. First,
the dynamics of control NEGs with local information is converted into an algebraic form by using the semi-tensor product
of matrices. Then the optimal control sequences for deterministic NEGs with local information are obtained. Finally, based
on the dynamic programming solutions, some easily computable formulas are provided for stochastic NEGs with local
information. Two examples are presented to illustrate the theoretical results.
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1 Introduction
Evolutionary game theory was first introduced by

evolutionary biologists[1–2] for describing and mod-
elling the evolution of lives. It has been widely ap-
plied to economics[3], social physics[4], engineering sci-
ence[5], etc.

In a classical evolutionary game, it is assumed that
each player is equally likely to interact with any other
member of the population. However, sometimes players
do not interact with all other players, but play with some
of them. For example, the decision of an individual to
whether buy or not a new product, attend a meeting, find
a job is often influenced by the choices of its friends
and acquaintances. In these situations we can use a net-
work to describe the interactions between players, in

which the nodes denote players and the interactions be-
tween players are described by edges[6]. Such a game
that combines the evolutionary dynamics and a network
is called a networked evolutionary game (NEG).

In recent years, the NEG has been proved to be a
powerful tool for studying evolutionary dynamics[7], in
which players learn by interacting with their neighbors
to update their strategies in the next step. For instance,
in biological communities, individual often communi-
cates with its neighbors within limited ranges of seeing
and hearing. These individuals are apt to collect the lo-
cal information in their surrounding regions and to ex-
change the local information with their neighbors. In
some cases, the strategies for a small portion of players
can be assigned at each moment, who can be regarded
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as control players (or controllers), while other players
can be called state players (or states), then such a NEG
is named as a control NEG.

Recently, a new mathematical tool, called the semi-
tensor product of matrices, was introduced[8–9]. It has
been successfully applied to the analysis of Boolean
networks[10–13], mix-valued logical networks[14–17], fi-
nite games[18–19], and evolutionary games[20–23]. In a
NEG, the evolutionary process is actually a finitely log-
ical dynamic process, then the NEG can be expressed
as a k-valued logical network by using the semi-tensor
product method. Under this framework, a control NEG
can be expressed as a control k-valued logical network,
then the known control results about k-valued logical
networks are applicable to the control NEGs. In [22],
the authors presented an algebraic framework for inves-
tigating the NEGs and studied some control problems.
In [23], the strategy optimization was posed in term of
maximizing the average payoff of the pseudo-player in
the long run. However, these papers are based on glob-
al information, that is, the information of all states are
available for the controllers. Such an assumption is un-
realistic and difficult to hold in our real world situations.
For instance, in a cancer treatment application, we may
be able to track the status of only a limited number of
genes and not necessarily all the ones for the reasons of
cost, accessibility or other considerations. The control
problems in this case, which are based on the presence
of local information, arise in many real world problems.
In this paper, we consider a class of control NEGs where
each controller can only observe the information of its
neighbourhoods, and the information of other states is
uncertain. The main contributions consist of i) provid-
ing an algebraic expression of control NEGs with local
information; ii) extending the existing results from k-
valued logical networks to control NEGs with local in-
formation; iii) designing the optimal control sequences
for both deterministic and stochastic NEGs with local
information.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some necessary preliminar-
ies on the semi-tensor product of matrices. In Section
3, we give a problem formulation and an algebraic form
for control NEGs with local information. Section 4
presents the optimization problems of control NEGs
with local information. Section 5 is a conclusion.

2 Preliminaries
First, we give some necessary notations for ease:

Mm×n: the set of m× n real matrices.

Dk := {1, 2, · · · , k} , k > 2,

∆n :=
{
δin|i = 1, · · · , n

}
,

where δin is the i-th column of the identity matrix In.
Col(M)(Row(M)): the set of columns (rows) of M .
Coli(M)(Rowi(M)): the i-th column (row) of M .

