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Re-entry trajectory optimization using Radau pseudospectral method

HAN Peng’, SHAN Jia-yuan

(Key Laboratory of Dynamic and Control of Flight Vehicle, Ministry of Education,
Beijing Institute of Technology, Beijing 100081, China)

Abstract: To increase the convergence rate of the numerical method, we employ the Radau pseudospectral method
(RPM) in solving the optimal re-entry trajectory for the reusable launch vehicle. In this method, a finite base of global
Lagrange interpolating polynomials is used to approximate the states and control at a set of Legendre-Gauss-Radau points.
The time derivative of the state in the dynamic equations is approximated by the derivative of the interpolating polynomial,
therefore they can be converted to the differential-algebraic equations at the Legendre-Gauss-Radau points. Consequently,
the continuous-time optimal control problem is transcribed to a finite-dimensional nonlinear programming (NLP) problem.
Then, the resulting NLP problem is solved by a sparse nonlinear programming solver named SNOPT. Finally, simulation
results show that the optimized re-entry trajectory satisfies the path constraints and the boundary constraints successfully.
The results indicate that the RPM can be applied to fast trajectory-generation problems in practical engineering due to its

high efficiency and high precision.
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1 Introduction

During the re-entry phase, the Reusable launch vehicle
(RLV)’s model is highly nonlinear and strong coupling in
the respect of input and output variables. Also, the RLV
must subject to the boundary constraint, the heat rate con-
straint, the normal load constraint, the dynamic pressure
constraint and so on, and therefore the re-entry trajectory
optimization is one of the most challenging problems in the
optimal control theory. Many researchers focus on genera-
tion and optimization of the RLV’s reentry trajectory in the
preliminary design!'-31.

Generally, many optimal control problems can not get
analytic solutions because they are highly nonlinear. Thus,
it is necessary to employ numerical methods to solve the
optimal control problems. Numerical methods for trajec-
tory optimization are categorized into direct method and
indirect method™. In the indirect method, both the cal-
culus of variations and the Pontryagin minimum princi-
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ple are employed to obtain the first-order optimality con-
ditionsP!, and then the solution can be obtained through
solving the resulting Hamiltonian boundary-value problem
(HBVP) derived from the first-order necessary conditions
for optimality!®!. If the problem is solvable, the HBVP pro-
duces the costate variables, and thereby we can know how
close the solution is to the true optimal solution.

In the direct method!”?!, the state and/or control vari-
ables are approximated using a set of basis functions. Then
the optimal problem is transcribed to a normal nonlinear
programming (NLP) problem, in which variables to be op-
timized are the coefficients of the basis functions. Com-
pared with the indirect method, the direct method is widely
used to solve trajectory optimization problems for the fol-
lowing reasons. Firstly, the convergence radius of the di-
rect method is larger than that of the indirect method!”.
Secondly, it is not necessary to derive optimality condi-
tions in the direct method, whereas it is difficult to derive
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first-order optimality conditions in the indirect method.
Finally, it’s much easier to solve the NLP problem than
to solve the HBVP arising from the indirect method, be-
cause there are numerous well-developed software pack-
ages (e.g., SNOPT!!%! TPOPT!!, NPSOL!?)) to solve the
large sparse NLP problem. However, most of the direct
methods can’t produce the costate variables from the solu-
tion to the NLP problem, and it’s difficult to gain insight
into the structure of the solution. As a result, it’s uncertain
whether the solution to the NLP problem is the optimal so-
lution to the trajectory optimization problem.

