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摘要:本文研究连续时间线性无穷维正则状态信号(s/s)系统的最优问题–—线性二次调节器(LQR)最优控制问题和卡
尔曼滤波问题.正则s/s系统的最优问题可解与正则s/s系统的某个正则i/s/o表示的最优问题可解是等价的. 在正则s/s系
统有一个预解集非空的正则i/s/o表示的前提下,建立了系统本身的未来最优花费与系统表示的未来最优花费之间的联
系,并给出了相应的例子.
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Abstract: This paper considers the linear quadratic regulator (LQR) optimal control problem and Kalman filtering
problem for a regular state signal (s/s) system. The solvability of the optimal control problems for the regular s/s system
is equivalent to that for some regular i/s/o representation of the regular s/s system. The connection on optimal future costs
between the regular s/s system and some regular i/s/o representation with a nonempty resolvent set is proposed. Two
examples are given to illustrate the results.
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1 Introduction
The optimal control problems are important sub-

jects in control theory. Kalman[1] has used the Hamilton
-Jacobi theory to arrive at RDE and to deduce optimal-
ity of the linear quadratic (LQ) control gain for time-
varying systems. Lions[2] has examined the optimal
control problems for deterministic distributed parame-
ter systems by exploiting the properties of the partial d-
ifferential equations. Many researchers have considered
the optimal control problems by using the semigroup
approach[3–4]. The linear quadratic regulator (LQR)
problem for a regular i/s/o system is to minimize the
future quadratic cost function. It is shown that the fi-
nite future cost condition for a discrete-time i/s/o sys-
tem holds if and only if the control Riccati equation

has a classical solution. In this setting, the solvabili-
ty of the LQR problem for the discrete-time i/s/o sys-
tem is equivalent to the existence of a right factoriza-
tion of its transfer function[5]. Opmeer and Staffans[6]

have considered the LQR problem for the discrete-time
i/s/o system by defining the finite future incremental
cost condition and rewriting the control Riccati equa-
tion in terms of sesquilinear forms. These foundations
are used in [7] to study the optimal control problems for
the continuous-time regular i/s/o system. The control
Riccati equation has been extended to the generalized
control Riccati equation which consists of unbounded
operators, and the finite future cost condition has been
reduced to the input finite future cost condition. The
Kalman filtering problem for a regular i/s/o system is
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to find a control such that the past quadratic cost func-
tion is minimal. The Kalman filtering problem is related
to the filter Riccati equation and the factorization theo-
ry. It is shown in [8] that if the output coercive past
cost condition holds for a discrete-time linear system,
then it is equivalent to the filter Riccati equation hav-
ing a solution. Opmeer and Staffans[7] have defined the
output coercive past cost condition for the continuous-
time regular i/s/o system. If this condition holds, then
it is equivalent to the generalized filter Riccati equation
having a solution, and another equivalent condition is
that the transfer function of the regular i/s/o system has
a weakly coprime left H∞-factorization.

Arov and Staffans have put forward the regular s/s
system, which does not distinguish the input u from the
output y. The state space X shows the internal prop-
erties of the system and the signal space W describes
interactions with the surrounding world. The s/s system
is a more generalized system, it is necessary to consid-
er the optimal control problems for regular s/s systems.
Arov and Staffans[9] have shown that the optimal signal
of the LQR problem for a discrete-time s/s system is in
the form of state feedback. In addition, the optimal sig-
nal of the Kalman filtering problem for a discrete-time
s/s system is in the form of signal injection.

The generalized stable trajectory theory and multi-
valued operator theory have not been considered to
solve the optimal problem for regular s/s systems yet.
Following Opmeer[5–8, 10] and Staffans[11–12], this paper
considers the optimal control problems for continuous-
time regular s/s systems. The generalized stable future
(past) trajectories of the regular s/s system are defined
to give its optimal future (past) cost. The equivalence
of the solvability of the optimal problem for the regular
s/s system and the solvability of the optimal problems
for some regular i/s/o representations is obtained. In the
case that the regular s/s system allows a regular i/s/o
representation with a nonempty resolvent set, the rela-
tionship between the optimal future cost of the regular
s/s system and that of the regular i/s/o representation is
given.

