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摘要:通过转换原线性系统到能容忍连续丢包和测量时延的随机参数系统,推导了一个最优线性滤波器. 给出一
个仿真例子,比较已存在的结果,仿真结果表明被提出的线性滤波器有优越的性能.然而,该滤波器不能应用于非线
性系统.从应用角度,为非线性系统提出了一个增强型的滤波器. 而且,该增强型的滤波器能成功地应用于不可靠
的无线传感器网络场景来跟踪移动目标.这些滤波器只依靠测量值的达到概率,而不需要知道某一时刻测量是否接
收.仿真说明了被提出的增强型滤波器不仅能改善实时目标跟踪的鲁棒性,而且比标准的扩展卡尔曼滤波器能够提
供更精确的估计.
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Kalman filtering for stochastic systems with
consecutive packet losses and measurement time delays

LIU Yong-gui, XU Bu-gong, SHI Bu-hai†
(College of Automation Science and Technology, South China University of Technology, Guangzhou Guangdong 510640, China)

Abstract: An optimal linear filter is derived through transferring the original linear systems to stochastic parameter
systems with consecutive packet losses and time delays. A numerical simulation example is performed with results showing
that this linear filter has superior performance to other existing approaches. However, the proposed filter cannot be applied
to nonlinear systems. From the practical perspective, an enhanced filter is proposed and is extended to nonlinear systems.
This enhanced filter has been applied successfully to an unreliable wireless sensor network (WSNs) scenario to track a
moving target. The proposed filters depend only on the measurement arrival probability at all time but do not require
knowing whether a measurement is received at a specific time instant. Simulations show that the proposed enhanced filter
not only improves the robustness for real-time target tracking in WSNs, but also provides more accurate estimations than
the standard extended Kalman filter.

Key words: filter design; consecutive packet losses; wireless sensor networks; measurement time delays

1 Introduction
Packet losses, time delays and constrained bandwidth

are general problems across unreliable wireless commu-
nication links. Especially, in wireless sensor networks
(WSNs), sensor nodes are limited in power, computational
capacities, and memory[1]. So the research on these prob-
lems is more important in both theory and application.

The research on missing measurements can be traced
back to Nahi[2] and Hadidi[3]. An optimal recursive filter
with missing observations is first developed in [2]. Re-
cently, many results are reported for systems with packet
losses, time delays and uncertain observations. Two main
methods are popular for modeling these uncertainties. The
first one is called Markovian jump linear system approach,
where packet losses, time delays, and missing measure-

ments are all modeled as a Markov chain[4–7]. The other
is to model the uncertainty by a stochastic Bernoulli bi-
nary sequence taking on 1 or 0[8–20]. In Markov chain ap-
proach the packet losses have been studied using jump lin-
ear systems, which are hybrid systems with model transi-
tions modeled as Markov chains that switch among several
discrete models. The filter design with packet losses con-
sists of choosing the switching logic, determining the size
of this finite set and assigning the filter gains[5]. Markov
chain approach restricts their formulation to the steady-
state case and the Kalman gain is constant. Furthermore,
the transition probability and state error covariance matri-
ces need to be computed exactly[6–7].

The general case of time-varying Kalman gain is con-
sidered and how packet dropouts can affect state estimation
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is discussed in [8–9]. It is illustrated that there exists a cer-
tain threshold of the packet dropout rate[8]. The estimation
of multiple-input multiple-output dynamic system using
Kalman filter is considered over a mobile fading commu-
nication channel[10]. The optimal filtering is considered for
systems where multiple packets are dropped[11–13, 21] in an
unreliable network , where the original systems are trans-
ferred to the stochastic parameter systems by augmentation
of the state and measurement based on a recursive received
model[11–12]. Considering multiple packet dropouts in
both sensor-to-controller and controller-to-actuator chan-
nels, the linear minimum variance filter is proposed us-
ing the orthogonality principle[14]. The problem of op-
timal filtering with random sensor delay, multiple packet
dropout and uncertain observation is early investigated by
transforming to a stochastic parameter in the system rep-
resentation[15]. For online computation of filter gains, a
Riccati equation approach is applied to develop an adap-
tive Kalman filtering with random sensor delays, multiple
packet dropouts and missing measurements[16]. An inno-
vation analysis approach is used to develop the optimal lin-
ear estimators via developing a unified model to describe
random sensor delays, multiple packet dropouts and uncer-
tain observations[17]. But the filtering methods in [16–17]
only consider one-step time delay. Kalman filtering for
linear continuous-time systems with multiple delayed mea-
surements is proposed based on the reorganized innovation
analysis approach[18], where packet losses, however, is not
considered.

The above existing works dealing with packet losses
and measurement time delays have mainly considered in
linear systems. Different from the existing works, we de-
velop a class of real-time filters with packet losses and
time delays, considering both linear systems and nonlin-
ear systems. We have derived some preliminary results
with packet losses[19] in WSNs. In this paper, our main
contributions are shown as follows: firstly, filter design for
time-invariant systems in our previous work[20] is further
extended to time-variant systems in this paper; then, the
optimal linear filter is derived in linear systems and further
extended to the time-varying nonlinear systems; at last, the
designed nonlinear filters are successfully applied to track
a moving target in WSNs. The simulation results show the
effectiveness and robustness of the proposed methods.