Over the last decade, the pseudospectral method!!3-151,
a class of direct methods, has become increasingly popular
because costate variables can be mapped from the Karush-
Kuhn-Tucker (KKT) multipliers of the NLP problem. In
other way, the pseudospectral method combines the best
features of both the indirect method and the direct method
simultaneously. In the pseudospectral method, the opti-
mal control problem is converted to a NLP problem by pa-
rameterizing the state and control variables using global
Lagrange or Chebyshev polynomials and collocating the
dynamic equations at nodes based on Gaussian quadrature
rules. The most well-developed pseudospectral methods
are the Lobatto pseudospectral method (LPM), the Gauss
pseudospectral method (GPM), and the Radau pseudospec-
tral method (RPM). The three pseudospectral methods dif-
fer in the set of collocation points defined on the domain
[—1,1]. The three sets of collocation points are obtained
from the roots of a Legendre polynomial and/or linear
combinations of a Legendre polynomial and its derivatives.
Reference [16] shows that the GPM and the RPM costate
approximations converge exponentially whereas the LPM
costate is potentially nonconvergent. In addition, the GPM
and the RPM state and control converge at a significantly
faster rate as compared with the LPM. Reference [17] com-
ments that the GPM produces oscillating profiles on cer-
tain optimal control problems, whereas the RPM leads to
much smoother profiles. Because of the inherent stability
reasons, the RPM is selected to solve the RLV’s re-entry
trajectory optimization problem in this paper.

2 Continuous Bolza problem

Consider the following fairly general optimal control
problem in Bolza form. Minimize the cost functional

J = ®(x(r1), to, x(n), tr) +

tr —to (1
f 5 0 J;lg(:l?(T),U(T),T;t(),tf)dT, )
subject to the dynamic constraints
de tr—t
=y f@@)u). . R, @)
the boundary conditions
o(x(m),to, x(Tn),te) =0 € RY, 3)

the inequality path constraints
C(x(7),u(r), 7 to, tr) < 0 € RE, 4)

where (1) € R”, u(r) € R™, t are state, control and
time variables, respectively. The optimal problem of (1)-
(4) can be transformed from the time interval 7 € [—1, 1]
to t € [to, t¢] via the affine transformation

_ti—to tr +to

t 5 T > (®)]

3 Radau pseudospectral method

3.1 Legendre-Gauss-Radau collocation points

The RPM is developed based on the Legendre-Gauss-
Radau(LGR) collocation points. The LGR collocation
points lie on the half open interval 7 € [—1,1) or 7 €
(—1,1], and contain only one of the points —1 or 1. The
LGR points that include the terminal endpoint are often
called the flipped LGR points. In this paper, we use the
standard set of LGR points, which contains only —1. De-
noting n as the number of collocation points, nth degree
Legendre polynomial P, (7) is expressed using Rodrigues’
formula:

1 dam ., n
- 2npldrn = =17 ©
The standard LGR points are the roots of P,,_1(7)+ Py, (7).
A depiction of LGR points is shown in Fig.1. It’s noticed
from Fig.1 that the LGR points are asymmetric relative to
the origin.

P, (1)

Polynomial degree

Fig. 1 LGR points (n = 5, 8,10)

3.2 Formulation of Radau pseudospectral

method
Let us consider N — 1 LGR collocation points
T1,T2,++ ,Tn—1 in the interval 7 € [—1,1) with 7y = —1

and 7y —1 < 1. An additional noncollocated point 7y = 1
is introduced to describe the approximation of the state
variable. First, the state and control variables are approx-
imated by the following polynomials of degree at most
N —1and N — 2, respectively.
N
Zl?(’T): ZXlLi(T)v 2:1327 aNa (7)

i=1
N-1 -

U(T): Z U’LL’L(T)7 121721 7N_la (8)
=1

where X;, U; are approximations of the state and the con-

trol at 7 = T, respectively. L;, L; are the bases of La-
grange polynomials:

N s _
Li(t) = —, ©))
7 j:E‘;ﬂ Ti =T
L= T ] (10)
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It’s known that L;, L; have the properties that

1, i=j
Lz(TJ):{O’ Z#§5279217277N7 (11)
. 1, i=j . .
L1<T7):{0’ Z#iaZ,]:1,277N_1 (12)

The time derivative of the state approximation of

Eq.(7) is then given as
N

(1) = > X;Li(7). (13)

i=1
Evaluating the result at the kth collocation point 7y,
gives
N ) N
®(7k) = ZIXiLi(Tk) = ZleiXia (14)
1= =
where, Dy; = Li(Tk), the (N — 1) x N non-square matrix
D is called Radau pseudospectral differentiation matrix.
For each collocation point k, the matrix has one row, and
the element in the 4th column is the derivative of the La-
grange polynomials evaluated at the kth collocation point.
The dynamic constraint is transcribed into the alge-
braic constraint as

N ty — to
> Dy X, — 5 f (X, Ug, s to, te) =0, (15)

i=1
where, X, = X(m), Uy = U(m)(k = 1,2,--- N
— 1). Note that dynamic constraint is collocated only at
the N — 1 LGR points whereas the state is approximated
at the LGR points plus the terminal point 7y = 1.

