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摘要:本文研究了量子C–NOT门的制备. Cartan分解和Lyapunov控制方法用于设计实现C–NOT门的两个量子位操
作的控制手段. 数值仿真实验表明,针对所设计的控制律,若给定合适的控制参数,每个单量子比特旋转在所考虑的轴
周围具有较小的偏差,并且在1.68 a.u.
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Realization of quantum C–NOT gates based on the Lyapunov
control method

NOURALLAH Ghaeminezhad1, CONG Shuang1†, SHUANG Feng2

(1. Department of Automation, University of Science and Technology of China, Hefei Anhui 230027, China;
2. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei Anhui 230031, China)

Abstract: The preparation of the quantum C–NOT gate is studied in this paper. The Cartan decomposition and the
Lyapunov control methods are used to design the control laws for two single-qubit operations in realizing the C–NOT gate.
The numerical simulation experiments show that for some proper control parameters in the designed control laws, each
single qubit rotation has less deviation around the considered axis, and the total Fidelity of the system can achieve to 1,
after 1.68 a.u..
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1 Introduction
The quantum computing is a major area of inter-

esting in the field of quantum computation, in which
the quantum computers will perform much faster than
current classical computers and will open a new view
point to many aspects of science. The two qubit C–
NOT gate is an important component in the quantum
circuits, and it combines some single qubit operation to
realize any quantum computation. Therefore, it plays
a key role in developing the quantum computers[1–3].
One of the most important events in the field of quantum
computation and information happened in 1970 s, when
the control over single quantum system was complete-
ly obtained[4]. Recent developments in quantum con-
trol have heightened the need for solid-state systems, in
which the state of electron confined in the semiconduc-

tor quantum dots can be manipulated[5–9]. A consider-
able amount of literatures have been published on the
realization of coupled qubits, among them there have
been a number of longitudinal studies involving the de-
composition methods, in which the Cartan decomposi-
tion is an increasingly important method used to realize
the quantum gates[10–18]. However, in the methods men-
tioned above, the centered axis of the rotation in each
single-qubit operation of the decomposed step has not
been investigated; therefore the Fidelity of the system
could not reach to 1.

The Lyapunov control method is one of the most
widely used methods of controlling quantum states and
has been extensively used for theoretical and experi-
mental researches[19–24].

The purpose of this paper is to realize the two qubit
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C–NOT gate by manipulating the quantum dot system
in order to achieve a high Fidelity in a short time. A
combination of the Cartan decomposition method and
the Lyapunov control method is used to design the con-
trol laws in each decomposed step. The control task is
to reduce the rotation swing and achieve higher Fidelity
in a short time, while preparing the two qubit C–NOT
gate.

The rest of the paper is arranged as follows: Sec-
tion 2 is the model description of the research and de-
fines the system Hamiltonian. Section 3 is concerned
with the Canonical decomposition and realization pro-
cess of C–NOT gate. Section 4 gives the design of the
Lyapunov control laws. Section 5 is the numerical ex-
periments and result discussion. Finally, the conclusion
gives a brief summary of the proposed work.

2 Description of the model
Quantum dots are made from semiconductor mate-

rials, metals, or small molecules, in which the electric
charge spins are confined and can be manipulated by
applying pulsed local electromagnetic fields to operate
the single qubit rotations[25].

A quantum system with single-spin has two states,

i.e., ψ0 =

(
1
0

)
and ψ1 =

(
0
1

)
, which are repre-

sented as
∣∣0⟩ and |1⟩, respectively. The superposition

principle in quantum theory yields that, any state of the
single-spin system can be described as ψ = aψ0+bψ1,
where |a|2 + |b|2 = 1 and a, b ∈ C, in which C
denotes the set of complex numbers[26].

In this paper, we deal with the two-spin (two
quantum-dots) system, so the Hilbert space is the ten-
sor product of each single-spin space, and accordingly
there are 4 eigenstates as

{|0⟩ ⊗ |0⟩, |0⟩ ⊗ |1⟩, |1⟩ ⊗ |0⟩, |1⟩ ⊗ |1⟩} =

{[1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T, [0 0 0 1]T}. (1)

The underlying Hilbert space of the system is

H = span {
∣∣00⟩, ∣∣01⟩, ∣∣10⟩, ∣∣11⟩}. (2)

The wave function
∣∣ψ(t)⟩ of the system has four com-

ponents:∣∣ψ(t)⟩ = a1
∣∣00⟩+ a2

∣∣01⟩+ a3
∣∣10⟩+ a4

∣∣11⟩, (3)

in which
∣∣ψ(t)⟩ satisfies the Schrödinger equationi~

∂

∂t

∣∣ψ (t)
⟩
= H(t)

∣∣ψ (t)
⟩
, t > 0,∣∣ψ(0)⟩ = ∣∣ψ0

⟩
∈ H,

(4)

where, H denotes the Hilbert space, and H(t) is the
total Hamiltonian of the system.

