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Dynamics and optimization of control networked evolutionary games
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Abstract: The optimization of networked evolutionary games (NEGs) is a natural extension of optimization for mix-
valued logical networks. This paper studies the optimization problem for a class of control NEGs, where each controller
can only use the information of its neighbors so as to maximize its payoft over a finite or infinite number of time steps. First,
the dynamics of control NEGs with local information is converted into an algebraic form by using the semi-tensor product
of matrices. Then the optimal control sequences for deterministic NEGs with local information are obtained. Finally, based
on the dynamic programming solutions, some easily computable formulas are provided for stochastic NEGs with local
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information. Two examples are presented to illustrate the theoretical results.
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1 Introduction

Evolutionary game theory was first introduced by
evolutionary biologists!'?! for describing and mod-
elling the evolution of lives. It has been widely ap-
plied to economics!®!, social physics!*!, engineering sci-
encel®!, etc.

In a classical evolutionary game, it is assumed that
each player is equally likely to interact with any other
member of the population. However, sometimes players
do not interact with all other players, but play with some
of them. For example, the decision of an individual to
whether buy or not a new product, attend a meeting, find
a job is often influenced by the choices of its friends
and acquaintances. In these situations we can use a net-
work to describe the interactions between players, in

Received 3 November 2017; accepted 31 May 2018.

which the nodes denote players and the interactions be-
tween players are described by edges!®. Such a game
that combines the evolutionary dynamics and a network
is called a networked evolutionary game (NEG).

In recent years, the NEG has been proved to be a
powerful tool for studying evolutionary dynamics!”!, in
which players learn by interacting with their neighbors
to update their strategies in the next step. For instance,
in biological communities, individual often communi-
cates with its neighbors within limited ranges of seeing
and hearing. These individuals are apt to collect the lo-
cal information in their surrounding regions and to ex-
change the local information with their neighbors. In
some cases, the strategies for a small portion of players
can be assigned at each moment, who can be regarded
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as control players (or controllers), while other players
can be called state players (or states), then such a NEG
is named as a control NEG.

Recently, a new mathematical tool, called the semi-
tensor product of matrices, was introduced'®°!. It has
been successfully applied to the analysis of Boolean
networks"% 13! mix-valued logical networks!4171 fi-
nite games!'®1%! and evolutionary games?*23!. In a
NEG, the evolutionary process is actually a finitely log-
ical dynamic process, then the NEG can be expressed
as a k-valued logical network by using the semi-tensor
product method. Under this framework, a control NEG
can be expressed as a control k-valued logical network,
then the known control results about k-valued logical
networks are applicable to the control NEGs. In [22],
the authors presented an algebraic framework for inves-
tigating the NEGs and studied some control problems.
In [23], the strategy optimization was posed in term of
maximizing the average payoff of the pseudo-player in
the long run. However, these papers are based on glob-
al information, that is, the information of all states are
available for the controllers. Such an assumption is un-
realistic and difficult to hold in our real world situations.
For instance, in a cancer treatment application, we may
be able to track the status of only a limited number of
genes and not necessarily all the ones for the reasons of
cost, accessibility or other considerations. The control
problems in this case, which are based on the presence
of local information, arise in many real world problems.
In this paper, we consider a class of control NEGs where
each controller can only observe the information of its
neighbourhoods, and the information of other states is
uncertain. The main contributions consist of i) provid-
ing an algebraic expression of control NEGs with local
information; ii) extending the existing results from k-
valued logical networks to control NEGs with local in-
formation; iii) designing the optimal control sequences
for both deterministic and stochastic NEGs with local
information.

The remainder of this paper is organized as fol-
lows. Section 2 introduces some necessary preliminar-
ies on the semi-tensor product of matrices. In Section
3, we give a problem formulation and an algebraic form
for control NEGs with local information. Section 4
presents the optimization problems of control NEGs
with local information. Section 5 is a conclusion.

2 Preliminaries

First, we give some necessary notations for ease:
M., «n: the set of m X n real matrices.

Dy :={1,2,--- ,k}, k>2,
A= {0ili=1,- n},
where ¢! is the i-th column of the identity matrix I,,.