This paper is structured as follows: Section 2 in-
troduces some preliminaries; Section 3 and Section 4
show the main results on the optimal problems; Section
5 gives two examples; Section 6 concludes the paper.
2 Preliminaries

The symbols C and C+ denote the complex plane
and the right plane of the complex plane, respectively.
R+ = [0,+∞), R− = (−∞, 0] and I = R+ or R−.

A linear continuous-time regular i/s/o system[7] is
defined by the equations

Σ i/s/o :

[
ẋ(t)
y(t)

]
=S

[
x(t)
u(t)

]
, x(0) = x0, t ∈ I,

(1)

on a triple of Hilbert spaces, namely, the input space
U , the state space X and the output space Y , where

ẋ(t), x(t) ∈ X, u(t) ∈ U, y(t)∈Y , S=

[
A & B
C &D

]
:

dom(S) ⊂
[
X
U

]
→

[
X
Y

]
is a closed linear opera-

tor with dense domain. A is the generator of a C0-
semigroup in X , B : U → X is the control oper-
ator, C : X → Y is the observation operator, and
D : U → Y is the feedthrough operator. The regular
i/s/o system (1) is denoted by Σi/s/o = (S;X,U, Y ).
The transfer function of the system Σi/s/o (1) is the
operator-valued function D̂ :C → B(U ;Y ) with D̂(λ)

= C & D

[
(λ−A|X)−1B

1U

]
, λ ∈ ρ(A), where ρ(A)

denotes the resolvent set of A.
A linear continuous-time regular s/s system[13] is

defined by the equations

Σs/s : ẋ(t) =F

[
x(t)
w(t)

]
, t ∈ I, x(0) = x0, (2)

where the initial (final) state x0 ∈ X, x(t) ∈ X, w(t)
∈ W , X is the state space, W is the signal space, X

and W are Hilbert spaces. F : dom(F ) ⊂
[
X
W

]
→ X

is a closed linear operator with dense domain. Replace
gph(F ) with V , the graph form of the regular s/s sys-
tem Σs/s (2) is

Σs/s :

 ẋ(t)x(t)
w(t)

∈ V, x(0) = x0, t ∈ I, (3)

where the generating subspace V is a closed subspace

of

XX
W

, and the subspace X0 consisting of the second

elements of V is dense in X . This regular s/s system is
denoted by Σs/s = (V ;X,W ).

Definition 1[10] A multi-valued operator T : X

→ Y is a subspace VT of
[
Y
X

]
. The operator T is

closed if VT is closed. The domain, kernel, range, and
multi-valued part of T are given by

dom(T ) = {x ∈ X|
[
y
x

]
∈ VT for some y ∈ Y };

ker(T ) = {x ∈ X|
[
0
x

]
∈ VT};

ran(T ) = {y ∈ Y |
[
y
x

]
∈ VT for some x ∈ X};

mul(T ) = {y ∈ Y |
[
y
0

]
∈ VT}.

VT is the graph of T denoted by gph(T ). The in-
verse of T is T−1 : Y → X whose graph is given by
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gph(T−1) = {
[
x
y

]
∈

[
X
Y

]
|
[
y
x

]
∈ gph(T )}. T is

single-valued if mul(T ) = 0. Let Z be a closed sub-
space of X , PZ denotes the projection from X onto Z.
Ts = Pmul(T )⊥T is a single-valued operator which is
called the operator part of T .

