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Multivariable decoupling control based on fuzzy-neural network
αth-order inverse system in fermentation process
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Abstract: This paper proposes a nonlinear multivariable decoupling control strategy based on fuzzy-neural network
αth-order inverse method that combines inverse system theory with fuzzy-neural network for fermentation process. A
nonlinear inverse model is developed based on the reversibility analysis of the process model. A fuzzy-neural network
αth-order inverse system is then constructed, which is cascaded with this process to transform the original nonlinear system
to a pseudo-linear system. Finally, an expert controller is used to closed-loop synthesis. The effectiveness of the presented
method is illustrated by a simulation experiment.
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摘要:将逆系统方法与模糊神经网络相结合,提出一种基于模糊神经网络α阶逆系统的发酵过程解耦控制方法.
在分析了系统可逆性的基础上,利用模糊神经网络建立发酵过程的非线性逆模型,然后将得到的模糊神经α阶逆系

统与发酵过程串联复合成伪线性系统,最后设计专家控制器实现高性能闭环解耦控制.仿真结果表明,提出的解耦
控制方法能够适应发酵过程模型的不确定性和参数的时变性,具有较强的鲁棒性,克服了解析逆系统解耦控制方法
依赖于过程模型和对模型参数的变化很敏感的缺点,且结构简单,易于实现.
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1 Introduction
Bioprocess is a nonlinear multivariable coupling

system for involving complex factors such as micro-
bial cells growth, metabolism and so on[1]. Decou-
pling control of this nonlinear multivariable system is
a research topic of both theoretical and practical im-
portance. Among these nonlinear system theories, the
inverse system method is verified to be powerful[2,3].
Unfortunately, this method is based on an exact mathe-
matical model of the plant, which is impossible to ob-
tain in bioprocess. To adopt the inverse system method
in bioprocess, it is required to identify the structure
of the αth-order inverse system without exact knowl-
edge of mathematical model of the system model[4,5].

Among these identification methods, fuzzy-neural net-
work, which possesses merits of both fuzzy logic and
neural network, has proved to be more powerful and has
been widely used in practical engineering[6,7].

This paper presents a multivariable decoupling con-
trol method based on fuzzy-neural network αth-order
inverse system for fermentation process. Through an-
alyzing the reversibility of the system model, a fuzzy-
neural network αth-order inverse system is built, which
is placed in series with the original fermentation system
to transform it to three pseudo-linear composite subsys-
tems. Finally, an expert PID controller strategy is given
for closed-loop synthesis. An experiment is preformed
to verify the effectiveness of our method.
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2 Mathematical model and reversibility
analysis
The mathematical model of the fermentation pro-

cess can be described as[1]
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(1)

where: X , S and P are mycelia concentration, sub-
strate concentration and chemical potency [g/L], V is
the volume of cultivation broth in bioreactor [L], fph,
fc and fn are the flow rate of ammonia, glucose and ni-
trogen source, respectively [l/h], t is time [h]; ki 6= 0
(i = 1, 2, 3) are constant scalars, ϕ, φ, σ are analytic
functions of state variables.

Let x = (x1, x2, x3, x4)T = (X, S, P, V )T be
state vector, u = (u1, u2, u3)T = (fph, fc, fn)T be
input vector. Then system (1) can be rewritten in the
following state-space form:
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(2)

The output vector is

y = (y1, y2, y3)T = (x1, x2, x3)T. (3)

To use fuzzy-neural network αth-order inverse sys-
tem method, the reversibility of this system should be
verified first. The integrity mathematical description of
this system is{

y = (y1, y2, y3)T = (x1, x2, x3)T,

ẋ4 = u1 + u2 + u3.
(4)

Direct computation gives the following expression
for ẏ:

ẏ=
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which explicitly contains u, and the rank of Jacobean
matrix is
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In practical fermentation process, xi 6= 0(i =
1, 2, 3), ki 6= 0(i = 1, 2, 3) and then

det[
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]=−x1

x3
4
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=−y1k1k3

x3
4

6= 0. (7)

The relative degree of system (4) is α =
(α1, α2, α3)T = (1, 1, 1)T satisfying α1 + α2 + α3 =
1 + 1 + 1 = 3 < 4 = n, which indicates the re-
versibility of systems (4)(3). By implicit function exis-
tence theorem, the inverse system of system (4), (3) can
be expressed by

u = [u1, u2, u3] = ψ(x, y1, ẏ1, y2, ẏ2, y3, ẏ3). (8)

3 Nonlinear system identification theory
and method of fuzzy-neural network
For an MISO nonlinear system y = f(x) with x =

(x1, x2, · · · , xm) ∈ X ⊂ Rn, y ∈ Y ⊂ R. For input-
output sample data (x1, y1), (x2, y2) · · · (xn, yn), a
model of fuzzy rules can be built as[8],

Rl : if x1 is Al
1 and x2 is Al

2 and · · · and xm is Al
m,

then, y is Bl, l = 1, 2, · · · ,W. (9)

Where: W is the number of fuzzy rules, Al
i is

the fuzzy set in the universe of xi, µl
Ai

(xi)(i = 1,

2, · · · ,m) is the membership function of xi, Bl is the
fuzzy set in the output universe of y.