Col(M)(Row(M)): the set of columns (rows) of M.
Col;(M)(Row;(M)): the i-th column (row) of M.

A matrix L € M,,«,, is called a logical matrix if
Col(L) C A,,. Thatis, L = [§2 62 dir]. Tt is
briefly denoted as L = 0,,[i1 i ir]. The set of
m X n logical matrices is denote by L, x .

Y, ={reR"|r>0,and > r =1}
=1

A matrix T" € M., «,, is called a probabilistic ma-
trix if Col(7") C 7T,,,. The set of m x n probabilistic
matrices is denoted by 1, « 1.

Definition 1®!  Let M € M,,x,,, N € M,yys
t = lem{n, p} be the least common multiple of n and
p. The semi-tensor product (STP) of M and N is de-
fined as

M x N :=(M® ly,) (N @ ly,) , (1)
where ® is the Kronecker product.

The STP is a generalization of conventional matrix
product, and we can omit the symbol ”x” without con-
fusion.

Proposition1 Let X € R™ be a column and M

be any matrix. Then
XxM=(,oM)X. 2)

Next, we define the swap matrix!®°!:

Definition 2 A matrix W), ) € Monpxmn, de-
fined by

1 m+1 (n—1m+1

2 m+2 - (n—1)m+2
W[m,n]:(smn . . . . )

m  2m .- nm

is called the (m, n)-th dimensional swap matrix.

Proposition2 ILet X € R™andY € R" be two

columns. Then
Wimn x X XY =Y x X. 3)

Definition 3 Let M € M, ,,,, N € M .

Then the Khatri-Rao Product of M and N is defined as
M x N =[Col;(M) x Col;(N)
Col,,,(M) x Col,,(N)].

To use vector expression of logical variables, we i-
dentify ¢ ~ 65,1 =1,2,--- , k, then D}, ~ A,. Using
vector expression, a (pseudo) logical function can be
expressed as an algebraic form.

Theorem 1°!  Let f : D — Dy be a k-
valued logical function. Then there exists a unique
My € Ly xxn, such that in vector form we have

f(xh...

where x; € Dy, ¢ = 1,---,n, and M is called the
structure matrix of f.

Let ¢ : D} — R be a k-valued

=1

Corollary 1
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pseudo-logical function. Then there exists a unique row
vector V¢ € R¥", such that in vector form we have

. n
C(xlv"' 7xn) :Vcllxl-ri’ (5)
1=
V¢ is called the structure vector of c.

3 Dynamics of control NEGs with local in-
formation
3.1 Problem formulation
Definition 4'**! A normal finite game, denoted
by G = (N, S, C), consists of three factors:
1) N ={1,2,---,n} is the set of players;
2) S = ][ S; is the strategy profile, where S; =
i=1
{1,2,--- ,k} is the set of strategies for player i. The
strategies of all players but the ¢-th one are denoted by

S_i = H Sj;
J#i
3) C=(c1,++ ,c,) ER™ with ¢;: S — R defined
as
cii=ci(xy, - x,) =VE X xj,
i=1
ijSj,i:1,~~,n (6)

is called the payoff function of player <.

In this paper, a normal finite game is played repeat-
edly on a network and a small portion of players perfor-
m the role of active controllers, which is described as
follows.

Definition 5 A control NEG, denoted by Gy =
(G., G, IT), is composed by

1) A networked graph G. = (N,E) = (X U
U, E), where N is the set of nodes (or players) and
{X,U} is a partition of N, that is, X UU = N and
XNU=9. X ={xy,2,, -+ ,x,} is the states and
U = {uy,uz, -+ ,u,} is the controllers, where z;,
u; € Dy. E C N x N is the set of edges. If (i, j) € E
implies (j,7) € E, the graph is undirected. The set of
all neighbors for 4 is denoted by N; and I; = |N;|. In
this paper we assume that ¢ € N, and N, "N, = &
for u,,uq € U.

2) G is anormal finite game with two players, such
that if (é,7j) € FE, then i and j play G with strategies
x;(t) and x;(t) at time ¢ respectively. Particularly, if
G is not symmetric, the corresponding network graph
must be directed and the directed edge is used to distin-
guish different roles of two players. Assume (i,j) € E,
then there is an edge from ¢ to j, and ¢ is player one and
j is player two.