Definition 2[12] Let W be a Hilbert space.
i) A vector bundle is given by a family of subspaces

Q = {Q(λ)}λ∈dom(Q) of W parameterized by a com-
plex parameter λ ∈ dom(Q) ⊂ C. The subspace Q(λ)
of W is called the fiber of Q.

ii) The vector bundle Q is analytic at a point
λ0 ∈ dom(Q) if there exists a neighborhood O(λ0)
of λ0 and some direct sum decomposition W = U+̇Y
such that the restriction of Q to O(λ0) is the graph of
an analytic B(U ;Y )–valued function in O(λ0).

3 The LQR problem for the regular s/s sys-
tem
The LQR problem for the system Σs/s (3)

is to minimize the cost function Jfut(x0, w) =w +∞

0
∥w(t)∥2Wdt. In this section, we first find out the

optimal signal wopt of the LQR problem for the sys-
tem Σs/s (3). Then, we prove that the solvability of the
LQR problem for the system Σs/s (3) and that for its
regular i/s/o representations are equivalent. An element
x0 ∈ X has a finite future cost if there exists a signal
w ∈ L2(R+;W ) such that the system Σs/s (3) holds.
The set of finite future cost states is denoted by Ξ+.
The system Σs/s (3) is said to satisfy the finite future
cost condition if Ξ+ = X . For the existence of an op-
timal signal, the finite future cost condition holds, i.e.,
for every x0 ∈ X , there exists a signal w such that

Jfut(x0, w) =
w +∞

0
∥w(t)∥2Wdt < ∞. The character-

istic node bundle of the system Σs/s (3) is the family of
subspaces Ê = {Ê(λ)}λ∈C, where

Ê(λ) = {

 x0

x̂(λ)
ŵ(λ)

 |

λx̂(λ)− x0

x̂(λ)
ŵ(λ)

 ∈ V }, λ ∈ C,

and x0 is the initial state, x̂ and ŵ are the Laplace trans-
forms of x and w, respectively. The characteristic signal
bundle of the system Σs/s (3) is the family of subspaces
F̂ = {F̂(λ)}λ∈C of the signal space W , where

F̂(λ) =
[
0 0 1W

]
(Ê(λ) ∩

 0
X
W

), λ ∈ C.

The characteristic node bundle Ê of the system Σs/s (3)
is analytic in C. Each fiber of an analytic vector bundle
is closed.

The set of the resolvent set of the regular s/s system
Σs/s is denoted by ρ(Σs/s), more details, see [13].

Definition 3 Given an open subset Ω in ρ(Σs/s)

∩ C+.
i) The set of generalized stable future trajectories of

the system Σs/s (3) denoted by M+ is all pairs
[
x0

w

]
∈[

X
L2(R+;W )

]
which satisfy

 x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ) for some

x̂(λ) ∈ X, λ ∈ Ω .
ii) The set of the stable future behavior of the

system Σs/s (3) denoted by M0
+ is all elements w ∈

L2(R+;W ) which satisfy

 0
x̂(λ)
ŵ(λ)

 ∈ Ê(λ) for some

x̂(λ) ∈ X, λ ∈ Ω .

Remark 1 Throughout this paper assume that ρ(Σs/s)

∩ C+ is connected and nonempty. In this case, Definition 3 is
independent of the choice of Ω .

Lemma 1[13] Let Σs/s = (V ;X,W ) be a regular
s/s system. The following statements are equivalent:

i) λ ∈ ρ(Σs/s).
ii) There exists a continuous linear operator L(λ) :

dom(L(λ)) ⊂
[
X
W

]
→ X with closed domain such

that x̂(λ) = L(λ)

[
x0

ŵ(λ)

]
, where

 x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ).

Lemma 2 M+ is closed .

Proof Fix a λ ∈ Ω . If
[
xn
0

wn

]
∈ M+ converges

to
[
x0

w

]
as n → ∞, then there exist x̂(λ)n such that xn

0

x̂(λ)n

ŵ(λ)n

 ∈ Ê(λ). According to Lemma 1,

x̂(λ)n = L(λ)

[
xn
0

ŵ(λ)n

]
.