A matrix L ∈ Mm×n is called a logical matrix if
Col(L) ⊂ ∆m. That is, L = [δi1m δi2m · · · δirm]. It is
briefly denoted as L = δm[i1 i2 · · · ir]. The set of
m× n logical matrices is denote by Lm×n.

Υn := {r ∈ Rn | ri > 0, and
n∑

i=1

ri = 1}.

A matrix T ∈ Mm×n is called a probabilistic ma-
trix if Col(T ) ⊂ Υm. The set of m × n probabilistic
matrices is denoted by Υm×n.

Definition 1[9] Let M ∈ Mm×n, N ∈ Mp×q,
t = lcm{n, p} be the least common multiple of n and
p. The semi-tensor product (STP) of M and N is de-
fined as

M nN := (M ⊗ It/n) (N ⊗ It/p) , (1)

where ⊗ is the Kronecker product.

The STP is a generalization of conventional matrix
product, and we can omit the symbol ”n” without con-
fusion.

Proposition 1 Let X ∈ Rm be a column and M
be any matrix. Then

X nM = (Im ⊗M)X. (2)

Next, we define the swap matrix[8–9]:

Definition 2 A matrix W[m,n] ∈ Mmn×mn, de-
fined by

W[m,n]=δmn


1 m+ 1 · · · (n− 1)m+ 1

2 m+ 2 · · · (n− 1)m+ 2
...

...
...

...
m 2m · · · nm

 ,

is called the (m,n)-th dimensional swap matrix.

Proposition 2 Let X ∈ Rm and Y ∈ Rn be two
columns. Then

W[m,n] nX n Y = Y nX. (3)

Definition 3 Let M ∈ Mp×m, N ∈ Mq×m.
Then the Khatri-Rao Product of M and N is defined as

M ×N = [Col1(M)n Col1(N) · · ·
Colm(M)n Colm(N)].

To use vector expression of logical variables, we i-
dentify i ∼ δik, i = 1, 2, · · · , k, then Dk ∼ ∆k. Using
vector expression, a (pseudo) logical function can be
expressed as an algebraic form.

Theorem 1[9] Let f : Dn
k → Dk be a k-

valued logical function. Then there exists a unique
Mf ∈ Lk×kn , such that in vector form we have

f(x1, · · · , xn) = Mf

n
n
i=1

xi, (4)

where xi ∈ Dk, i = 1, · · · , n, and Mf is called the
structure matrix of f .

Corollary 1 Let c : Dn
k → R be a k-valued
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pseudo-logical function. Then there exists a unique row
vector V c ∈ Rkn

, such that in vector form we have

c(x1, · · · , xn) = V c
n
n
i=1

xi, (5)

V c is called the structure vector of c.

3 Dynamics of control NEGs with local in-
formation

3.1 Problem formulation
Definition 4 [24] A normal finite game, denoted

by G = (N,S,C), consists of three factors:
1) N = {1, 2, · · · , n} is the set of players;

2) S =
n∏

i=1

Si is the strategy profile, where Si =

{1, 2, · · · , k} is the set of strategies for player i. The
strategies of all players but the i-th one are denoted by
S−i :=

∏
j ̸=i

Sj ;

3) C=(c1, · · · , cn)∈Rn with ci : S → R defined
as

ci := ci(x1, · · · , xn) = V c
i

n
n
i=1

xj,

xj ∈ Sj, i = 1, · · · , n (6)

is called the payoff function of player i.

In this paper, a normal finite game is played repeat-
edly on a network and a small portion of players perfor-
m the role of active controllers, which is described as
follows.