According to the Hubbard model, the total Hamil-
tonian of a two quantum-dots system in the interaction
picture can be written as [27]:

H =
2∑

i=1

~
2
µBgi(t)Bi(t) · Si +

~
2
J12(t)S1 · S2, (5)

where, the µB is the Bohr magneton; gi(t) is the ef-
fective g-factor; Bi, i = 1, 2 is the number of applied
magnetic fields to the electron spin at dot i in the di-
rections of x, y or z, and J12(t) is the time-dependent
coupling component between quantum dots 1 and 2.

In (5), S1 and S2 are the spin operators for the first
and second quantum dots, respectively. By defining
the Pauli spin vector which has matrix components, we
have

S1 = σ = (σx σy σz)
T
= σxex + σyey + σzez (6)

and

S2 = τ = (τx, τy τz)
T
= τxex + τyey + τzez, (7)

where σx, σy, σz and τx, τy, τz are the usual Pauli ma-
trices of the first and second qubits, respectively; ex, ey
and ez are the unit vectors in directions of x, y and z:

σx = τx =

[
0 1
1 0

]
, σy = τy =

[
0 −i
i 0

]
,

σz = τz =

[
1 0
0 −1

]
.

(8)

Based on (5), we define the control laws Ωi(t) =
µBgi(t)Bi(t), i = 1, 2. These are applied to the first
and second qubits, respectively. The coupling compo-
nent between two qubits is defined as ω(t) = J12(t).
Therefore, the total Hamiltonian of the system consists
of control (external) Hamiltonian Hc(t) and interaction
Hamiltonian HI(t):

H(t) =

~
2
[(Ω1(t)(σ ⊗ I) +Ω2(t)(I ⊗ τ)) + ω(t)(σ ⊗ τ)],

H(t) = Hc(t) +HI, (9)

where, I is a 2× 2 identity matrix operator that sets the
Hilbert space of Hamiltonian as a 4× 4 matrix. This is
used to show there is no interaction between qubits in
the first and second terms. The σ and τ are two Pauli
matrices related to the first and second qubit, respective-
ly; and στ is the tensor product between them:

στ = σ ⊗ τ = σx ⊗ τx + σy ⊗ τy + σz ⊗ τz,

σI = σ ⊗ I = σx ⊗ I + σy ⊗ I + σz ⊗ I,

Iτ = I ⊗ τ = I ⊗ τx + I ⊗ τy + I ⊗ τz.
(10)

We set the Plank constant ~ = 1 for the simplicity.
The Ising interaction is considered for 2-qubit coupling
interaction, so we have the effect of entangler part only
along the z-axis, then the system Hamiltonian is

H(t) = HΩ1
(t) +HΩ2

(t) +Hω(t) =

1

2
[Ω1(t)σI +Ω2(t)Iτ+ω(t)σzτz]. (11)
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3 Analysis of quantum C–NOT gate via Car-
tan decomposition

3.1 Canonical decomposition of the unitary gate
Generally speaking, the unitary time-evolution op-

erator U(t) can be used to drive the system from any
initial state to the target state. If the Hamiltonian of the
system is time dependent, given the state at some initial
time (t = 0), we can solve the Schrödinger (4) to obtain
the state at any subsequent time as∣∣ψ (t)

⟩
= e−i

r T
0

H(t)dt/~∣∣ψ (0)
⟩
= U(t)

∣∣ψ (0)
⟩
.
(12)

We define uk
Ωi(t)

(θ), k = x, y, z, i = 1, (2) as the
unitary evolution operator that makes −2θ rotation a-
long the related pauli matrix σk, τk, k = x, y, z; for the
first (or second) qubit. As it was mentioned in (11) the
total Hamiltonian of the two-qubit system consists of 3
parts, therefore, the total unitary time-evolution opera-
tor U(t) consists of 3 parts as well:

1) Let uk
Ω1(t)

(θ), k = x, y, z; be the unitary evolu-
tion on the first qubit where the pulses are chosen such
that: ω(t) = Ω2(t) = 0; while for the scalar valued
Ω1(t): w T

0
Ω1(t)dt = 2θ, t ∈ [0, T ]. (13)

According to (11) we have

HΩ1
(t) =

1

2
Ω1(t)σI, (14)

uk
Ω1(t)

(θ) = e−
i
2

r T
0

HΩ1
(t)dt =

e−
i
2

r T
0

Ω1(t)σkIdt = e[−
i
2

r T
0

Ω1(t)dt]σkI =

e−iθσkI = cos θI − isin θσkI; k = x, y, z, (15)

where I is a 4 by 4 identity matrix.
2) To define the uk

Ω2(t)
(θ) for second qubit, we set

Ω1(t) = ω(t) = 0 , wherew T

0
Ω2(t)dt = 2θ, t ∈ [0, T ]. (16)

Based on (11) and (12) the Hamiltonian of second qubit
and the unitary evolution are defined as:

HΩ2
(t) =

1

2
Ω2(t)Iτ, (17)

uk
Ω2(t)

(θ) = e−
i
2

r T
0

HΩ2
(t)dt =

e−
i
2

r T
0

Ω2(t) Iτkdt = e[−
i
2

r T
0

Ω2(t)dt ]Iτk =

e−iθIτk = cos θ I − isin θIτk, k = x, y, z. (18)

3) The evolution of the entangler part (Aω), evolves
under the interaction picture by defining the fixed cou-
pling component ω(t) = π, during the 0.5 a.u. interval
of time evolution, i.e. t2 − t1 = 0.5 a.u.:w t2

t1
ω(t)dt =

π

2
, t1, t2 ∈ [0, T ]. (19)

Referring to (11) and (12) we have

Hω(t) =
ω(t)

2
σzτz, (20)

Aω = e−i
r t2
t1

Hω(t)dt/~ = ei
π
4 σzτz =

cos
π

4
I + isin

π

4
σzτz. (21)

3.2 Realization process of the C–NOT gate by
Cartan decomposition

According to the Cartan decomposition[14] for the
Controlled-NOT operation, the unitary time-evolution
operator UC−NOT can be represented by the following
sequence of magnetic-field pulses (which make the lo-
cal rotations) and nonlocal entangler part:

Ut =ei
π
4 · U z

Ω1(t)
(−π

4
) · Uy

Ω2(t)
(
π

4
) ·

U z
Ω2(t)

(
π

4
) ·Aω · Uy

Ω2(t)
(−π

4
), (22)

in which, each time sequence of operations from right
to left are defined as, Uti , i = 0, · · · , 6; and they are
shown in Fig. 1, whereUt0 = U0 = I , is the initial gate,
and Ut6 = Uf = UC−NOT is the final C–NOT gate. We
recall that an operator uk

Ωi(θ)
(t), k = x, y, z, i = 1 (or

2); corresponds to an operation on the first (or second)
qubit in the Bloch vector space, that makes a rotation
around the axis k by angle −2θ.

The C–NOT gate flips the second (target) qubit if
the first (control) qubit is in the state |1⟩. In the com-
pletion of evaluating the Ut in (22), the process of
preparing the C–NOT gate is carried out by taking the
Ut0 = I , as the initial gate:

1) The first operation, Uy
Ω2(t)

(−π
4
), rotates the

second qubit |ψ2⟩ by +90◦ about the y axis, i.e., the
state |1⟩ in the second qubit is rotated from −z to −x.
According to Fig. 1 and (18) we have the Ut1 as

Ut1 = Uy
Ω01(t)

(−π
4
) · Ut0 = e−iπ

4 τy · Ut0=

1√
2


1−1 0 0
1 1 0 0
0 0 1−1
0 0 1 1



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=
1√
2


1−1 0 0
1 1 0 0
0 0 1−1
0 0 1 1

 .
(23)