It is clear that

 xn
0

x̂(λ)n

ŵ(λ)n

 converges to


x0

L(λ)

[
x0

ŵ(λ)

]
ŵ(λ)

.

Since Ê(λ) is closed,


x0

L(λ)

[
x0

ŵ(λ)

]
ŵ(λ)

 ∈ Ê(λ). Hence,

M+ is closed when λ takes over all Ω . QED.

Lemma 3[6] Let H be a Hilbert space and K a
nonempty closed subspace of H. For h0 ∈ H, define
the affine set

K(h0) = {h ∈ H : h = h0 + k for some k ∈ K}.
Then there exists a unique hmin ∈ K(h0) such that

∥hmin∥ = min
h∈K(h0)

∥h∥.
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The vector hmin is characterized by the fact that
K(h0) ∩ K⊥ = hmin.

Theorem 1 Let T be a multi-valued operator
from X to L2(R+;W ) with gph(T−1) = M+. A x0 ∈
X has a finite future cost if and only if x0 ∈ dom(T).
The optimal future cost of x0 is

Jmin
fut (x0, w) = ∥P[T0]⊥Tx0∥2L2(R+;W ).

Proof By Lemma 2, T−1 is a closed operator
and mul(T) = M0

+. If x0 ∈ dom(T). Let H =

L2(R+;W ) and K = M0
+ in Lemma 3. For w0 ∈ H, it

is clear that K(w0) = {Tx0|x0 ∈ dom(T)}, then there
exists a unique wmin = P[T0]⊥Tx0 ∈ K(w0) ∩ K⊥.
Hence, Jmin

fut (x0, w) = ∥P[T0]⊥Tx0∥2L2(R+;W ). If x0 ∈
X has a finite future cost. x0 ∈ dom(T) is obvious.

QED.

Remark 2 By Theorem 1, the system Σs/s (3) satisfies
the finite future cost condition if and only if the LQR problem
for the system Σs/s (3) has a solution.

In the following, we consider the relationship be-
tween the LQR problem for the system Σs/s (3) and that
for its regular i/s/o representations.

Definition 4 [12–13] Let W be a Hilbert space.
i) By an i/o representation of W it means the or-

dered pair (U, Y ) of two closed subspaces U and Y of
W such that W = U+̇Y is an ordered direct sum de-
composition of W .

ii) By the transition matrix Θ from (U1, Y1) to
(U2, Y2) it means the bounded operator Θ defined by

Θ =

[
Θ11 Θ12

Θ21 Θ22

]
=

[
PY2

U2
|U1

PY2

U2
|Y1

PU2

Y2
|U1

PU2

Y2
|Y1

]
,

where (U1, Y1), (U2, Y2) are two i/o representations of
W , PY2

U2
is the projection to U2 along Y2, PU2

Y2
is the

projection to Y2 along U2.

iii) By a regular i/s/o representation of the reg-
ular s/s system Σs/s it means a regular i/s/o system
Σi/s/o = (S;X,U, Y ), where U+̇Y is a direct sum de-
composition of W and V and S are connected to each
other by

V =


z
x
w

 ⊂

XX
W


∣∣∣∣∣∣∣∣

[
x

PY
Uw

]
∈ dom(S)

and
[

z
PU

Yw

]
= S

[
x

PY
Uw

]
 .

Lemma 4 [13] Let Σ i
i/s/o = (Si;X,Ui, Yi), i =

1, 2 be two regular i/s/o representations with the transi-
tion matrix Θ from (U1, Y1) to (U2, Y2). Then

gph(S2) =


1X 0 0 0
0 Θ22 0 Θ21

0 0 1X 0
0 Θ12 0 Θ11

 gph(S1).