Definition 5 A control NEG, denoted by GN =
(Gc, G,Π), is composed by

1) A networked graph Gc = (N,E) = (X ∪
U,E), where N is the set of nodes (or players) and
{X,U} is a partition of N , that is, X ∪U = N and
X ∩U = ∅. X = {x1, x2, · · · , xn} is the states and
U = {u1, u2, · · · , um} is the controllers, where xi,
uj ∈ Dk. E ⊆ N×N is the set of edges. If (i, j) ∈ E

implies (j, i) ∈ E, the graph is undirected. The set of
all neighbors for i is denoted by Ni and li = |Ni|. In
this paper we assume that i ∈ Ni, and Np ∩ Nq = ∅
for up, uq ∈ U .

2) G is a normal finite game with two players, such
that if (i, j) ∈ E, then i and j play G with strategies
xi(t) and xj(t) at time t respectively. Particularly, if
G is not symmetric, the corresponding network graph
must be directed and the directed edge is used to distin-
guish different roles of two players. Assume (i, j) ∈ E,
then there is an edge from i to j, and i is player one and
j is player two.

3) Π is an updating rule which describes how
a state player chooses a proper strategy for the next
step. In this paper, we only consider a simple updat-
ing rule, called Myopic best response adjustment rule
(MBRAR)[25], then the strategy dynamics is

xi(t+ 1) = fi(xj(t), up(t); j, p ∈ Ni), (7)

where fi is determined by MBRAR, which is described
as

xi(t+ 1)= arg max
xi∈Si

ci(xi, x−i(t)),

x−i(t) ∈ S−i, i = 1, · · · , n. (8)

If xi(t) ∈ arg max
xi∈Si

ci(xi, x−i(t)), then xi(t + 1) =

xi(t). Else, we have the following two options:
1) Deterministic Model: choose the smallest j,

such that xj ∈ arg max
xi∈Si

ci(xi, x−i(t)), and set xi(t +

1) = xj ;
2) Stochastic Model: choose any j, such that xj ∈

arg max
xi∈Si

ci(xi, x−i(t)), with equal probability.

Remark 1 The overall payoff of player i at time t is

ci(xi(t), x−i(t)) =
∑

j∈Ni\i
cij(xi(t), xj(t)), i ∈ N,

where cij(xi(t), xj(t)) is the payoff of player i from the game
played with j.

In [26], the control problems of NEGs with glob-
al information have been studied. That is, the strategy
profile x(t) ∈ Dn

k is available for the controllers, which
is described as a state feedback,

up(t) = gp(x1(t), x2(t), · · · , xn(t)) := Gpx(t),

p = 1, · · · ,m, (9)

where Gp is the structure matrix of gp.
In this paper, we only consider the local information

case, that is, each controller only use the information of
its neighbors,

up(t) = hp(xj(t); j ∈ Np), p = 1, · · · ,m. (10)

3.2 Algebraic form
First, we give a useful projection result.

Lemma 1[22] Let xi ∈ Υk, i = 1, · · · , n. Define
a set of projection matrices πi = 1T

ki−1 ⊗ Ik ⊗ 1T
kn−i ,

then

πix = xi, i = 1, · · · , n,

where x =
n
n
i=1

xi, and 1k := (1, 1, · · · , 1︸ ︷︷ ︸
k

)T.

For (7), using Theorem 1, we can find the struc-
ture matrix M̃i ∈ Lk×kli (or in stochastic model M̃i ∈
Υk×kli ) for each logical function fi. Then we have

xi(t+ 1) = M̃i n
p∈Ni

up(t) n
j∈Ni

xj(t). (11)

Similarly, for the controller’s strategy dynamics
(10), we have

up(t) = H̃p n
j∈Np

xj(t), p = 1, 2, · · · ,m, (12)

where H̃p ∈ Lk×klp (or in stochastic model H̃p ∈
Υk×klp ) is the structure matrix of hp in (10).

Using Lemma 1 and Proposition 1, the dynamics
(11) and (12) can be converted into
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xi(t+ 1) = Miu(t)x(t), i = 1, 2, · · · , n,
up(t) = Hpx(t), p = 1, 2, · · · ,m,

(13)

where Mi ∈ Lk×km+n (or Mi ∈ Υk×km+n) and Hp ∈
Lk×kn (or Hp ∈ Υk×kn).