3) II is an updating rule which describes how
a state player chooses a proper strategy for the next
step. In this paper, we only consider a simple updat-
ing rule, called Myopic best response adjustment rule
(MBRAR)!?*!, then the strategy dynamics is

xi(t+1) = filz;(t),up(t); j,p e No), (D

where f; is determined by MBRAR, which is described
as

zi(t+1)=arg max ci(xi, (1)),
T; €05

l‘fz(t) GS*M Zzlv y T (8)
If z;(t) € arg max ci(xi,x_i(t)), then z;(t + 1) =
TiE€ES;
x;(t). Else, we have the following two options:

1) Deterministic Model: choose the smallest j,
such that z; € arg max ci(xi, x_;(t)), and set x;(t +
T;€S5;
1) =z
2) Stochastic Model: choose any 7, such that x; €
arg max ¢i(xi, x_;(t)), with equal probability.
T, €04

Remark 1

ci(zi(t), x4 (1)) =

The overall payoff of player ¢ at time ¢ is
> cj(@i(t),z;(t), i €N,

JENi\i

where ¢;; (x;(t), z;(t)) is the payoff of player i from the game

played with j.

In [26], the control problems of NEGs with glob-
al information have been studied. That is, the strategy
profile z(t) € D} is available for the controllers, which
is described as a state feedback,

up(t) = gp(xl(t)ﬂ x2(t)7 T 7xn(t)) = pr(t)ﬂ
p:17"'7m7 (9)
where G, is the structure matrix of g,,.
In this paper, we only consider the local information

case, that is, each controller only use the information of
its neighbors,

up(t) = hy(z;(t); j €EN,), p=1,--- ,m. (10)
3.2 Algebraic form

First, we give a useful projection result.

Lemma 1?? Letx; € 1), i =1,---,n. Define

a set of projection matrices m; = 17, 1 @ I, @ 17, .,

then

mr =2, =1, ,n,

=

where = X xj,and 1 = (1,1,--- , )T,
i=1 N——
k
For (7), using Theorem 1, we can find the struc-

ture matrix M; € L, (or in stochastic model Z\Z[i €
T« it:) for each logical function f;. Then we have

zi(t+1) =M, x u,(t) x z:(t). 11
(t+1) =1, x uy(t) x (D). (D

Similarly, for the controller’s strategy dynamics
(10), we have

up(t) = Hy x 25(t), p =12, ,m, (12)

where ﬁp € L. » (or in stochastic model fjp €
Vs iv) is the structure matrix of A, in (10).

Using Lemma 1 and Proposition 1, the dynamics
(11) and (12) can be converted into
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{xi(t—l—l):Miu(t):v(t), i=1,2,--,n, 13

up(t) = pr(t)v
where M; € Ly ygm+n (or M; € Viyjm+n) and H, €
Lixin (or Hy € Vipypon).

Multiply all equations in (13) together, then the al-
gebraic form of control NEGs with local information is

{x(t +1) = Mu(t)z(t),

p:1727"'5m>

u(t) = Hx(t), (19

where M = My« Msy*---x M, € Linym+n (or M €

Yinxgmin)and H = Hy x Hy % -+ x H,,, € Limypn

(or H € Tmypon).

4 Optimization problems of control NEGs
with local information

In this section, we discuss the optimization prob-
lems of deterministic model and stochastic model re-
spectively. First, we consider the deterministic case.

4.1 Optimal control of deterministic NEGs with
local information
Let z € Ay. Define an order reducing matrix as

Of :=62[1 k+2 2k+3 - k?] € Lizxr.
Then we have 22 = OFz.
The algebraic form of (14) can be expressed as
x(t+1) = Lx(t), (15)
where L = MHOPE, € Linypn.
It is obvious that (15) is a k-valued logical net-
work without controllers, hence the properties of con-

trol NEGs with local information can be revealed from
(15), equivalently from the transition matrix L.