Lemma 5 Let Σ i
i/s/o = (Si;X,Ui, Yi), i = 1, 2

be two regular i/s/o representations of the system Σs/s
(3). If the system Σ 1

i/s/o satisfies the finite future cost
condition, then the system Σ 2

i/s/o also satisfies the finite
future cost condition.

Proof By Lemma 4,
[
u2(t)
y2(t)

]
= Θ

[
u1(t)
y1(t)

]
for

some Θ . For any x0 ∈ X , there exists a control u1 such

that J1(x0, u1) =
w ∞

0
(∥u1(t)∥2U1

+ ∥y1(t)∥2Y1
)dt <

∞. Then, J2(x0, u2) 6 ∥Θ∥2J1(x0, u1) < ∞.
QED.
Theorem 2 The following statements are equiv-

alent:
i) The regular s/s system Σs/s (3) satisfies the finite

future cost condition.
ii) For some regular i/s/o representation of the sys-

tem Σs/s satisfies the finite future cost condition.
iii) Every regular i/s/o representation of the system

Σs/s satisfies the finite future cost condition. QED.

Proof i) ⇒ ii). By [13, Theorem 2.2.18], there
exists a regular i/s/o representation Σi/s/o = (S;X,U,

Y ), where U = W̄0, W0 =
[
0 0 1W

]
(V ∩

X0
W

) and

Y be an arbitrary direct complement to U .

Hence,

 x(t)
PY

Uw(t)

PU
Yw(t)

 is a trajectory of the i/s/o rep-

resentation Σi/s/o when
[
x(t)
w(t)

]
is a trajectory of the sys-

tem

Σs/s. Since
[
IU IY

]
:

[
U
Y

]
→ W is one to one and

onto and ∥
[
IU IY

] [u
y

]
∥2 6 2∥

[
u
y

]
∥2, there exists a

m > 0 such that ∥
[
IU IY

] [u
y

]
∥ > m∥

[
u
y

]
∥. For any

x0 ∈ X , there exists a w such that
w ∞

0
∥w(t)∥2Wdt <

∞. Take u(t) = PY
Uw(t) and y(t) = PU

Yw(t),

then J(x0, u) =
w ∞

0
(∥u(t)∥2U + ∥y(t)∥2Y)dt 6

1

m

w ∞

0
∥w(t)∥2Wdt < ∞.

ii) ⇔ iii). It is obvious by Lemma 5.
ii) ⇒ i). Σi/s/o = (S;X,U, Y ) is a regular i/s/o

representation of the system Σs/s (3). Σ 1
s/s = (V1;

X,W1) denotes the regular s/s system induced
by the i/s/o representation Σi/s/o, where V1 =
1X 0 0 0
0 0 1X 0

0
[
0 IY

]
0

[
IU
0

]
 gph(S). For any x0 ∈ X ,
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there exists a control u such that
w ∞

0
∥
[
u(t)
y(t)

]
∥2dt<∞.

Take w1(t) =

[
u(t)
y(t)

]
, then J1(x0, w1) < ∞. By

[13, Proposition 2.2.15], V1 =


1X 0 0
0 1X 0

0 0

[
PY

U

PU
Y

]
V.

Take w(t) =
[
IU IY

]
w1(t), then J(x0, w) =w ∞

0
∥w(t)∥2Wdt 6 2

w ∞

0
∥w1(t)∥2Wdt < ∞.

QED.
The connection on optimal future costs between the

system Σs/s (3) and some regular i/s/o representation of
the system Σs/s (3) is given in the following. ρ(Σi/s/o)
denotes the resolvent set of the regular i/s/o system
Σi/s/o. Assume that ρ(Σi/s/o) ∩ C+ is connected and
nonempty. Ω1 is an open subset of ρ(Σi/s/o) ∩ C+.