2 Problem formulation
Consider linear time-varying stochastic systems as fol-

lows:

x(k + 1) = A(k)x(k) + w(k), (1a)

z(k) = C(k)x(k) + ν(k), (1b)

where x(k) ∈ Rn is the state vector, z(k) ∈ Rm is the sen-
sor measurement, A(k) and C(k) are time-varying matri-
ces with appropriate dimensions, w(k) is state noise, ν(k)
is measurement noise.

In WSNs and networked systems, sensor nodes mea-
sure the output of the systems at every time step and trans-
mit the measurements to the processing center (the filter)
over digital communication network (DCN). We model

DCN as a module between the plant and the filter. Ran-
dom time delays and packet losses are unavoidable across
unreliable DCN. To reduce the effect of packet losses with-
out overloading the network traffic too much, each sensor
measurement is retransmitted several times. Assume that
the largest time delays and packet losses are no more than
N+1, and there is a packet arriving at the filter at each time
step. Unlike our previous work[20], the following packet
loss model[21] of the received measurement is adopted:

y(k) = γ0(k)z(k) + (1− γ0(k))γ1(k)z(k − 1) +
· · ·+ (1− γ0(k))(1− γ1(k)) · · ·
(1− γN−1(k))z(k −N), (2)

where k > N and N > 1, otherwise, when k < N , de-
fine z(−1) = z(−2) = · · · = z(−N) = 0; y(k) is the
measurement received by the filter; N denotes the number
of consecutive packets dropout, and γi(k) is an indepen-
dent binary stochastic variable taking 0 or 1 with the iden-
tity distribution. Probabilities of γi(k) are represented by
P(γi(k) = 1) = p, and P(γi(k) = 0) = 1 − p. We can
derive that {

E(γi(k)) = p, E(γ2
i (k)) = p,

E(γi(k)(1− γi(k))) = 0.
(3)

Interestingly,

γ0(k) + (1− γ0(k))γ1(k) + · · ·+
(1− γ0(k))(1− γ1(k)) · · · (1− γN−1(k)) = 1.

It implies that one packet is received at each time step
even through there exists time delays or consecutive packet
losses. We explain (2) when N = 2 in the following. At
time step k, we see that z(k) is received if γ0(k) = 1, i.e.,
y(k) = z(k) with the probability p, z(k − 1) is received if
γ0(k) = 0 and γ1(k) = 1, i.e., y(k) = z(k − 1) with the
probability p(1− p), and z(k− 2) is received if γ0(k) = 0
and γ1(k) = 0, i.e., y(k) = z(k − 2) with the probability
(1 − p)2. It is worth noting that measurement z(k) is re-
ceived probably on time by the filter, delayed or lost over
DCN. The following Table 1 describes these three cases.

Table 1 Data transmission in DCN

k 1 2 3 4 5 6 7 8 9 10 11 12
γ0(k) 1 1 0 0 1 1 1 0 0 0 1 1
γ1(k) ? ? 1 1 ? ? ? 1 0 0 ? ?

y(k) z1 z2 z2 z3 z5 z6 z7 z7 z7 z8 z11 z12

From Table 1 (“?” denotes arbitrary value taking 0 or
1), we see that z(1), z(2), z(5), z(6), z(7), z(11), and
z(12) are received on time, z(3) and z(8) are delayed, i.e.,
z(3) and z(8) are delayed one and two time steps respec-
tively, z(4), z(9) and z(10) are lost. Furthermore, z(9) and
z(10) are lost consecutively. In addition, z(2) and z(7)
are re-received, i.e., z(2) and z(7) are re-retransmitted one
and two times respectively. The largest number of packet
losses and time delays is N = 2 from Table 1. So model
(2) describes effectively the consecutive packet losses and
time delays.

Substituting (1) into (2), we have that

y(k) =
N∑

i=0

αi(k)[C(k − i)x(k − i) + ν(k − i)], (4)
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where

α0(k) = γ0(k), (5a)

αi(k) = γi(k)
i−1∏
j=0

(1−γj(k)), 1 6 i 6 N−1, (5b)

αN (k) =
N−1∏
j=0

(1− γj(k)). (5c)

Our objective is to design an optimal minimum
variance filter (OMVF) x̂(k + 1|k + 1) of state x(k + 1)
based on the received measurements y(0), y(1), · · · ,
y(k + 1) with the following form:

x̂(k + 1|k + 1) =
F (k + 1)x̂(k|k) + K(k + 1)y(k + 1), (6)

by minimizing error covariance matrix P(k + 1|k + 1),
where P(k + 1|k + 1) is defined as

P(k + 1|k + 1) :=
ExEγ[x(k + 1)− x̂(k + 1|k + 1)]×
[x(k + 1)− x̂(k + 1|k + 1)]T, (7)

F (k + 1) and K(k + 1) are the unknown variables to be
designed, Ex is the expectation based on x(k), w(k) and
ν(k), and Eγ is the expectation with respect to γ(k).

We first show some assumptions and Lemmas before
deriving main results.

Assumption 1 State noise w(k) and measurement
noise ν(k) in systems (1) are uncorrelated white noise with
zero mean and covariance Q(k) and R(k) respectively.

Assumption 2 Initial state x(0) is independent of
w(k) and ν(k), and satisfying E[x(0)] = m0,

E[x(0)xT(0)] = S0, E[x(0)−m0][x(0)−m0]T = P0.