Let O(t) = {0.(t) 6s(1) 0,,(t)} be the
local information that is available for the controllers
U(t) = {ui(t) ua(t) U, (t)} at time ¢. In this
section, our purpose is to maximize the following value,

J(u) :é)\tc(ul(t), c Uy (), 04(8),

L 0(t) = i:o)\tc(U(t),Q(t)). (16)

For each controller u,, denote its neighbors’ in-
formation by 0,(t) = X x;(t) € Dy, and as-
1€

sume 6,(t) N 0,(t) = @ for p # ¢q. Then we have
0(t) = ¥ 6,(t) € Dy, where 1 = SN
p= =1

Define a payoff matrix as

D = (¢i;) € Mpmxpr, (17)
where (QDZ'J‘) = C( ]im,éjr)7 1= 1727' o 7km’ ] =
1,2,--- k", is the ¢-th row, j-th column element of

the matrix @, which is corresponding to the payoff of
controllers u(t) with respect to their neighbors’ strate-
gy profile §(¢). Then the controllers’ payoff in (16) can

be converted into
Me(u(t),0(t)) = XuT (t)P0(t). (18)
Now the optimization problem can be expressed as
max J;(0(t)) = max Ne(u(t),0(t)) =
u(t)EARm

max  Au'(t)P0(t).  (19)

u(t)EARm
Arranging J,(0(t)) with different strategy profiles
0(t) € {6115 =1,2,--- ,k"} into a vector form as
Jo(0(t) = [J(64-) Ju(07-) -+ J(05)]T,
then the equation (19) becomes

max " (t)Coly(P) ]
u(t)EAkm,

T(t)Coly (P
oBERL, v (DCOk(D)

max J,(0(t)) =\ . (20)

max u? (t)Col-(P)

Lu(t)€ALm J

Hence, to maximize the value Jt(Q(t))\e(t):(;ir
is equivalent to finding the maximum component of
Col;(®). That is, the optimal control for J,(d7.) is

u’ (t)|9(t):5£7, = 04, where
i* = arg max Col(9),

and Col;- (9) is the i-th component of Col;(®).

We give a simple example to illustrate the above re-
sults.

Example 1  Consider a control NEG Gy = (G,
G,II), where i) N = (X UU), X = {z1,22, 23},
U = {u}, the network graph is given by Fig. 1; ii)) G
is the Prisoner’s Dilemma with the payoff bi-matrix
shown in Table 1; iii) The strategy updating law is M-
BRAR.

2 X,

Xy

Fig. 1 Network graph

Table 1 Payoff bi-matrix of Prisoner’s Dilemma

P\P, 1 2
1 (3,3 (0,5)
2 (5,0) (1, 1)

First, for the controller u,, we define the frequency
vector g, (t) of player j ¢ N, as

qj(t) = (qjl‘(t)7q]2'(t)a"' 7q]k(t))Ta (21)
where

60 = g 2 o) =)
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is the percentage of stage at which player j chosen the
strategy ¢ € Dy, from time O to time ¢, z;([) denote the
chosen strategy of player j at time ! = 0,1,--- ,¢, and
I{-} is the indicator function.

From Fig. 1, the controller w can only observe the
information of x; and x5. Suppose x3 selects strategy
1 and 2 with equal frequency at ¢ = 0, then we have

11

23(0) = 3(0) = (57 §)T-

We calculate the expect payoffs for x; and x4 att = 0,
Eci= Y (ci(zi,x_) T ¢;(0)).

z_;€D3 T;ET_;
Using MBRAR, the best strategies for players x; and
Ty at time ¢ = 1 can be chosen, which is listed in Table
2 and Table 3.

Table 2 Best strategies when ©(0) = 1
21(0)z2(0) 11 12 21 22

Eey 45 45 8 8
Ecy 45 8 45 8
z1(1) 2 2 2 2
z2(1) 2 2 2 2

Table 3 Best strategies when u(0) = 2
21(0)zp(0) 11 12 21 22

Eey 15 15 4 4
Ecy 15 4 15 4
z1(1) 2 2 2 2
zo(1) 2 2 2 2

Denote 6(t) = x1(t)x2(t), then we have
0(1) = z1(1)az(1) = M?u(0)0(0),  (22)
where M? = 6,4 4 4 4 4 4 4 4].