Lemma 6 [13] Let Σi/s/o = (S;X,U, Y ) be a reg-
ular i/s/o system. Then the following statements are e-
quivalent:

i) λ ∈ ρ(Σi/s/o).
ii) There exists a bounded linear operators Ĝ(λ) =[

Û(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
:

[
X
U

]
→

[
X
Y

]
such that

[
x̂(λ)
ŷ(λ)

]
=

Ĝ(λ)

[
x0

û(λ)

]
, where Û(λ) = (λ − A)−1, Ĉ(λ) =

C(λ−A)−1.

Lemma 7 [13] Let Σs/s be a regular s/s system,
then ρ(Σs/s) is the union of the resolvent sets ρ(Σi/s/o)
over all i/s/o representations Σi/s/o of the system Σs/s.

Theorem 3 The following statements are equiv-
alent:

i) The LQR problem for the regular s/s system Σs/s

(3) has a solution.
ii) The LQR problem for some regular i/s/o repre-

sentation of the system Σs/s has a solution.
iii) The LQR problem for every regular i/s/o repre-

sentation of the system Σs/s has a solution.
Moreover, if the system Σs/s has a regular i/s/o

representation Σi/s/o with a nonempty resolvent set,
then Jmin

fut (x0, w) = ∥P[T0]⊥Tx0∥2L2(R+;W ) whenever

Jmin
fut (x0, u) = ∥P[T′0]⊥T

′x0∥2[L2(R+;U)

L2(R+;Y )

], where

(Tx0)(t) =
[
IU IY

]
(T′x0)(t). QED.

Proof It is obvious that i) ii) and iii) are e-
quivalent by Theorem 2 and Remark 2. According
to [7, Definition 3.2], gph(T′−1) is the set of all

triples

x0

u
y

 ∈

 X
L2(R+;U)
L2(R+;Y )

 which satisfy ŷ(λ) =

C(λ − A)−1x0 + D̂(λ)û(λ), λ ∈ Ω1. It is clear that

(Tx0)(t) =
[
IU IY

]
(T′x0)(t). For any λ ∈ Ω1, it

follows from Lemma 6 that

x̂(λ) = [Û(λ) B̂(λ)]

[
1X 0
0 PY

U

] [
x0

ŵ(λ)

]
. (4)

By (4) and the system Σs/s (3),

 x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ). By

Lemma 7, Ω1 ⊂ ρ(Σs/s) ∩ C+. By Definition 3, the

set of
[
x0

w

]
denoted by gph(T−1) is generalized sta-

ble future trajectories of the system Σs/s, where w(t) =[
IU IY

] [u(t)
y(t)

]
and

 x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ) for some x̂(λ)

∈ X, λ ∈ Ω1. By Theorem 1, the optimal future cost
Jmin
fut (x0, w) is ∥P[T0]⊥Tx0∥2L2(R+;W ). QED.

4 The Kalman filtering problem for the reg-
ular s/s system
In this section, we solve the Kalman filtering prob-

lem for the regular s/s system. For the convenience of
defining generalized stable past trajectories of the regu-
lar s/s system, we consider the regular s/s system (2).

Definition 5 Let eλ : t → eλt, t ∈ R−.
i) The set of generalized stable past trajectories of

the system Σs/s (2) denoted by N− is the closure of

span{

(λ− F

[
I
0

]
)−1F

[
0
I

]
w0

eλw0

∈
[

X
L2(R−;W )

]
},

where λ ∈ Ω and w0 ∈ W .
ii) The stable past behavior of the system Σs/s (2)

denoted by N0
− is the closure of

span{eλw0 ∈ L2(R−;W )|w0 ∈ W, λ ∈ Ω}.
An elements x0 ∈ X has a finite past cost if

there exists a signal w ∈ L2(R−;W ) with ∥x0∥X 6
c∥w∥L2(R−;W ) for some c > 0 such that the system Σs/s

(2) holds. The Kalman filtering problem for the system
Σs/s (2) is to minimize the cost function Jpast(x0, w) =w 0

−∞
∥w(t)∥2Wdt. A necessary condition to the Kalman

filtering problem for the system Σs/s (2) is the coercive
past cost condition, i.e., there exists a c > 0 such that
∥x0∥X 6 c∥w∥L2(R−;W ) for every generalized stable
past trajectory of the system Σs/s (2).