Then, the continuous-time cost functional of Eq.(1)
can be approximated using a Gauss-Radau quadrature, re-
sulting in

J=®(Xo,to, Xn,tr) +
te —to N=

1
5 > wig( Xy, Ug, s to, te),  (16)
=1

where wi(k = 1,2,--- N — 1) represent the LGR quadra-
ture weights and they are defined as
1—7

(N —1)*[Py—a (7))
Furthermore, the boundary conditions of Eq.(3) are
also approximated at the boundary points as
¢(X17t07XNatf) =0. (13)
Finally, the path constraints of inequality (4) are en-
forced at the LGR points as
C( Xy, Uy, 1 to,te) <0, k=1,2,--- /N — 1.
(19)
The NLP problem that arises from the RPM is then
to minimize the cost function of Eq.(16) subjected to the
algebraic constraints of Eqgs.(15)(18)-(19). And the pa-
rameters to be optimized of the NLP problem are the
initial time ¢, the final time ¢¢, the state approxima-
tions X4, X5, -+, X, and the control approximations
U,,U,,--- ,Un_1. Reference [18] shows that the KKT
conditions of the NLP problem are equivalent to the dis-
cretized form of the continuous first order necessary con-
ditions of the continuous Bolza problem when using the
Radau pseudospectral discretization. Accordingly, we can
get the conclusion that the RPM leads to the ability to de-
termine accurate primal and dual solution to the general
optimal control problems.

Wi = (17

4 Re-entry modeling
4.1 Equations of motion
During the re-entry phase, the RLV’s trajectory is cal-

culated by the following dynamic equations!'®!, which cor-

respond to the motion over a spherical non-rotating earth:
CxqS

v =— — gsin B,
m
. CLqS gcosfr  wvcosbr
O = ——— cosv — ,
mu v r
. CrLgSsinv  wvtan¢cosfrsinor
or = — + )
mu cos O T (20)
. wvcosbrcosor
§— LRI,
i v cos O sin o
rcosg
7 =wvsinfr,

where the state variables are velocity v(m/s), flight path
angle Ar(rad), velocity azimuth angle or(rad), geodetic
latitude ¢(rad), longitude A(rad), geocentric radius r(m).
The angle of attack a(rad) and the bank angle v(rad) are
adopted as the control variables. The mass of the RLV
is denoted by m(kg), and S(m?) represents the reference
area. Cr,, Cy are the aerodynamic lift and drag force coef-
ficients, and they are computed with respect to the angle of
attack as
CL =ag+aiq, 21
Cy = by + bra+ boa®. (22)
The dynamic pressure is given by ¢ = 1/2 - pv?. The
air density p is expressed by p = poe ", here po rep-
resents the atmospheric density at sea level and h repre-
sents the altitude. The acceleration of gravity is modeled
by g = gord/r?, here go represents the acceleration of
gravity at the sea level, rg represents the mean radius of
the Earth.

4.2 Re-entry constraints

1) Heat rate constraint: the heating rate on the stagna-
tion regions on the surface of the RLV cannot exceed the
limit.

3.07 2
gs = d1/p(dav)™" " (co + crae + co” +
63043) < Gs max- (23)

2) Normal load constraint: the normal load must be

less than the typical limit.

ny = \/m/mg < N max, (24)

where, the aerodynamic forces, the lift L and the drag D,
are given by L = CL¢S, D = CyqS.

3) Dynamic pressure constraint: an airload constraint
based on the dynamic pressure is stated by

1
q= ipUQ < Gmax- (25)

4) Boundary constraint: the RLV’s reentry phase starts
at a specified point, ends to get into the terminal area en-
ergy management (TAEM) phase. Thus, the states of re-
entry phase must subject to the boundary constraints.