Lemma 1 For (5), stochastic variable αi(k)(i =
0, 1, · · · , N) has properties as follows:

α0 : = E[α0(k)] = p, (8a)

αi : = E[αi(k)] = p(1− p)i, 1 6 i 6 N, (8b)

αN : = E[αN (k)] = (1− p)N , (8c)

E[αi(k)αj(k)] =
{

αi, i = j,
0, i 6= j.

(8d)

Proof It is easy to obtain (8a) according to (3) and
(5). For (8b),

αi = E[αi(k)] = E[γi(k)
i−1∏
l=0

(1− γl(k))] = p(1− p)i.

If i=j, E[αi(k)αj(k)] = E[α2
i (k)]=E[αi(k)] = αi; if

i < j,

E[αi(k)αj(k)] =

E[γi(k)
i−1∏
l=0

(1− γl(k))][γj(k)
j−1∏
l=0

(1− γl(k))] =

E[
i−1∏
l=0

(1− γl(k))2]E[γi(k)(1− γi(k))]×

E[γj(k)
j−1∏

l=i+1

(1− (γl(k))].

We recall E[γi(k)(1 − γi(k))] = 0 in equation (3).
So E[αi(k)αj(k)] = 0. If i > j, we can derive similarly
E[αi(k)αj(k)] = 0. This proof is completed.

Lemma 2 For stochastic systems (1) and packet loss
model (2), we have the following equations:

ExEγ[(x(k + 1)− x̂(k + 1|k + 1))yT(t)] = 0, (9)

ExEγ[x(k)yT(t)] = ExEγ[x̂(k|k))yT(t)], (10)

and

P(k + 1|k + 1) =
ExEγ[x(k + 1)− x̂(k + 1|k + 1)]xT(k + 1), (11)

where t = 0, 1, · · · , k, · · · .
Proof Define estimation error x̃(k + 1) := x(k +

1)− x̂(k+1|k+1). Because x̃(k+1) and y(t) are orthog-
onal, ExEγx̃(k+1)yT(t) = 0, where t = 0, 1, · · · , k, · · · .
We can obtain (9). It can derive (10) by (9). Because
x̂(k+1|k+1) is linear function of y(0), y(1), · · · , y(k+1),
it is derived that

ExEγ[x(k + 1)− x̂(k + 1|k + 1)]x̂T(k + 1|k + 1) = 0.

Thus, we have

P(k + 1|k + 1) =
ExEγ[x(k + 1)− x̂(k + 1|k + 1)]×
[x(k + 1)− x̂(k + 1|k + 1)]T =
ExEγ[x(k + 1)− x̂(k + 1|k + 1)]xT(k + 1). (12)

This proof is completed.

3 Filter design with consecutive packet los-
ses and random time delays
Our main results are derived based on the minimum er-

ror covariance matrix for linear stochastic systems in this
section. Then the design method is extended to the nonlin-
ear case for practical applications in WSNs.

3.1 Filter design for linear systems
Theorem 1 For time-varying stochastic systems (1)

satisfying Assumptions 1–2, the parameters of OMVF are
shown as follows:

F (k + 1) = A(k)−K(k + 1)J, (13)

K(k + 1) =
[A(k)P(k|k)JT + α0Q(k)CT(k + 1)]×
[JP(k|k)JT − JS(k)JT + S̄ + Q̄ + R̄]−1, (14)

with

S̄ =
α0C(k + 1)A(k)S(k)AT(k)CT(k + 1) +
α1C(k)S(k)CT(k) +
N∑

i=2

αiC(k + 1− i)(
i∏

j=2

A(k + 1− j))−1S(k)×

(
i∏

j=2

A(k + 1− j))−TCT(k + 1− i),

Q̄ =
α0C(k + 1)Q(k)CT(k + 1) +
N∑

i=2

αiC(k + 1− i)[
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1 ×

Q(k + 1− j)(
i∏

l=j

A(k + 1− l))−T]×
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CT(k + 1− i),

and

R̄ =
N∑

i=0

αiR(k + 1− i),

P(k + 1|k + 1) =
F (k + 1)P(k|k)AT(k) +
[In − α0K(k + 1)C(k + 1)]Q(k), (15)

J = α0C(k + 1)A(k) + α1C(k) +
N∑

i=2

αiC(k + 1− i)(
i∏

j=2

A(k + 1− j))−1, (16)

S(k + 1) = A(k)S(k)AT(k) + Q(k), (17)

where x̂(0|0) = m0, P(0|0) = P0, S(0) = S0.

Proof The key derivations of Theorem 1 are to seek
appropriate F (k + 1) and K(k + 1) such that the error co-
variance matrix P(k + 1|k + 1) is minimal. By iterations
in (1a), we obtain

x(k + 1− i) =

(
i∏

j=2

A(k + 1− j))−1x(k)−
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1w(k + 1− j), (18)

where assume that A(k) is invertible. Substituting (1a) (6)
and (4) into (9), and applying to Lemma 2, it is derived that

ExEγ[x(k + 1)− x̂(k + 1|k + 1)]yT(t) = 0.

Taking t = k−N and applying Assumptions 1–2, we
have

Eγ{A(k)− F (k + 1)−
K(k + 1)[α0(k + 1)C(k + 1)A(k) +

α1(k + 1)C(k) +
N∑

i=2

αi(k + 1)C(k + 1− i)×

(
i∏

j=2

A(k + 1− j))−1]Exx(k)×

[
N∑

i=0

αi(k −N)C(k −N − i)x(k −N − i)]T}=0.