Multiply all equations in (13) together, then the al-
gebraic form of control NEGs with local information is{

x(t+ 1) = Mu(t)x(t),

u(t) = Hx(t),
(14)

where M = M1∗M2∗· · ·∗Mn ∈ Lkn×km+n (or M ∈
Υkn×km+n) and H = H1 ∗ H2 ∗ · · · ∗ Hm ∈ Lkm×kn

(or H ∈ Υkm×kn).

4 Optimization problems of control NEGs
with local information
In this section, we discuss the optimization prob-

lems of deterministic model and stochastic model re-
spectively. First, we consider the deterministic case.
4.1 Optimal control of deterministic NEGs with

local information
Let x ∈ ∆k. Define an order reducing matrix as

OR
k := δk2 [1 k + 2 2k + 3 · · · k2] ∈ Lk2×k.

Then we have x2 = OR
k x.

The algebraic form of (14) can be expressed as

x(t+ 1) = Lx(t), (15)

where L = MHOR
kn ∈ Lkn×kn .

It is obvious that (15) is a k-valued logical net-
work without controllers, hence the properties of con-
trol NEGs with local information can be revealed from
(15), equivalently from the transition matrix L.

Let Θ(t) = {θ1(t) θ2(t) · · · θm(t)} be the
local information that is available for the controllers
U(t) = {u1(t) u2(t) · · · um(t)} at time t. In this
section, our purpose is to maximize the following value,

J(u) =
T∑

t=0

λtc(u1(t), · · · , um(t), θ1(t),

· · · , θm(t)) =
T∑

t=0

λtc(U(t), Θ(t)). (16)

For each controller up, denote its neighbors’ in-
formation by θp(t) = n

i∈Np

xi(t) ∈ Dklp , and as-

sume θp(t) ∩ θq(t) = ∅ for p ̸= q. Then we have

θ(t) =
m
n
p=1

θp(t) ∈ Dkr , where r =
m∑
i=1

|Ni|.

Define a payoff matrix as

Φ := (φi,j) ∈ Mkm×kr , (17)

where (φi,j) := c(δikm , δ
j
kr), i = 1, 2, · · · , km, j =

1, 2, · · · , kr, is the i-th row, j-th column element of
the matrix Φ, which is corresponding to the payoff of
controllers u(t) with respect to their neighbors’ strate-
gy profile θ(t). Then the controllers’ payoff in (16) can

be converted into
λtc(u(t), θ(t)) = λtuT(t)Φθ(t). (18)

Now the optimization problem can be expressed as

max Jt(θ(t)) = max
u(t)∈∆km

λtc(u(t), θ(t)) =

max
u(t)∈∆km

λtuT(t)Φθ(t). (19)

Arranging Jt(θ(t)) with different strategy profiles
θ(t) ∈ {δjkr |j = 1, 2, · · · , kr} into a vector form as

Jt(θ(t)) = [Jt(δ
1
kr) Jt(δ

2
kr) · · · Jt(δ

kr

kr )]T,

then the equation (19) becomes

max Jt(θ(t))=λt



max
u(t)∈∆km

uT(t)Col1(Φ)

max
u(t)∈∆km

uT(t)Col2(Φ)

...
max

u(t)∈∆km

uT(t)Colkr(Φ)

 . (20)

Hence, to maximize the value Jt(θ(t))|θ(t)=δj
kr

is equivalent to finding the maximum component of
Colj(Φ). That is, the optimal control for Jt(δ

j
kr) is

u∗(t)|θ(t)=δj
kr

= δi
∗

km , where

i∗ = argmax
i

Colij(Φ),

and Colij(Φ) is the i-th component of Colj(Φ).
We give a simple example to illustrate the above re-

sults.