5) Control variable constraint: the control variables
inequality constraints are specified respectively as

{arnin g (6% < Qmax,
|V | < Vmax-

(26)
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4.3 Performance index
The purpose of the research is to find the angle of at-
tack and the bank angle histories to maximize the cross-
range. Accordingly, the cost function is
J = max(cross-range). 27
S Simulation

5.1 Construction of the NLP

The RLV’s aerodynamic and characteristic parameters
are based on the space shuttle, and they are cited from Ref-
erence [20]. Generally, the initial and final states are spec-
ified as

v 7803 m/s Vg 762 m/s
oro| _ 90° ore| free

oo | 0° ol e | free

Ao 0° At free

ro Re+79428 m Tt R.+24384m

Using the same constraints as the ones with the space
shuttle, after conversion of English Units to Metric Units,
the path constraint limits and control inequality constraints
are specified respectively as

(s max 794.96 kJ/(IIl2 . S)
Nmax | = 2.5 ’
Gmax 14.36 kPa

10° ] _ [40°
o] <[ <[]

There are many ways to define the cross-range, but in
this case it is equivalent to maximize the final latitude.
J = max(cross-range) = max(¢x). (28)

In this case, after the discretization of the re-entry tra-
jectory optimization problem using the RPM described in
Section 3, the NLP decision vector z € R6"+6 ig given as

Z:(t()vtﬁXl?XQv“' 7Xn+17U17U27"' 7Un)7 (29)

where, n is a parameter that defines the total number
of LGR points, Xz = (’Ui, GTZ',JTZ', qbi, )\i77’i)T, Uz =
(a;,v;)". Obviously, in this case £y = 0. The objective
of the NLP problem is to maximize the cost function
J = max(Xp4+1(4)). (30)
The pseudospectral methods have a larger radius of
convergence than other numerical methods, consequently,
the RPM does not require a good initial guess. However, an
educated initial guess does improve the convergence rate
and robustness. Specifically, in this paper, the initial guess
for time interval [to, ¢¢] is [0,2000]. The initial guess for
initial state X is
[7803 m/s, —1°,90°,0°,0°, R, + 79428 m]T,

and for final state X, is
[762m/s, — 5°,90°,0°,0°, R, + 24384 m]".

It is noted that the desired X, 1(3 ~5) is free, and
thereby we choose the initial guess for X,,;1(3 ~ 5) is
X1(3 ~ 5). For a LGR collocation point ¢ in the time in-
terval [to, t¢], the initial guess for the state variable of this
point is obtained by the linear interpolation method. The
initial guesses for all control variables U, (i = 1,2,--- ,n)
are (.

The NLP problem is then solved using the software
package SNOPT for n = 40 to n = 110, and the SNOPT
optimality and feasibility tolerances are 1075, All com-
putations are performed using a 2.10GHz/Intel Core i3-
2310M CPU running 64-bit Windows 7 with MATLAB
2012a.

5.2 Discussion of the results

Table 1 and Table 2 show the summaries of result us-
ing the RPM and the GPM respectively. Theoretically, the
more collocation points we employ, the more accurate ap-
proximation we can get. However, too many collocation
points can lead to too much time to solve the arising NLP
problem. Table 1 and Table 2 show that the RPM can run
very faster than the GPM when using the same number of
collocation points, and the gap between the two methods
grows when the number of collocation points increases.

Table 1 Summary of result using the RPM

n  CPU time/s tels oe/(°)
40 3.95 2198.82  30.642560
50 6.61 2198.79  30.644474
60 9.58 2200.23  30.644686
70 10.41 2199.53  30.644447
80 16.75 2199.72  30.644559
90 24.35 2200.17  30.644278
100 35.05 2199.62  30.644221
110 49.37 2199.69  30.644286

Table 2 Summary of result using the GPM

n  CPUtime/s  ts b/
40 4.14 2199.08  30.645765
50 7.29 2200.36  30.644832
60 13.09 2199.99  30.643852
70 19.84 2199.33  30.644160
80 34.45 2199.89  30.644323
90 51.10 2199.60  30.644292
100 83.20 2199.55 30.644415
110 100.74  2199.95 30.644367