2) The second operation, Aω, implies a conditional
rotation. It rotates qubit 2 by +90◦ around the ẑ axis if
qubit 1 is |0⟩, but it rotates qubit 2 by −90◦ around the
ẑ axis if qubit 1 is |1⟩. Based on Fig. 1 and (21) the Ut2

is

Ut2 = Aω · Ut1 = e−iπ
4 σzτz · Ut1 =

1√
2
·


1− i 0 0 0
0 1 + i 0 0
0 0 1 + i 0
0 0 0 1− i

 ·
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1√
2
·


1 − 1 0 0
1 1 0 0
0 0 1 − 1
0 0 1 1

 =

1

2
·


1− i i− 1 0 0
1 + i 1 + i 0 0
0 0 1 + i − 1− i
0 0 1− i 1− i

 . (24)

3) The third operation, U z
Ω2(t)

(
π

4
), rotates qubit 2

by −90◦ around the ẑ axis:

Ut3 = U z
Ω23(t)

(
π

4
) · Ut2 = ei

π
4 τz · Ut2 =

1√
2
·


1 + i 0 0 0
0 1− i 0 0
0 0 1 + i 0
0 0 0 1− i

 · 1
2
·


1− i i− 1 0 0
1 + i 1 + i 0 0
0 0 1 + i − 1− i
0 0 1− i 1− i

 =

1√
2
·


1 − 1 0 0
1 1 0 0
0 0 i − i
0 0 − i − i

 . (25)

4) The fourth operation, Uy
Ω34(t)

(
π

4
), rotates qubit

2 by −90◦ around the ŷ axis which brings back the
qubit 2 to its first origin state if qubit 1 is |0⟩, but flips
qubit 2 in the case the state of qubit 1 is |1⟩:

Ut4 = Uy
Ω34(t)

(
π

4
) · Ut3 = ei

π
4 τy · Ut3 =

1√
2
·


1 1 0 0
−1 1 0 0
0 0 1 1
0 0−1 1

 · 1√
2
·


1−1 0 0
1 1 0 0
0 0 i −i
0 0 −i−i

 =


1 0 0 0
0 1 0 0
0 0 0 − i
0 0 − i 0

 . (26)

Step 4 completes the realization of the C–NOT gate,
and the next step is to tiding up the phases of qubits in
the case when qubit 1 is not in the basis states.

In (26) the global phase shift −i, does not have any
effect on the evolution, and the C–NOT gate is realized
in this step, therefore, it is decided to ignore steps 5 and
6 during the next sections, where the control laws are
designed and experimental simulation are done.

5) The fifth operation U z
Ω1(t)

(−π
4
), rotates qubit 1

by +90◦ around the ẑ axis to tide up the phases of the
qubits. According to Fig. 1 and (15) one has

Ut5 = U z
Ω45(t)

(−π
4
) · Ut4 = ei

π
4 τy · Ut4 =

1√
2
·


1− i 0 0 0
0 1− i 0 0
0 0 1 + i 0
0 0 0 1 + i

 ·


1 0 0 0
0 1 0 0
0 0 0 −i
0 0−i 0

 =

1√
2
·


1− i 0 0 0
0 1− i 0 0
0 0 0 1− i
0 0 1− i 0

 . (27)

6) This operation implies a phase shift ei
π
4 on Ut5 :

Utf = ei
π
4 · Ut5 =

1 + i√
2

· Ut5 =

1+i√
2
· 1√

2
·


1−i 0 0 0
0 1−i 0 0
0 0 0 1−i
0 0 1−i 0

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
(28)

The output of this step shows the whole process is
equal to the C–NOT gate operation.

Fig. 1 The realization process schematic diagram. It should be noted that the control pulse Ω2(t) is implemented locallyand
separately to the second qubit, in different time sequences and based to the corresponding Hamiltonian H . Regard to
Fig. 1 and (11), as Ω2(t) is applied to the second qubit in the times t0, t2 and t3, it is re-named as Ω01, Ω23 and Ω34

and the related Hamiltonians are: H01 = H34 =
1

2
Iτy and H23 =

1

2
Iτz. To drive Ut1 to Ut2 , the evolution goes

under interaction Hamiltonian by selecting the proper coupling component ω(t) during entangler part Aω

4 Design of Lyapunov control laws
The control method used in this paper is based on

the Lyapunov control method. The Lyapunov control

method has showed the better ability to provide efficient
control laws that act fantastic for the gate preparing and
designing the control laws. The main idea of the Lya-
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punov control method is to design a proper function
V (x) with the two following conditions along any time
of evolution: 1) V (x) must be semi-positive definite,
i.e., V (x) > 0, ∀x ∈ R, where R denotes the set of
real numbers. 2) The first derivative of V (x) is always
semi-negative definite, i.e., V̇ (x) 6 0, ∀x ∈ R[26].