From (22), given 0(0) € {4}, 03,03, 0;}, we have
6(1) = &3, then we calculate c3(d3,d7) = 0 and
c3(02,04) = 2. Itis clear that player 3 selects strategy
2attimet =1,

12

ms(1) = (1) = (55"

Then we do the above calculation process repeti-
tively. After ¢t = N > 1 steps, we can obtain

O(N +1) = MPu(N)O(N), (23)
and
73(V) = 4s(N) = (5, o)

It follows that ]\}im x3(N)=(0,1)" = §2. According
— 00

3
to (14), when t — oo, let x(t) = X x;(t), we have

i=1
z(t+1) = Mu(t)x(t),
where M = 63[8 8 8 8 8 8 8 8 8 8 8 8 88 8 8.

From Table 1, the controller’s payoff matrix can be
easily calculated as

b = (24)

10 6 6 2

Assume A = 0.9. From (24), we have
l) when ¢ = 0, u*(0)|9(0):5i(421’ 54,84 = (5% And
Joloy=sr = 10; Jolgoy=s2 = 65 Jolgy=s2 = 6;

6330]

JO’O(()):Sj =2.

2) when t > 1, according to (23), we have 6(t)
= 52, then u*(t)|9(t):52 = 55 And Jt|6(t):5i =
T
570.9" x 2.

t=0

It follows that for any 0(0), we select u*(t) = 42
for t > 0, such that the maximum of the controller’s
payoff will be maintained.

On the other hand, the controller is a time-invariant
state feedback, that is,

uw*(t) = Hxy(t)zy(t) = Ha(t),

where H? = 6,2 2 2 2]and H = H'(I, ® 1]) =
02 22222 2 2.

According to (15), when ¢ — oo, we have

x(t+ 1) = Lx(t),
where L = MHOE = 64/8 8 8 8 8 8 8 8. It

is clear that z* = 6§ is an unique fixed point. Hence,

the evolutionary dynamics can globally converge to x*

after finite steps, where x* = §3 ~ (2,2, 2) is the pure

Nash equilibrium of this control NEG.

4.2 Optimal control of stochastic NEGs with lo-
cal information

For the stochastic model, the optimization objective
(16) becomes

T
T=E[L Ne(us(t). - (). 0:(8). -+ O ()],
t=
(25)
where 6(t) = X 6,(t) €T, 0,() €y, 7= SN,
p= p=1

bl

and M € Tynypm+n is a probabilistic matrix in (14).
Proposition 3”1 Let J*(0(0)) be the optimal

value of (25), then
J*(0(0)) = Jo(6(0)). (26)

Where the function Jj is given by the last step of a
dynamic programming algorithm which proceeds back-
ward in time fromt = N tot = (:

Tx(B(N)) = max NV e(u(N),0(N)),  @7)

and
Ji(6(t)) =max AN Ele(u(t), 0(t)) +Je1 (0 + 1))].
(28)
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Note that the expectation on the right hand side of
(28) is conditional on #(t) and u(t). Denote the transi-
tion probability of 0(t) from j to ¢ under the controller
u(t) as

pij(u) = PO+ 1) =1i|0(t) = j,u(t) = u).

In [16], the recursive solution for finite horizon op-
timization problem of mix-valued probabilistic logical
networks with global information has been obtained.
Similarly, we can provide the dynamic programming
solution to the above optimization problem (27) and
(28):

Jw(B(N)) =  max AVuT(N)PO(N);
J:(0(t)) = max [MNuT(t)PO(t)+

u(t)EARm

P
;pi,e(t)(u(t))JtJrl(i)]a
t=N-1,---,1,0.

By using the formulas (25) to (31) in [16], we can
obtain the complete solution for finite horizon optimiza-
tion of stochastic NEGs with local information. Note
that the difference between (29) and [16] for the solu-
tion to the finite horizon optimization is that 6(¢) in this
paper is the local information and x(¢) in [16] denotes
the global information for the controllers.

Example 2  Recall Example 1. Assume G is the
Matching Pennies game, where the payoff bi-matrix is
given in Table 4. The network graph is shown in Fig. 2,
where the edges are all directed.