Example 1 Consider a control NEG GN =(Gc,
G,Π), where i) N = (X ∪ U), X = {x1, x2, x3},
U = {u}, the network graph is given by Fig. 1; ii) G
is the Prisoner’s Dilemma with the payoff bi-matrix
shown in Table 1; iii) The strategy updating law is M-
BRAR.

Fig. 1 Network graph

Table 1 Payoff bi-matrix of Prisoner’s Dilemma

P1\P2 1 2

1 (3, 3) (0, 5)
2 (5, 0) (1, 1)

First, for the controller up, we define the frequency
vector qj(t) of player j /∈ Np as

qj(t) = (q1j (t), q
2
j (t), · · · , qkj (t))T, (21)

where

qij(t) :=
1

t+ 1

t∑
l=0

I{xj(l) = i}
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is the percentage of stage at which player j chosen the
strategy i ∈ Dk from time 0 to time t, xj(l) denote the
chosen strategy of player j at time l = 0, 1, · · · , t, and
I{·} is the indicator function.

From Fig. 1, the controller u can only observe the
information of x1 and x2. Suppose x3 selects strategy
1 and 2 with equal frequency at t = 0, then we have

x3(0) = q3(0) = (
1

2
,
1

2
)T.

We calculate the expect payoffs for x1 and x2 at t = 0,

Eci =
∑

x−i∈D2
2

(ci(xi, x−i)
∏

xj∈x−i

q
xj

j (0)).

Using MBRAR, the best strategies for players x1 and
x2 at time t = 1 can be chosen, which is listed in Table
2 and Table 3.

Table 2 Best strategies when u(0) = 1

x1(0)x2(0) 11 12 21 22

Ec1 4.5 4.5 8 8
Ec2 4.5 8 4.5 8
x1(1) 2 2 2 2
x2(1) 2 2 2 2

Table 3 Best strategies when u(0) = 2

x1(0)x2(0) 11 12 21 22

Ec1 1.5 1.5 4 4
Ec2 1.5 4 1.5 4
x1(1) 2 2 2 2
x2(1) 2 2 2 2

Denote θ(t) = x1(t)x2(t), then we have

θ(1) = x1(1)x2(1) = M θu(0)θ(0), (22)

where M θ = δ4[4 4 4 4 4 4 4 4].

From (22), given θ(0) ∈ {δ14, δ24, δ44, δ44}, we have
θ(1) = δ44 , then we calculate c3(δ

1
2, δ

4
4) = 0 and

c3(δ
2
2, δ

4
4) = 2. It is clear that player x3 selects strategy

2 at time t = 1,

x3(1) = q3(1) = (
1

3
,
2

3
)T.

Then we do the above calculation process repeti-
tively. After t = N > 1 steps, we can obtain

θ(N + 1) = M θu(N)θ(N), (23)

and

x3(N) = q3(N) = (
1

N
,
N − 1

N
)T.

It follows that lim
N→∞

x3(N)=(0, 1)T = δ22 . According

to (14), when t → ∞, let x(t) =
3
n
i=1

xi(t), we have

x(t+ 1) = Mu(t)x(t),

where M = δ8[8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8].

From Table 1, the controller’s payoff matrix can be
easily calculated as

Φ =

[
6 3 3 0

10 6 6 2

]
. (24)

Assume λ = 0.9. From (24), we have
1) when t = 0, u∗(0)|θ(0)=δ14(

2
4, δ

4
4 , δ

4
4)

= δ22 . And
J0|θ(0)=δ14

= 10; J0|θ(0)=δ24
= 6; J0|θ(0)=δ34

= 6;
J0|θ(0)=δ44

= 2.

2) when t > 1, according to (23), we have θ(t)
= δ44 , then u∗(t)|θ(t)=δ44

= δ22 . And Jt|θ(t)=δ44
=

T∑
t=0

0.9t × 2.

It follows that for any θ(0), we select u∗(t) = δ22
for t > 0, such that the maximum of the controller’s
payoff will be maintained.