Note that nonlinear system f is expressed by
W fuzzy rules with singleton, product operator and
weighted average of anti-fuzzy as (9). The output y can
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be given as

y = f(x) =
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As shown in Fig. 1 is the topology structure of feed-
forward fuzzy-neural network, where input-output rela-
tions are as follows[9]:

Input layer: Input node is xi , output node is O
(1)
i =

xi(i = 1, 2, · · · ,m);
Fuzzy layer: Input nodes are (xi − aik) and

bik(i = 1, 2, · · · ,m), output node is O
(2)
ik =

exp(
−(xi − aik)2

b2
ik

);
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Output layer: Input nodes are O
(2)
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1, 2, · · · ,m), output node is y = O(4) =
4∑

i=1

O
(3)
i ×

wi/
4∑

i=1

O
(3)
i .

Fig. 1 Topology structure of fuzzy-neural network

For this fuzzy neural network, initial values al
i(0),

bl
i(0), w(0) are determined by clustering method while

the first order gradient algorithm and error back propa-
gation method[10,11] are used to identify free parameters
al

i, bl
i, wi.

4 Fuzzy-neural network αth-order inverse
system decoupling control method
By the inverse system theory, the implementation of

inverse system method must meet two preconditions:
1) Plant model is accurately known;
2) Analytic expression of the inverse system can be

obtained from the plant model.
Unfortunately, neither of these conditions is sat-

isfied in the actual bioprocess. Noting that fuzzy-
neural network can approximate any continuous non-
linear mapping, we use it to approach the inverse sys-
tem (8). With the knowledge of relative rank α =
(α1, α2, α3)T = (1, 1, 1)T, the fuzzy-neural network
αth-order inverse system can be comprised with three
fuzzy-neural networks and three integrators, where
fuzzy-neural networks and integrators characterize the
nonlinear mapping relationship and inverse system dy-
namics respectively. Placing this fuzzy-neural network
αth-order inverse system in series with the fermenta-
tion model results in three decoupling pseudo-linear
subsystems with transform functions Gx(s) = s−1,
Gs(s) = s−1 and Gp(s) = s−1. In this way, the
complex multivariable nonlinear system (4) is compen-
sated to three simple SISO first-order integral systems
and thus expert PID controllers can be used in closed-
loop synthesis.

Figure 2 shows the configuration of an expert PID
controller, where the knowledge base stores specialized
experiences, common sense and knowledge obtained
from the fermentation expert, inference engine is es-
sentially a set of computer programs used to coordi-
nate the work of expert controllers. Inference engine
gives the optimal controller parameters based on the
current input data, knowledge base and certain reason-
ing strategies[12].

Fig. 2 Principle of expert controller
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Figure 3 shows the closed-loop setup of this decoupling control strategy.

Fig. 3 Closed-loop structure of bioprocess using fuzzy-neural

network αth-order inverse decoupling control

5 Experiment research
In the experiment, sample data sets are {Ẋ, X,

Ṡ, S, Ṗ , P} and {u1, u2, u3}, which respectively are
the input and output of fuzzy-neural networks. u =
(fph, fc, fn)T and x = (X, S, P, V )T are taken from
bioprocess database. Data set {Ẋ, Ṡ, Ṗ} is computed
offline using seven decimal numerical algorithm.

The sample data sets are divided into five batches,
each of which contains 70 samples. The former four
batches are used to train the fuzzy-neural network and
the last batch is used to verify the identification re-
sults. Fig. 4 shows the identification results.

Fig. 4 Identification results of fuzzy-neural network

inverse model

Placing the identified fuzzy-neural network αth-
order inverse system in cascade with the biprocess
and constructing closed-loop expert PID controllers
result in three decoupled SISO systems. The track-
ing performance of the closed-loop system is illus-
trated in Fig. 5, which shows the effectiveness of our

method.

(a) Mycelia concentration

(b) Substrate concentration

(c) Chemical potency

Fig. 5 Response of the pseudo-linear composite system

6 Conclusion
This paper proposed a fuzzy-neural network αth-

order inverse method for such complex systems. In
the design procedure, sample data set is used to train
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a fuzzy-neural network to obtain the inverse system,
and exact knowledge of mathematical model is not
required. Placing the trained fuzzy-neutral network
inverse model in series with the plant results in three
decoupled integral system which can be easily syn-
thesized using linear control theory. An experiment
shows that our method is effective.
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