Obviously, Ex[x(k)[
N∑

i=0

αi(k−N)C(k−N−i)x(k−N−
i)]T] 6= 0, it follows that Eγ[A(k) − F (k + 1) −K(k +

1)[α0(k+1)C(k+1)A(k)+α1(k+1)C(k)+
N∑

i=2

αi(k+

1)C(k+1−i)(
i∏

j=2

A(k+1−j))−1]] = 0. Using Lemma 1,

equations (13) and (16) are derived from the above equa-
tion.

Taking t = k + 1 for (9), and using (18), we obtain
that

ExEγ[x(k + 1)− x̂(k + 1|k + 1)]yT(k + 1) =
ExEγ{A(k)x(k) + w(k)− F (k + 1)x̂(k|k)−
K(k+1)[α0(k+1)C(k+1)(A(k)x(k)+w(k))+

α1(k+1)C(k)x(k)+
N∑

i=2

αi(k+1)C(k+1−i)×

[(
i∏

j=2

A(k + 1− j))−1x(k)−
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1w(k + 1− j)] +

N∑
i=0

αi(k+1)ν(k+1−i)]}{α0(k+1)C(k+1)×

(A(k)x(k) + w(k)) + α1(k + 1)C(k)x(k) +
N∑

i=2

αi(k+1)C(k+1−i)[(
i∏

j=2

A(k+1−j))−1 ×

x(k)−
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1w(k+1−j)] +

N∑
i=0

αi(k + 1)ν(k + 1− i)}T =

A(k)P(k|k)JT + K(k + 1)[JS(k)JT −
JP(k|k)JT − S̄ − Q̄− R̄] +
α0Q(k)CT(k + 1) = 0.

Defining S(k) := Ex[x(k) xT(k)] in the above equa-
tion, it follows that

S̄ :=
ExEγ{α0(k + 1)C(k + 1)A(k) +

α1(k + 1)C(k) +
N∑

i=2

αi(k + 1)C(k + 1− i)×

(
i∏

j=2

A(k + 1− j))−1}x(k)xT(k){α0(k + 1)×

C(k + 1)A(k) + α1(k + 1)C(k) +
N∑

i=2

αi(k+1)C(k+1−i)(
i∏

j=2

A(k+1−j))−1}T=

α0C(k + 1)A(k)S(k)AT(k)CT(k + 1) +

α1C(k)S(k)CT(k) +
N∑

i=2

αiC(k + 1− i)×

(
i∏

j=2

A(k + 1− j))−1S(k)×

(
i∏

j=2

A(k + 1− j))−TCT(k + 1− i),

Q̄ :=
Eγ{α0(k + 1)C(k + 1)w(k)−
N∑

i=2

αi(k + 1)C(k + 1− i)[
i∑

j=2

(
i∏

l=j

A(k + 1−

l))−1w(k+1−j)]}{α0(k+1)C(k+1)w(k)−
N∑

i=2

αi(k + 1)C(k + 1− i)×

[
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1w(k + 1− j)]}T =

α0C(k + 1)Q(k)CT(k + 1) +
N∑

i=2

αiC(k + 1− i)[
i∑

j=2

(
i∏

l=j

A(k + 1− l))−1 ×

Q(k+1−j)(
i∏

l=j

A(k+1−l))−T]CT(k+1−i),
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R̄ := Eγ[
N∑

i=0

αi(k + 1)ν(k + 1− i)]×

[
N∑

i=0

αi(k + 1)ν(k + 1− i)]T =

N∑
i=0

αiR(k + 1− i),

where (8d) is used.
The equation (14) is derived from the above equations.

Next equations (15) and (17) will be obtained. In terms of
Lemma 2 we obtain the error covariance matrix and the
state variance matrix as follows:

P(k + 1|k + 1) =
ExEγ[x(k + 1)− x̂(k + 1|k + 1)]xT(k + 1) =
ExEγ[A(k)x(k) + w(k)− F (k + 1)x̂(k|k)−
K(k + 1)[α0(k + 1)C(k + 1)x(k + 1) +

α1(k + 1)C(k)x(k) +
N∑

i=2

αi(k + 1)×

C(k + 1− i)x(k + 1− i) +
N∑

i=0

αi(k+1)ν(k+1−i)]][A(k)x(k)+w(k)]T =

A(k)P(k|k)AT(k)−K(k+1)JP(k|k)AT(k)+
Q(k)− α0K(k + 1)C(k + 1)Q(k),
S(k + 1) =
Ex[x(k + 1)xT(k + 1)] =
Ex[A(k)x(k) + w(k)][A(k)x(k) + w(k)]T =
A(k)S(k)AT(k) + Q(k).

This proof is completed.
Remark 1 OMVF is only suitable for linear time-

varying stochastic systems. However, many practice applica-
tions are nonlinear cases. For example, state equations and
measurement equations usually are nonlinear in target track-
ing of WSNs. In the following subsection we will derive an
enhanced minimum variance filter in order to augment the pro-
posed method to nonlinear case.

3.2 Filter design for nonlinear systems
Consider nonlinear time-varying systems:

x(k + 1) = f(x(k)) + w(k), (19a)

z(k) = h(x(k)) + ν(k), (19b)

where f(·) and h(·) are the nonlinear functions with re-
spect to the state x(k).