On the other hand, the controller is a time-invariant
state feedback, that is,

u∗(t) = Hθx1(t)x2(t) = Hx(t),

where Hθ = δ2[2 2 2 2] and H = Hθ(I4 ⊗ 1T
2 ) =

δ2[2 2 2 2 2 2 2 2].
According to (15), when t → ∞, we have

x(t+ 1) = Lx(t),

where L = MHOR
23 = δ8[8 8 8 8 8 8 8 8]. It

is clear that x∗ = δ88 is an unique fixed point. Hence,
the evolutionary dynamics can globally converge to x∗

after finite steps, where x∗ = δ88 ∼ (2, 2, 2) is the pure
Nash equilibrium of this control NEG.

4.2 Optimal control of stochastic NEGs with lo-
cal information

For the stochastic model, the optimization objective
(16) becomes

J=E[
T∑

t=0

λtc(u1(t), · · · , um(t), θ1(t), · · · , θm(t))],

(25)

where θ(t)=
m
n
p=1

θp(t)∈Υkr , θp(t)∈Υklp , r=
m∑

p=1

|Np|,

and M ∈ Υkn×km+n is a probabilistic matrix in (14).

Proposition 3[27] Let J∗(θ(0)) be the optimal
value of (25), then

J∗(θ(0)) = J0(θ(0)). (26)

Where the function J0 is given by the last step of a
dynamic programming algorithm which proceeds back-
ward in time from t = N to t = 0:

JN(θ(N)) = max
u(N)

λNc(u(N), θ(N)), (27)

and

Jt(θ(t))=max
u(t)

λtE[c(u(t), θ(t))+Jt+1(θ(t+ 1))].

(28)
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Note that the expectation on the right hand side of
(28) is conditional on θ(t) and u(t). Denote the transi-
tion probability of θ(t) from j to i under the controller
u(t) as

pi,j(u) = P (θ(t+ 1) = i|θ(t) = j, u(t) = u).

In [16], the recursive solution for finite horizon op-
timization problem of mix-valued probabilistic logical
networks with global information has been obtained.
Similarly, we can provide the dynamic programming
solution to the above optimization problem (27) and
(28):

JN(θ(N)) = max
u(N)∈∆km

λNuT(N)Φθ(N);

Jt(θ(t)) = max
u(t)∈∆km

[λtuT(t)Φθ(t)+

kr∑
i=1

pi,θ(t)(u(t))Jt+1(i)],

t = N − 1, · · · , 1, 0.
By using the formulas (25) to (31) in [16], we can

obtain the complete solution for finite horizon optimiza-
tion of stochastic NEGs with local information. Note
that the difference between (29) and [16] for the solu-
tion to the finite horizon optimization is that θ(t) in this
paper is the local information and x(t) in [16] denotes
the global information for the controllers.

Example 2 Recall Example 1. Assume G is the
Matching Pennies game, where the payoff bi-matrix is
given in Table 4. The network graph is shown in Fig. 2,
where the edges are all directed.

Fig. 2 Network graph

Table 4 Payoff bi-matrix of matching pennies

P1\P2 1 2

1 (1, −1) (−1, 1)
2 (−1, 1) (1, −1)

Assume x3 takes strategy 1 with probability 1 all
the time and the strategy updating law is MBRAR. Then
we can calculate the expected payoffs and the best re-
sponses of x1 and x2, which are shown in Table 5 and
Table 6.