In this Section, the purpose of designing the Lya-
punov control laws is to drive the Ut0 to Utf as shown
in Fig. 1. We let each column of unitary time-evolution
operator be representative of the state vector as

Ut0 =


ψ011 ψ021 ψ031 ψ041

ψ012 ψ022 ψ032 ψ042

ψ013 ψ023 ψ033 ψ043

ψ014 ψ024 ψ034 ψ044

 =

[|ψ01⟩ |ψ02⟩ |ψ03⟩ |ψ04⟩],
Utf = [|ψf1⟩ |ψf2⟩ |ψf3⟩ |ψf4⟩].

(29)

Based on the Schrödinger equation in (4), the evo-
lution of the wave function in (12), and the evolution of
the C–NOT gate in (22), the realization of the C–NOT
gate is to design the control laws Ω, which imply to
each columns of Ut0 and drive them to the final C–NOT
gate Utf at the same time:

|ψfi⟩ = Ut · |ψ0i⟩, i = 1, 2, 3, 4, (30)

where Ut is defined in (22), and as the phase shift −i in
(26) is ignored in this paper, the evolution during exper-
iment is up to step 4 of Fig. 1.

In this paper during the evolution, all the designing
process of Lyapunov function is carried out by using
the real parts of the state elements, therefore, in terms
of |ψ⟩ = [x1 + ix5 x2 + ix6 x3 + ix7 x4 + ix8]

T,
we consider |x⟩ = [x1 x2 x3 x4 x5 x6 x7 x8]

T as
the real valued state which has more convenient mathe-
matical calculations.

By adapting the state |x⟩ with the Schrödinger (4),
we can see that the real and imaginary part on each side
are equal, respectively, therefore, we have

ẋ(t) = BΩ(t)x(t). (31)

where, B =

[
I(H) R(H)

−R(H) I

]
is the skew symmetric

matrix in which each element stands for imaginary (I)
or real (R) part of the total Hamiltonian H(t) in (11).

During the whole derivation process, the (31) can
be allocated to each step of Fig. 1 as

ẋti,i+1
(t) = Bi,i+1Ωi,i+1(t)xti(t), i = 0, 2, 3,

(32)

where

Bi,i+1 =

[
I(Hi,i+1) R(Hi,i+1)

−R(Hi,i+1) I(Hi,i+1)

]
, i = 0, 2, 3,

and

H01 = H34 =
1

2
Iτy =


0 − i 0 0
i 0 0 0
0 0 0 − i
0 0 i 0

 ,

H23 =
1

2
Iτ z =


1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 − 1

 .
The general form of the Lyapunov function for the

system (31) is constructed as follows:

V (x) =
1

2
· (x− xf)

T
P (x− xf), (33)

where according to (32), for each step of Fig. 1 we have

Vi,i+1(x) =

1

2
· (xti,i+1

− xti+1
)
T
P (xti,i+1

− xti+1
),

i = 0, 2, 3, (34)

while P is an arbitrary semi-positive definite symmet-
ric matrix, that makes the Lyapunov function V (x) be
semi-positive for all amount of x, which is the satis-
faction of the first condition of the Lyapunov control
method, i.e., Vi(x) > 0, ∀x ∈ R and Vi,i+1(x) = 0
when |xti,i+1

⟩ = |xti+1
⟩, i = 0, 2, 3.

The first order time derivative of Vi,i+1(x) is

V̇i,i+1(x) = (xti,i+1
−xti+1

)
T
Pẋti,i+1

, i = 0, 2, 3.
(35)

Substituting (32) into (35) we have V̇ (x) as

V̇i,i+1(x) =

(xti,i+1
− xti+1

)
T
PBi,i+1Ωi,i+1(t)xti,i+1

,

i = 0, 2, 3. (36)

To meet the second condition of the Lyapunov con-
trol method, the control laws must be designed in such
a way that V̇ (t) 6 0, ∀t ∈ R. The constructed control
laws are

Ωi,i+1(t) =

−ki, i+1(xti − xti+1
)
T
PBi,i+1xtiki,i+1 > 0,

i = 0, 2, 3. (37)

Substituting (37) into (36):

V̇i,i+1(x) =

−ki, i+1[(xti,i+1
− xti+1

)
T
PBi,i+1xti,i+1

]
2
6 0,

i = 0, 2, 3, (38)

which means, by using the designed control laws
V̇i,i+1(x) < 0, ∀x ∈ R, and V̇i,i+1(x) = 0 when
|xti,i+1

⟩ = |xti+1
⟩, i = 0, 2, 3.