To obtain state estimation x̂(k + 1|k + 1), nonlinear
function (19a) at estimation x̂(k|k) is expanded by the
first-order Taylor series as

x(k + 1) = f(x̂(k|k)) + f ′x(k)(k)(x(k)−
x̂(k|k)) + w(k), (20)

where

f ′x(k) =
df(x(k))

dx(k)
|x(k)=x̂(k|k)

is Jacobian matrix of the function f(x(k)).
Similar to (20), we make linearization of the nonlinear

measurement function (19b) by the first-order Taylor series

at x̂(k|k − 1) and substitute it into (2) yielding

y(k + 1) =
N∑

i=0

αi(k)[h(x̂(k − i|k − i− 1)) +

H(k−i)(x(k−i)−x̂(k−i|k−i−1))+
ν(k − i)], (21)

where H(k)=
dh(x(k))

dx(k)
|x(k)=x̂(k|k−1) is a Jacobian matrix

of h(x(k)). Based on the alternative forms (20) and (21)
of the nonlinear stochastic systems (19), we obtain the fol-
lowing theorem.

Theorem 2 For time-varying stochastic systems
(20)–(21) satisfying Assumptions 1–2, the enhanced mini-
mum variance filter (EMVF) is shown as follows:

x̂(k + 1|k + 1) =
x̂(k + 1|k) + K(k + 1)[y(k + 1)−
N∑

i=0

αi(k)h(x̂(k + 1− i|k − i))], (22)

where

x̂(k + 1|k) = f(x̂(k|k)), (23)

K(k + 1) =
[f ′x(k)P(k|k)JT + α0Q(k)HT(k + 1)]×
[JP(k|k)JT − JS(k)JT + S̄(k + 1) +
Q̄(k + 1) + R̄(k + 1)]−1, (24)

S̄(k + 1) =
α0H(k + 1)f ′x(k)S(k)f ′Tx (k)HT(k + 1) +

α1H(k)S(k)HT(k) +
N∑

i=2

αiH(k + 1− i)×

(
i∏

j=2

f ′x(k + 1− j))−1S(k)×

(
i∏

j=2

f ′x(k + 1− j))−THT(k + 1− i),

Q̄(k + 1) =

α0H(k + 1)Q(k)HT(k + 1) +
N∑

i=2

αiH(k +

1− i)[
i∑

j=2

(
i∏

l=j

f ′x(k + 1− l))−1Q(k + 1− j)×

(
i∏

l=j

f ′x(k + 1− l))−T]HT(k + 1− i),

R̄(k + 1) =
N∑

i=0

αiR(k + 1− i),

P(k + 1|k + 1) =
(f ′x(k)−K(k + 1)J)P(k|k)f ′Tx (k) +
[In − α0K(k + 1)H(k + 1)]Q(k), (25)

J = α0H(k + 1)f ′x(k) + α1H(k) +
N∑

i=2

αiH(k+1−i)(
i∏

j=2

f ′x(k+1−j))−1, (26)

S(k + 1) = f ′x(k)S(k)f ′Tx (k) + Q(k), (27)

where x̂(0|0) = m0, P(0|0) = P0, S(0) = S0.

Proof The proof of Theorem 2 is similar to that of
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Theorem 1, so it is omitted.
Remark 2 OMVF and EMVF look like be complex,

and in fact, they are a set of iterative formulas and very suitable
for computer operation. Moreover, OMVF and EMVF are im-
plemented only depending on the packet arrival probability p or
α of stochastic variable γ(k) and do not need to know whether
the measurement is received at a particular time instant. It is
different from the existing works[8–9], where the estimator is
computed depending on whether the current measurement is re-
ceived. That is, OMVF and EMVF are independent on binary
stochastic variable γ(k) and related only to the probability p.

Remark 3 Specially, when packet loss probability p →
1, we have α0 →1 and αi → 0. So OMVF (or EMVF) approx-
imately reduces to the standard KF (or EKF)[22] without time
delays and packet losses. That is, KF (or EKF) is the special
case of OMVF (or EMVF); while αi = 1(i = 1, 2, · · · , N), it
means that the information from (k−i)th time step is received.
OMVF (or EMVF) updates the estimation by the measurement
from (k − i)th time step. That is, the filters have constant i

time-step delays.
Remark 4 From the packet dropout model (2) and the

analysis in Table 1, it is known that N in (2) denotes the
largest time-delay steps or the number of the consecutive packet
dropout. When N tends to infinite, N is replaced by∞ and the
computation is rather complex.

3.3 Filter design for nonlinear systems
Consider nonlinear time-varying systems

x(k + 1) = f(x(k)) + w(k), (28a)

z(k) = h(x(k)) + ν(k), (28b)

where f(·) and h(·) are the nonlinear functions with re-
spect to the state x(k).

To obtain state estimation x̂(k + 1|k + 1), nonlinear
function (19a) at estimation x̂(k|k) is expanded by the
first-order Taylor series as

x(k + 1) = f(x̂(k|k)) + f ′x(k)(k)(x(k)−
x̂(k|k)) + w(k), (29)

where

f ′x(k) =
df(x(k))

dx(k)
|x(k)=x̂(k|k)

is Jacobian matrix of the function f(x(k)).
Similar to (20), we make linearization of the nonlinear

measurement function (19b) by the first-order Taylor series
at x̂(k|k − 1) and substitute it into (2) yielding

y(k + 1) =
N∑

i=0

αi(k)[h(x̂(k − i|k − i− 1)) +

H(k−i)(x(k−i)−x̂(k−i|k−i−1)) +
ν(k − i)], (30)

where

H(k) =
dh(x(k))

dx(k)
|x(k)=x̂(k|k−1)

is Jacobian matrix of h(x(k)). Based on the alternative
forms (20) and (21) of the nonlinear stochastic systems
(19), we obtain the following theorem.