The control variable histories obtained via 60 LGR
points are illustrated in Fig.2 and Fig.3. The controls
are seen to remain within their specified limitations. The
optimal state variables (altitude, velocity, longitude, lati-
tude, flight path angle and velocity azimuth angle) are dis-
played in Figs.4-9, respectively. The circles present the
state approximations obtained by the RPM in 60 colloca-
tion points, and the solid lines show the state histories from
integrating the differential dynamic equations in Eq.(20)
with the optimal open-loop controls in Fig.2 and Fig.3.
Figs.10-12 are provided to show the path constraints. The
circles and the lines in Figs.10—12 have the same mean-
ings with those in Figs.4-9. The states and constraints are
nearly a perfect match. As seen from Fig.10 and Fig.11,
the dynamic pressure and the normal load are low at the
beginning of the reentry, and they increase gradually with
time. However, the dynamic pressure constraint and the
normal load constraint are inactive during the whole reen-
try phase. Fig.12 shows that the boundary contact first oc-
curs with the heat rate constraint at about 80s. However,
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the heat rate is controlled within a specified limit. The little
difference between the circles and the lines shows the high
precision of the RPM.

30

! !
28 o Collocation __|
- Interpolation
26 LI AR —— -t
C 24 NN (O S R -
S » ..................... i
20 ........... A
18 S i
y
0 500 1000 1500 2000 2500
t/s
Fig. 2 Angle of attack profile
80 : ! . ;

« Collocation o

Interpolation
60 |- Seey: L raeresnsnenssennes frereesnesnnnonsnse]  euesrsneserasnontnd ER .
L] — e N st I S _
> 9 :
< 40 EN - o NS ST SO -
~ H

304 .................... \\ .......................... .
20 5

0 500 1000 1500 2000 2500
t/s
Fig. 3 Bank angle profile

80 ! ! !
o Collocation
70 . s Simulation ........ —
60 pr— ......... :
= : :
= 50
<
40 ..................... -
30 ................................................................. -
20 i i i i
0 500 1000 1500 2000 2500
t/s
Fig. 4 Altitude profile
8 g ! !
. o Collocation .|
Simulation
6 H -
DAL
_s 4
2 .......
1 - : pre R
o | ; | .
0 500 1000 1500 2000 2500

t/s
Fig. 5 Velocity profile

T T

o Collocation |
Simulation ...

0 500 1000 1500 2000 2500
t/s
Fig. 6 Longitude profile
35 ! !
sk © Collocation
Simulation

i i i
00 500 1000 1500 2000 2500
t/s
Fig. 7 Latitude profile
1 T T
N
714{'.4 o Collocation - \\/\\

Simulatiqn qﬁk

Sl 1

0r/(°)

i
0 500 1000 1500
t/s
Fig. 8 Flight path angle profile

2000 2500

o Collocation
Simulation o

60 - RSO SOy, WSRO TGRSR SU—— -

or/ (°)

0 500 1000 1500 2000 2500
t/s
Fig. 9 Velocity azimuth angle profile

The terminal states of simulation are vy = 762.42m/s,
Ore = —4.999°, r¢ = Re + 24390.48 m. The peak val-
ues of heating rate, dynamic pressure, and normal load are
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799.77kJ/(m? - s), 12.54 kPa, and 1.18, respectively. Sim-
ulation results show that the optimized re-entry trajectories
satisfy the boundary constraints and the path constraints in
an acceptable tolerance range.
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Fig. 10 Dynamic pressure profile
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6 Conclusions

A method has been presented for RLV’s re-entry tra-
jectory optimization. The optimal control problem is tran-
scribed to a NLP problem by parameterizing the state
and control using global polynomials and collocating the
differential-algebraic equations at LGR points. Simulation
results show that the optimized re-entry trajectories satisfy
the boundary constraints and the path constraints success-
fully. When comparing with the GPM, it is found that the
RPM is more efficient computationally. Because of its high
efficiency and high precision, we can indicate that the RPM
can be used for real-time trajectory generation.
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