Theorem 4 Let P be a multi-valued operator
fromL2(R−;W ) toX with gph(P) = N−. A x0 ∈ X
has a finite past cost if and only if x0 ∈ ran(P). The
optimal past cost of x0 is

Jmin
past(x0, w) = ∥P[P−10]⊥P

−1x0∥2L2(R−;W ).

Proof It is similar to the proof of Theorem 1.
QED.
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Theorem 5 The following statements are equiv-
alent:

i) The regular s/s system Σs/s (2) satisfies the coer-
cive past cost condition.

ii) For some regular i/s/o representation with a
nonempty resolvent set of the system Σs/s satisfies the
state coercive past cost condition.

Proof i) ⇒ ii). Let Σi/s/o be the regular i/s/o rep-
resentation with a nonempty resolvent set of the system
Σs/s. Given a λ∈Ω , by Lemma 7, λ∈ ρ(Σi/s/o) ∩ C+.

By gph(F ) =

1X 0 0 0
0 0 1X 0
0 IY 0 IU

gph(S),
 x0

PY
U eλw0

PU
Y eλw0


is a generalized stable past trajectory of the i/s/o repre-

sentation Σi/s/o whenever
[

x0

eλw0

]
is a generalized sta-

ble past trajectory of the system Σs/s. Since there exists
a c > 0 such that ∥x0∥X 6 c∥eλw0∥L2(R−;W ), then we
have

∥x0∥X 6
√
2c

∥∥∥∥[PY
U eλw0

PU
Y eλw0

]∥∥∥∥
L2(R−;

[
U

Y

]
)

.

ii) ⇒ i). Σi/s/o denotes the regular i/s/o representa-
tion with a nonempty resolvent set of the system Σs/s

(2), by [7, Definition 3.8], the closure of the set

span{

 x0

eλu0

eλD̂(λ)u0

 |λ ∈ Ω1, u0 ∈ U}

is the generalized stable past trajectories of the i/s/o
representation Σi/s/o. By Lemma 7, Ω1 is a subset of
ρ(Σs/s) ∩ C+. According to Definition 5, the closure

of the set span{
[

x0

eλw0

]
|w0 =

[
IU IY

] [ u0

D̂(λ)u0

]
}

is the generalized stable past trajectories of the system
Σs/s, where λ ∈ Ω1, w0 ∈ W . Since there exists a
c′ > 0 such that

∥x0∥X 6 c′

∥∥∥∥∥
[

eλu0

eλD̂(λ)u0

]∥∥∥∥∥
L2(R−;

[
U

Y

]
)

.

Hence, ∥x0∥X 6 c′∥
[
PY

U

PU
Y

]
∥∥eλw0∥L2(R−;W ).

QED.
The following theorem holds by Theorem 5.

Theorem 6 The Kalman filtering problem for
the system Σs/s (2) has a solution if and only if the
Kalman filtering problem for some regular i/s/o repre-
sentation with a nonempty resolvent set of the system
Σs/s (2) has a solution.

5 Example
In this section, we give two examples to show the

application of Theorem 2 and Theorem 3.

Example 1 Let X,W be Hilbert spaces. The
second order differential equation with signal w(t) ∈
W is given by

z̈(t) + ż(t)− Tz(t) = T1w(t),

w(t) = −2z(t) + ż(t),

where T ∈ L(X), T1 : dom(T1) ⊂ W → W is a
closed operator with closed range and dense domain,
and z(t), ż(t), z̈(t) ∈ X . Take the state to be x(t) :=[
z(t)
ż(t)

]
. This gives the system equation

ẋ(t) =

[
0 I 0
T − I T1

] [
x(t)
w(t)

]
, (5)

where x(t) ∈
[
X
X

]
and w(t) ∈ dom(T1).