Theorem 2 For time-varying stochastic systems
(20)–(21) satisfying Assumption 1 and Assumption 2, the

enhanced minimum variance filter (EMVF) is shown as
follows:

x̂(k + 1|k + 1) =
x̂(k + 1|k) + K(k + 1)[y(k + 1)−
N∑

i=0

αi(k)h(x̂(k + 1− i|k − i))], (31)

where

x̂(k + 1|k) = f(x̂(k|k)), (32)

K(k + 1) =
[f ′x(k)P(k|k)JT + α0Q(k)HT(k + 1)]×
[JP(k|k)JT − JS(k)JT + S̄(k + 1) +
Q̄(k + 1) + R̄(k + 1)]−1, (33)

S̄(k + 1) =
α0H(k + 1)f ′x(k)S(k)f ′Tx (k)HT(k + 1) +

α1H(k)S(k)HT(k) +
N∑

i=2

αiH(k + 1− i)×

(
i∏

j=2

f ′x(k + 1− j))−1S(k)×

(
i∏

j=2

f ′x(k + 1− j))−THT(k + 1− i),

Q̄(k + 1) =

α0H(k + 1)Q(k)HT(k + 1) +
N∑

i=2

αiH(k +

1− i)[
i∑

j=2

(
i∏

l=j

f ′x(k + 1− l))−1Q(k + 1− j)×

(
i∏

l=j

f ′x(k + 1− l))−T]HT(k + 1− i),

R̄(k + 1) =
N∑

i=0

αiR(k + 1− i),

P(k + 1|k + 1) =
(f ′x(k)−K(k + 1)J)P(k|k)f ′Tx (k) +
[In − α0K(k + 1)H(k + 1)]Q(k), (34)

J = α0H(k + 1)f ′x(k) + α1H(k) +
N∑

i=2

αiH(k+1−i)(
i∏

j=2

f ′x(k+1−j))−1, (35)

S(k + 1) = f ′x(k)S(k)f ′Tx (k) + Q(k), (36)

where x̂(0|0) = m0, P(0|0) = P0, S(0) = S0.

Proof The proof of Theorem 2 is similar to that of
Theorem 1, so it is omitted.

Remark 5 OMVF and EMVF look like be complex,
and in fact, they are a set of iterative formulas and very suitable
for computer operation. Moreover, OMVF and EMVF are im-
plemented only depending on the packet arrival probability p or
α of stochastic variable γ(k) and do not need to know whether
the measurement is received at a particular time instant. It is
different from the existing works[8–9], where the estimator is
computed depending on whether the current measurement is re-
ceived. That is, OMVF and EMVF are independent on binary
stochastic variable γ(k) and related only to the probability p.

Remark 6 Specially, when packet loss probability p →



904 Control Theory & Applications Vol. 30

1, we have α0 →1 and αi → 0. So OMVF (or EMVF) approx-
imately reduces to the standard KF (or EKF)[22] without time
delays and packet losses. That is, KF (or EKF) is the special
case of OMVF (or EMVF); while αi = 1(i = 1, 2, · · · , N), it
means that the information from (k−i)th time step is received.
OMVF (or EMVF) updates the estimation by the measurement
from (k − i)th time step. That is, the filters have constant i

time-step delays. However, from practice perspective, when
time-delay steps are more than a given bound N , it is consid-
ered that the data are invalid even though data are received by
the filters in the application of WSNs, because these data can
not improve estimation accuracy.

Remark 7 Similar to [21], when

αi(t) =
1

N + 1− i
,

it is able to derive

αi =
1

N + 1− i
, 0 6 i 6 N,

which means the average random delay rate is
1

N + 1
for The-

orem 1 and 2 in systems (1) and (2).
Remark 8 To decrease packet loss rate and increase es-

timation accuracy, the other sensor nodes in wireless networks
are scheduled as tasking sensor nodes (See [22–25] in details)
to cooperatively process information. The reason that the great
deals of packets are lost or delayed comes possibly from un-
successful operations of the current tasking sensor node.

3.4 Distributed sensor scheduling strategy
There are many sensor scheduling schemes for WSNs,

such as the nearest sensor scheduling strategy (NSSS), the
dynamic-group scheduling scheme[23], the adaptive sen-
sor scheduling[24], and the distributed adaptive multisensor
scheduling[25]. For simplification, we use NSSS to select
next tasking sensor node. NSSS selects the nearest sen-
sor node to the mobile target as the current tasking node at
each time step[23].

The main operations of each tasking sensor node are
summarized as the following Algorithm 1, where we as-
sume neighboring position of each sensor node is known.

Algorithm 1 For time step k+1.
Requirements: state vector x̂(k|k), state variance ma-

trix S(k) and error covariance matrix P(k|k) from previ-
ous task node at time step k.