Table 5 Expect payoffs and best responses when
u = 1

profile 11 12 21 22

Ec1 2 2 −2 −2
Ec2 2 −2 2 −2

x1(t+ 1) 1 1 1 1
x2(t+ 1) 1 1 1 1

Table 6 Expect payoffs and best responses when
u = 2

profile 11 12 21 22

Ec1 0 0 0 0

Ec2 0 0 0 0

x1(t+ 1) (
1

2
,
1

2
) (

1

2
,
1

2
) (

1

2
,
1

2
) (

1

2
,
1

2
)

x2(t+ 1) (
1

2
,
1

2
) (

1

2
,
1

2
) (

1

2
,
1

2
) (

1

2
,
1

2
)

Denote θ(t) = x1(t)x2(t), we have

θ(t+ 1) = M θu(t)θ(t), (29)

where

M θ =



1 1 1 1
1

4

1

4

1

4

1

4

0 0 0 0
1

4

1

4

1

4

1

4

0 0 0 0
1

4

1

4

1

4

1

4

0 0 0 0
1

4

1

4

1

4

1

4


.

According to (14), we have

x(t+ 1) = Mu(t)x(t),

where M ∈ Υ8×16.
Assume λ = 0.9 and from Table 4, we have

Φ =

[
−2 0 0 2
2 0 0 − 2

]
. (30)

Using (29) and the formulas in [16], the finite hori-
zon (N = 3) optimal controls are as follows:

1) When t = N = 3, we have

u∗(3)|θ(3)=δ14
=δ22, J3|θ(3)=δ14

=0.93 × 2=1.458;

u∗(3)|θ(3)=δ24
=δ12(or δ22), J3|θ(3)=δ24

=0.93 × 0=0;

u∗(3)|θ(3)=δ34
=δ12(or δ22), J3|θ(3)=δ34

=0.93 × 0=0;

u∗(3)|θ(3)=δ44
=δ12, J3|θ(3)=δ44

=0.93 × 2=1.458.

Then J3 = [1.458 0 0 1.458 ]T.

2) When t = N − 1 = 2, we calculate that

u∗(2)|θ(2)=δ14
= δ22; u

∗(2)|θ(2)=δ24
= δ12;

u∗(2)|θ(2)=δ34
= δ12; u

∗(2)|θ(2)=δ44
= δ12.

Then J2 = [2.349 1.458 1.458 3.078 ]T.

3) When t = N − 2 = 1, we have

u∗(1)|θ(1)=δ14
= δ22; u

∗(1)|θ(1)=δ24
= δ12;

u∗(1)|θ(1)=δ34
= δ12;u

∗(1)|θ(1)=δ44
= δ12 .

And then J1 = [3.88575 2.349 2.349 4.149 ]T.

4) When t = N − 3 = 0, we have

u∗(0)|θ(0)=δ14
= δ22 ;u

∗(0)|θ(0)=δ24
= δ12;

u∗(0)|θ(0)=δ34
= δ12 ;u

∗(0)|θ(0)=δ44
= δ12.
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And then

J0 = [5.1831875 3.88575 3.88575 5.88575 ]T.

Finally, according to Proposition 5.2 in [16], we
have the infinite horizon (0 6 t 6 ∞) optimal control

u∗(t) = Hθθ(t),

where Hθ = δ2[ 2 1 1 1 ].

According to (15), the algebraic form of control
NEGs with local information is x(t + 1) = Lx(t),

where L = MHθ(I4 ⊗ 1T
2 )O

R
23 . When k > 36, we

calculate that L converges to L∗, where

Coli(L
∗)=[0.571 0 0.143 0 0.143 0 0.143 0]T,

i = 1, 2, · · · , 8.
Using Lemma 1, we have

x1(∞) = x2(∞) = [0.7143 0.2858 ]T.

That is, the control NEGs with local information can
globally converge to a stationary distribution x(∞) =
x1(∞)n x2(∞)n x3(∞), where x3(∞) = [ 1 0 ]T.

5 Conclusions
The optimization problem of control NEGs with lo-

cal information was considered. Using the STP method,
the dynamics of control NEGs with local information
has been converted into an algebraic form. Then the
optimal control sequences for the deterministic and s-
tochastic NEGs were presented respectively. Accord-
ingly, some easily computable formulas were provid-
ed by generalizing the corresponding results in [16] for
mix-valued logical networks with global information.
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