Take U = ran(T1) and Y as an arbitrary closed
subspace of W such that W = ran(T1)+̇Y , then there

exists a regular i/s/o system with A =

[
0 I
T − I

]
, B=[

0
I

]
, C =

[
−2I I

]
and D = −I in (1). By Defini-

tion 4 iii), the regular i/s/o system is a regular i/s/o rep-
resentation of the regular s/s system (5).

Let T = T1 = 1, then A =

[
0 1
1 − 1

]
, B =

[
0
1

]
,

C =
[
−2 1

]
and D = −1. In this case, U = W

and Y = {0}. The control Riccati equation of the

regular i/s/o system is Q

[
0 0
0 1

]
Q − Q

[
0 2
0 − 1

]
−[

0 0
2 − 1

]
Q =

[
4 − 2
−2 1

]
. We get a nonnegative

solution Q =

[√
10 + 1 2

2
√
10− 1

]
. For any x0 =[

z(0)
ż(0)

]
∈

[
X
X

]
, the optimal cost of the regular i/s/o

system is ⟨x0, Qx0⟩ . The optimal costs of the regular
i/s/o system and the system (5) are the same. Hence,
the optimal cost of the regular s/s system (5) is (

√
10+

1)|z(0)|2 + 4Re ⟨z(0), ż(0)⟩+ (
√
10− 1)|ż(0)|2.

Example 2 Let Σs/s = (V ;R2,R2) be a
regular s/s system with its signal bundle F̂(λ) =

ran


I

1

λ+ 2
0

0
1

λ+ 3


, then there exists a regu-

lar i/s/o representation Σi/s/o = (

[
A B
C D

]
;R2, U, Y )

with the transfer function D̂(λ) =


1

λ+ 2
0

0
1

λ+ 3
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and W = U+̇Y , where A =

[
−2 0

0 − 3

]
, B = I,

C = I, D = 0. The control Riccati equation of the

regular i/s/o representation Σi/s/o is Q

[
−2 0
0 − 3

]
+[

−2 0

0 − 3

]
Q = Q2 − I. We get a nonnegative solu-

tion Q =

[√
5− 2 0

0
√
10− 3

]
. For any x0 =

[
x01

x02

]
∈ R2, the optimal input and the optimal output are

uopt(t) =

[
−(

√
5− 2)e−

√
5tx01

−(
√
10− 3)e−

√
10tx02

]
and yopt(t) =[

e−
√
5tx01

e−
√
10tx02

]
, respectively. Hence, the optimal future

cost of the regular i/s/o representation Σi/s/o is (
√
5 −

2)x2
01 + (

√
10 − 3)x2

02. Then the regular i/s/o repre-
sentation Σi/s/o satisfies the finite future cost condition.
By Theorem 2, the regular s/s system Σs/s satisfies the
finite future cost condition. By Remark 2 and Theorem
3, the LQR problem for the regular s/s system Σs/s has
a solution.

By Lemma 7 and the eigenvalues of A are 2 and 3,
ρ(Σi/s/o) = ρ(A) ̸= {∅}. Then

wopt(t) =
[
IU IY

] [uopt(t)

yopt(t)

]
=[

(3−
√
5)e−

√
5tx01

(4−
√
10)e−

√
10tx02

]
.

Therefore, the optimal future cost of the regular s/s sys-

tem Σs/s is
1

10
[(14

√
5− 30)x2

01 + (13
√
10− 40)x2

02].

6 Conclusion
This paper has dealt with the optimal control prob-

lems for infinite-dimensional continuous-time regular
s/s systems. The optimal control problems for regular
s/s systems are solved. It is shown that the solvability
of the optimal control problems for the regular s/s sys-

tem and that for some regular i/s/o representations of
the regular s/s system are equivalent.
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