1) Compute parameter J by (26);
2) Compute prediction state x̂(k + 1|k) by (23);
3) Compute the gain matrix K(k + 1) by (24);
4) Receive measurement distance y(k+1) from DCN;
5) Update state estimation x̂(k + 1|k + 1) by (22);
6) Update error covariance matrix P(k + 1|k + 1) by

(25);
7) Update state variance matrix S(k + 1) by (27);
8) Predict state x̂(k + 2|k + 1) by (23) for next time

step;
9) Compute the distance between each neighboring

node and moving target to be estimated by (30);
10) Select the sensor node that is the nearest distance

to position of moving target to be estimated as next tasking
node.

4 Computer simulation
4.1 Simulation for Theorem 1

For Theorem 1, consider a numerical example[21] as
follows:

x(k + 1) =

[
0.8 0

0.2sin
2kπ

N
0.95

]
x(k)+

[
0.6
0.5

]
w(k),

(37)

z(k) = [1 1]x(k) + v(k), (38)

y(k) = γ0(k)z(k) + (1− γ0(k))γ1(k)z(k − 1) +
(1− γ0(k))(1− γ1(k))z(k − 2),

(39)

where w(k) and v(k) with zero mean and variance

Q(k) =
[
0.72 0.60
0.60 0.50

]
,

R(k) = 10 respectively. The other parameters are set as:

x(0) = [0.1 0]T, x̂(0|0) = [0 0]T,

P(0|0) = 0.1× diag{[1 1]},
S(0) = P(0|0), k = 0, 1, · · · , 300.

We have 100 times Monte Carlo test for estimation er-
ror of two state components under the different packet ar-
rival probability p.

Figures 1–2 show the estimation error comparison of
two components of the state x(k) for proposed filters and
references [2,8,21] under 0.1 6 p 6 1. From Figs.1–2 we
know that the proposed OMVF has the best estimation ac-
curacy than the existing other filters since it is the optimal
filter with the small packet loss rate. The filter in [2] has
the worst estimation accuracy since it updates estimation
by the received noise when packet loss happens. The fil-
ters in [8,21] have better estimation accuracy than the filter
in [2]. However, the filter in [8] contains a random variable
in the filtering equations and needs to know whether each
measurement is received, so it is inconvenient to imple-
ment in real application. The proposed OMVF and the fil-
ter in [21] need only to know the packet arrival probability
p, and not require knowing if each packet is received. Fur-
thermore, the proposed OMVF is easily and conveniently
extended to nonlinear systems.

Fig. 1 The first component x1(k) comparison of estimation
error for OMVF in this paper and [2, 8, 21]
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Fig. 2 The second component x2(k) comparison of estimation
error for OMVF in this paper and [2, 8, 21]

4.2 Simulation for Theorem 2
4.2.1 State model and measurement model

The state of moving target usually is described by its
position, speed and turn rate. In our experiments, a co-
ordinated turn (CT) model is adopted, which is similar
to [19, 25].

The CT is shown as follows:

x(k + 1) = f(k)x(k) + w(k), (40)

where

x(k) = (xt(k), yt(k), ẋt(k), ẏt(k), ω(k))T, (41)

(xt(k), yt(k)) denotes the position of moving target,
(ẋt(k), ẏt(k)) and ω(k) represent velocity and angular ve-
locity of moving target respectively. w(k) is Gaussian
white noise with zero mean and covariance Q(k). The non-
linear state transfer matrix f(k) and its derivation f ′x(k) are
shown respectively as follows:

f(k) =


1 0
sin(kω(k))

ω(k)
cos(kω(k))− 1

ω(k)
0

0 1 − cos(kω(k))− 1
ω(k)

sin(kω(k))
ω(k)

0

0 0 cos(kω(k)) −sin(kω(k)) 0
0 0 sin(kω(k)) cos(kω(k)) 0
0 0 0 0 1




,

f ′x(k) =



1 0
sin(kω(k))

ω(k)
cos(kω(k))−1

ω(k)
∂xt(k+1)

∂ω(k)

0 1−cos(kω(k))−1
ω(k)

sin(kω(k))
ω(k)

∂yt(k+1)
∂ω(k)

0 0 cos(kω(k)) −sin(kω(k))
∂ẋt(k + 1)

∂ω(k)

0 0 sin(kω(k)) cos(kω(k))
∂ẏt(k + 1)

∂ω(k)
0 0 0 0 1




,

where
∂xt(k + 1)

∂ω(k)
=

kω(k)cos(kω(k))− sin(kω(k))
ω2(k)

ẋ(k)−

kω(k)sin(kω(k)) + cos(kω(k))− 1
ω2(k)

ẏ(k),

∂yt(k + 1)
∂ω(k)

=

kω(k)sin(kω(k)) + cos(kω(k))− 1
ω2(k)

ẋ(k) +

kω(k)cos(kω(k))− sin(kω(k))
ω2(k)

ẏ(k),

∂ẋt(k + 1)
∂ω(k)

=

−ksin(kω(k))ẋ(k)− kcos(kω(k))ẏ(k),
∂ẏt(k + 1)

∂ω(k)
=kcos(kω(k))ẋ(k)−ksin(kω(k))ẏ(k).

The measurement is based on the distance from the po-
sition of a sensor to one of a moving target to be estimated.
The measurement model of the sensor node s is shown as

zs(k) = hs(x(k)) + νs(k) = A + νs(k), (42)

where

A =
√

(x̂t(k|k−1)−xs(k))2+(ŷt(k|k−1)−ys(k))2,

(x̂t(k|k − 1), ŷt(k|k − 1)) is the predicted position of the
moving target position (xt(k), yt(k)), (xs(k), ys(k)) is the
known position of the sensor node s, and νs(k) is Gaussian
white noise of sensor node s with zero mean and covari-
ance Rs(k) at time step k. Jacobian matrix of h(x(k)) is
shown as

H(k) =




x̂t(k|k − 1)− xs(k)
A

ŷt(k|k − 1)− ys(k)
A

0
0




T

.