After obtaining the requirements of the Lyapunov
control method, in the next section the experiments are
done by using the control laws designed in (37), where



No. 8 NOURALLAH Ghaeminezhad et al: Realization of quntum C–NOT gates based on the Lyapunov control method 1301

Bi,i+1, i = 0, 2, 3 are defined as mentioned in (32),
P = diag{[1, 2, 1, 2, 1, 2, 1, 2]} is a semi-positive def-
inite symmetric matrix, and ki, i+1, i = 0, 2, 3 are the
control parameters, which are chosen during the exper-
iment.

5 Numerical experiments and result discus-
sions
In this Section, the experimental results of uni-

tary time-evolution is illustrated. The effect of control
laws is to drive the initial gate, Ut0 , to achieve the de-
sired gate Utf , according to related decomposed steps
of Fig. 1. According to (29) and (30), in order to drive
Ut0 to Utf , the designed control laws in (37) are im-
plemented simultaneously to each columns (states) of
Ut0 , through the each decomposed step. Considering
the columns of Ut0 in (29) as the initial states, Fig. 2
illustrates the X–Y and Y–Z plane trajectories, after ap-
plying the unitary evolution operators of (23)–(26) on
second qubit, when the designed control laws of (37)
are implemented to the system for different groups of
control parameters, k1, k3 and k4. It must be mentioned
that during the step 2 of evolution the system goes un-
der the interaction picture, in which coupling constant
ω(t) = JI2(t) = π, therefore, there is no effect of
control laws.

In Figs. 2(a) and 2(b), by implementing and adjust-
ing the control parameters of the designed control laws
in (37), i.e., Ki(i = 1, 3, 4), the plane trajectories of
X–Y and Y–Z are compared during different steps.

(a)

(b)

(c)

(d)

Fig. 2 Trajectory of state evolution shown in X–Y and Y–Z
plane

According to Fig. 2 and (23)–(26), the operation of
the first step rotates the second qubit by +90◦ around
the y axis, therefore when the initial state is |11⟩ the
value of X goes from 0 to −1 and the value of Z changes
from −1 to 0. Similarly when the initial state is |10⟩, X
and Z change from 0 and 1 to 1 and 0, respectively. In
Step 2, fixed value of ω(t) is used to drive X from −1 to
0, and Y from 0 to 1, when the initial state is |11⟩. For
the initial state |10⟩ the changing trends are from 1 to 0
and from 0 to −1, for X and Y, respectively. In Step 3,
where there is a rotation about −90◦ around the ẑ axis,
the X and Y values change from 0 to 1 and from 1 to
0 for the initial state |11⟩, and for the initial state |10⟩
these trends are from 0 to −1 and −1 to 0 for X and
Y, respectively. Following the process of evolution, in
response to the operation of step 4 for |11⟩ as the initial
state, the values of X and Z move from 1 and 0 to 0 and
1, respectively; while these trends are from −1 and 0 to
0 and −1, for |10⟩ as the initial state.

Similarly, the Figs. 2(c) and 2(d) provide the inter-
correlations among the 4-steps evolution of X, Y and Z,
in which for the |01⟩, and |00⟩ as the initial states, the
values of X, Y and Z return to their initial amount, be-
cause the C–NOT gate does not change the second qubit
when the first qubit is |0⟩. In Fig. 2, When the X–Y and
Y–Z planes are plotted separately, it can be seen that
the evolution has deviation from the rotation trajectory
around the fixed axis. A possible explanation for these
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results may be the intrinsic errors which are caused by
weak driving of applied magnetic field, Bj(t), and as-
suming fixed coupling between the qubits through the
evolution. The first and forth steps of experiment, em-
phasize the impact of control laws in rotation. By using
different control parametersK1 andK4 in X–Y and Y–Z
plane, the deviation of Y component is reduced.