X3

Fig. 2 Network graph

Table 4 Payoff bi-matrix of matching pennies

P\P; 1 2
1 (1, -1) (-1, 1)
2 (-1,1) (1, -1)

Assume z3 takes strategy 1 with probability 1 all
the time and the strategy updating law is MBRAR. Then
we can calculate the expected payoffs and the best re-
sponses of x; and xo, which are shown in Table 5 and
Table 6.

Table 5 Expect payoffs and best responses when

u=1
profile 1 12 21 22
Ecy 2 2 -2 =2
Ecy 2 -2 2 =2
xi(t+1) 1 1 1 1
xa(t+1) 1 1 1 1

Vol. 36
Table 6 Expect payoffs and best responses when
U =2
profile 11 12 21 22
Ec; 0 0 0 0
ECQ
11 11 11 11
z1(t+1) (5»5) (5»5) (575) (575)
11 11 11 11
za(t +1) (5»5) (5»5) (575) (575)

Denote 0(t) = x;(t)zo(t), we have

O(t +1) = M%u(t)6(t), (29)
where

i 11 1 17

1111

0000~ - = =

Mo — 4 4 4 4
1111

00007 7 77
0000 Ll 1l

L 4 4 4 4]

According to (14), we have
z(t+1) = Mu(t)x(t),
where M € Ty 16.
Assume A = 0.9 and from Table 4, we have

200 2
ds:[z 00 —2]' (30)

Using (29) and the formulas in [16], the finite hori-
zon (N = 3) optimal controls are as follows:
1) Whent = N = 3, we have

u*(3)|o)=s: =03, Jalo@)—st =0.9> x 2=1.458;
u*(3)|o@3)=s2 =03 (or 03), Jso(3)=52 =0.9> x 0=0;
u*(3)|o@3)=s3 =03 (or 03), Jso(3)—s3 =0.9> x 0=0;
u*(3)|o@3)=st =03, Jslo@z)—st =0.9> x 2=1.458.

Then J; = [1.458 0 0 1.458]T.
2) Whent = N — 1 = 2, we calculate that

u*(2)]o2)=s1 = 03; u(2)lp(2)=62 = 05;
u*(2)]o2)=s3 = 035 u(2)lp(2)=s1 = 05

Then J, = [2.349 1.458 1.458 3.078 ]*.
3) Whent = N — 2 =1, we have

w*(1)|pay=st = 03 u*(1)|pa)=sz = 03;
w*(1)]pay=sz = 0g3u*(1)|p)=ss = 05

And then J; = [3.88575 2.349 2.349 4.149|T.
4) Whent = N — 3 = 0, we have

w*(0)|p0)=s1 = 03:u"(0)|p(0)=52 = 05:
w*(0)|p(0)=s3 = 03: 1" (0)|o(0)=s2 = 5.
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And then
Jo = [5.1831875 3.88575 3.88575 5.88575]T.

Finally, according to Proposition 5.2 in [16], we
have the infinite horizon (0 < ¢ < 00) optimal control

w*(t) = H0(t),
where H? = 6,[2 1 1 1].

According to (15), the algebraic form of control
NEGs with local information is x(¢t + 1) = Lx(t),

where L = MH?(I, ® 17)0%. When k > 36, we
calculate that L converges to L*, where

Col;(L*)=[0.571 0 0.143 0 0.143 0 0.143 0],
i=1,2,,8.

Using Lemma 1, we have
71(00) = my(0c0) = [0.7143 0.2858 |*.

That is, the control NEGs with local information can
globally converge to a stationary distribution z(0c0) =
21(00) X xo(00) X x3(00), where z3(00) =[1 0]T.

5 Conclusions

The optimization problem of control NEGs with lo-
cal information was considered. Using the STP method,
the dynamics of control NEGs with local information
has been converted into an algebraic form. Then the
optimal control sequences for the deterministic and s-
tochastic NEGs were presented respectively. Accord-
ingly, some easily computable formulas were provid-
ed by generalizing the corresponding results in [16] for
mix-valued logical networks with global information.
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