4.2.2 Simulation results
The monitored field is 100m× 100m and covered by

20 sensors randomly deployed in Figs.3, 5, 7 and 9, where
NSSS is adopted in target tracking, and the little circles
represent random sensor nodes deployed in the monitored
WSNs area, and the little circles with symbol ’*’ represent
sensor nodes scheduled in the process of the target track-
ing, and the associated tasking sensor of each estimated
target position is indicated by the blue line between them.
In the monitored field the target moves along the big circle
trajectory.

For Theorem 2, initial state

x̂(0|0) = [30 70 20 20 − 1],

initial covariance matrix

P(0|0)=0.2× diag{0.1, 0.1, 0.1, 0.1, 0.1},
and initial variance S(0) = P(0|0). Total time step

n = 65, q = 0.2, R(k) = 0.0001, Q(k) = B × q ×BT,

where B = [0 0 0 0 1]T. Define the estimation error at
time step k as

Er(k) :=

√
2∑

i=1

(xi(k)− x̂i(k|k))2,
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where xi(k) and x̂i(k|k) are the ith component of vector
x(k) and x̂(k|k−1), respectively, i = 1, 2. The estimation
error of the EMVF under different packet arrival proba-
bility is shown in Figs.4, 6, 8 and 10 respectively, where
Gamma (γ) denotes random variable taking value 0 or 1.

Figures 3, 5, 7 and 9 show tracking trajectory under
different packet arrival probability for EKF and EMVF
when N=1 and N=2, respectively. Fig. 4, 6, 8 and 10
show estimation error of EMVF under different packet ar-
rival probability respectively.

We see that tracking trajectories of EKF and EMVF
under N = 1 and N = 2 are approximately identical when
p = 1 in Fig.3. Estimation error of the three cases is much
low (less than 0.3) in Fig.4. Moreover, estimation error is
the same for EMVF under N = 1 and N = 2.

Fig. 3 Trajectory of EKF and EMVF with NSSS
when p = 1

Fig. 4 Estimation error Er(k) of EKF and EMVF
when p = 1

EKF obviously deviates from real trajectory too much
when p = 0.98 in Fig.5; while EMVF is still able to track
real trajectory well. We know that estimation error of EKF
is much high once packet loss happens, e.g., at time step
k = 46 in Fig.6. However, estimation error of EMVF is
rather low under N = 1 and N = 2. Therefore, compared
with EKF, tracking performance of EMVF is significantly
improved.

Fig. 5 Trajectory of EKF and EMVF with NSSS
when p = 0.98

Fig. 6 Estimation error Er(k) of EKF and EMVF
when p = 0.98

EKF losses tracking function as packet arrival prob-
ability further decreases. Thus we only compare EMVF
under N = 1 with N = 2 in Figs.7–10. Tracking perfor-
mance under N = 2 is better than that under N = 1 when
p = 0.95 and p = 0.90 respectively. For example, seven
packets are dropped out in Fig.10, maximal estimation er-
ror reaches 17.5 under N = 1 while maximal estimation
error approaches only 7–8 under N = 2.

Fig. 7 Trajectory of EMVF with NSSS when p = 0.95
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Fig. 8 Estimation error Er(k) of EMVF when p = 0.95

Fig. 9 Trajectory of EMVF with NSSS when p = 0.90

Fig. 10 Estimation error Er(k) of EMVF when p = 0.90

To further illustrate the effectiveness of the EMVF,
300 (m = 300) times Monte Carlo simulations are con-
ducted under different p when the number of consecutive
packet losses N is taken different value. Define statistical
average estimation error (SAEE) of m times Monte Carlo
simulations

SAEE:=
1

mn

m∑
k=1

n∑
k=1

Er(k).

For (2), define y(k) := ν(k) when N=0, which means that
the current tasking node only receives measurement noise.

Table 2 illustrates that statistical average estimation er-
ror SAEE gradually decreases as packet arrival probability
p or N increases.

Table 2 Comparison with SAEE (m) under different N , p

p
N

0.80 0.85 0.90 0.95 0.99

N = 0 15.11 13.47 12.60 10.78 8.62
N = 1 13.98 11.31 7.78 5.50 1.23
N = 2 4.86 4.80 3.54 2.47 0.59

The above simulation results show further the pro-
posed EMVF is effective and robust to track moving target
in WSNs.

5 Conclusions
We derive the optimal minimum variance filter

(OMVF) for linear time-varying systems and extend to the
enhanced minimum variance filter (EMVF) for nonlinear
systems with consecutive packet losses and measurement
time delays. The proposed filters with packet losses and
time delays are independent on binary stochastic variable
γ(k) and related only to the probability p of γ(k). There-
fore, these filters have wide-range application prospects
in many engineering fields, such as WSNs and networked
control systems. For the linear OMVF, the estimation ac-
curacy of the proposed OMVF is superior compared to the
existing works. Furthermore, combined with NSSS, we
develop a real-time algorithm for moving target tracking
in WSNs. Simulations illustrate effectiveness and robust-
ness of the proposed EMVF.
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