Assessing the evolution of Step 3 the similar-
behavior can be seen by using the different control pa-
rameter K3, when the Z component deviates from zero
in Y–Z plane. For the first group of control parameters,
i.e., K1 = 9, K3 = 7, and K4 = 6, there are a 0.32
deviation from rotation trajectory around the centered
axis. However, following the procedure of evolution,
by using the designed control laws in (37) and adjusting
different control parameters, it is apparent that for the
second group of control parameters, i.e., K1 = 47.5,
K3 = 21.7 and K4 = 32.4, the Y and Z components
remain close to zero and have only deviation about
0.091.

Once the proper control parameters are adjusted,
the probability evolutions of each state element in Ut0 ,
i.e., |ψ011 |

2to |ψ044 |
2 are shown in Fig. 3 when the initial

states are |11⟩, |10⟩, |01⟩ and |00⟩, respectively. The
results as shown in Fig. 3, indicate that by simultaneous
implementing of the designed control laws in (37) to
each column of identity matrix, Ut0 in (29), the process
of (23)–(26) is satisfied and Ut0 is drived to the C–NOT
gate. The probabilities of ψ033 and ψ044 change from
1 to 0. For the ψ034 and ψ043 these trends are from 0
to 1, and the probabilities of other elements of identity
matrix, Ut0 , return to their initial values after 1.68 a.u..

In Figs. 3(a)–3(d) there is a clear trend of chang-
ing the probabilities, and their evolutions happen in
the same time. When the designed control laws of
(37) are implemented to columns of Ut0 , the columns
from left to right are considered as |00⟩, |01⟩, |10⟩
and |11⟩, respectively. At the same time with the
same group of control parameters, i.e., K1 = 47.5,
K3 = 21.7 and K4 = 32.4, during 4 steps the columns
are achieved to, |00⟩, |01⟩, |11⟩ and |10⟩, respectively.
Considering (24) and (25), each column (state) of uni-
tary time-evolution matrix has the same probability, and
the state only changes from pure to pure superposition
state, therefore, during steps 2 and 3 of evolution the
probabilities remain unchanged.

The results of correlational analysis are shown in
Fig. 4, where the total Fidelity of the C–NOT gate
preparation for different control parameters are com-
pared. The Fidelity in this paper is defined as follows in
(39). It interprets the proximity between the initial and
desired state, i.e., how close the initial state can reach to
the target state during the evolution:

F (ψf , ψ0) = |⟨ψ0|ψf⟩|. (39)

(a) |11⟩ → |10⟩

(b) |10⟩ → |11⟩

(c) |01⟩ → |01⟩

(d) |00⟩ → |00⟩
Fig. 3 The probability evolution of each element of Ut0 for

different initial states as the 1st to 4th columns

Fig. 4 The total Fidelity of preparing the C–NOT gate when
we use the Lyapunov control method with group 1 of
control parameters K1 = 9, K3 = 7 and K4 = 6,
comparing with the group 2 of control parameters,
i.e., K1 = 47.5, K3 = 21.7 and K4 = 32.4
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Table 1 provides the results obtained from analyz-
ing the Fidelity for different control parameters. It
can be seen that, for K1 = 47.5, K3 = 21.7 and
K4 = 32.4 the Fidelity achieves 1 in 1.68 a.u., but
when the control parameters are selected as K1 = 9,
K3 = 7, and K4 = 6, then the Fidelity maximally gets
the value of 0.9197 in 2.91 a.u.. It is because, when the
designed control laws are implemented to the system,
the deviation around the fixed axis becomes less, and
consequently it maximize the Fidelity of the system.

Table 1 The total Fidelity and time for different
control parameters, while preparing the
C–NOT gate

Control parameters Maximum Fidelity Time

Group 1:
K1=9, K3=7, K4=6 0.9197 2.91

Group 2:
K1=47.5, K3=21.7, K4=32.4 1 1.68

6 Conclusion
This paper was undertaken to prepare the C–NOT

gate by designing the control laws based on the Lya-
punov control method and evaluate them in 4 decom-
posed steps. One of the more significant findings to e-
merge from this study is that by implementing the de-
signed control laws on each step of evolution, the rota-
tions have less deviations around the fixed axis which
brings the higher Fidelity of the system in a short time.

Taken together the present study confirms previous
findings about preparing 2 qubit quantum gates and con-
tributes additional evidence that suggests using the Lya-
punov control method to design the proper control laws
for quantum gate preparation.
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