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摘要:差分进化(differential evolution, DE)是一种简单但功能强大的进化优化算法. 由于其优秀的性能,其诞生之
日起就吸引了各国研究人员的关注. 作为一种基于群体的全局性启发式搜索算法,差分进化算法在科学和工程中
有许多成功的应用. 本文对解决多目标优化问题的差分进化算法研究进行了综述,对差分进化的基本概念进行了
详细的描述,给出了几种解决多目标优化问题的差分进化算法变体,并且给出了差分进化算法解决多目标优化问题
的理论分析,最后,给出了差分进化算法解决多目标优化问题的工程应用,并指出了未来具有挑战性的研究领域.
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Differential evolution for solving multi-objective optimization
problems: a survey of the state-of-the-art
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Abstract: Differential evolution (DE) is a simple but powerful evolutionary optimization algorithm. It has drawn
the attention of researchers all round the globe with its perfect performance since its inception. As a global search of
metaheuristics based on population, DE has many successful scientific and engineering applications. A survey of DE for
solving multi-objective optimization problems (MOPs) is presented. A detailed review of the basic concepts of DE is
provided. Several important variants of DE for solving MOPs are presented. Moreover, the theoretical analyses on DE for
solving MOPs are provided. Finally, the engineering applications of DE for solving MOPs and its future challenging field
are also pointed out in the remainder of this paper.
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1 Introduction
A multiobjective optimization problem is a simultane-

ous search process for optimal or near optimal trade-off so-
lutions, given some conflicting objective functions[1]. The
multi-objective optimization problems (MOPs) can be gen-
erally expressed as

{
min F (x) = (f1(x), f2(x), · · · , fm(x)),
s.t. G(x) = (g1(x), g2(x), · · · , gm(x)), (1)

where x is a decision vector (x1, · · · , xn), F (x) is an ob-
jective vector, and G(x) represents the constraints.

There are two basic goals in multiobjective optimiza-
tion: (a) to discover solutions as close to the Pareto front as
possible; (b) to find solutions as diverse as possible in the
obtained non-dominated front. Satisfying these two goals
is a challenging task for any algorithms.

As a global search of metaheuristics based on popula-
tion, differential evolution (DE) has received special atten-
tion. The first written article on DE appeared as a technical
report by Price and Storn[2] in 1995. DE finished 3rd at the
first international contest on evolutionary computation (1st
ICEO), which was held in Nagoya, May 1996. DE is a
branch of evolutionary algorithms (EAs) for optimization
problems over continuous domains. However, unlike tra-
ditional EAs, DE employs difference of the parameter vec-
tors to explore the objective function landscape. Over the
years, the main advantages of the DE can be summarized
as follows:

1) DE is relatively more immune to differences in ini-
tial populations than one-point optimizers. Because it is
a direct search method, DE is versatile enough to solve
problems whose objective functions lack the analytical de-
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scription needed to compute gradients[3].
2) The number of control parameters in DE is very

few. The classic DE has three parameters that need to be
adjusted: a) the population size NP ; b) the mutation scale
factor F ; c) the crossover rate Cr. And how these parame-
ters affect the performance of the algorithm is well studied
in [4–6].

3) DE is much simpler and straightforward to imple-
ment and modify than most other EAs. Compared to some
of the most competitive real parameter optimizers like co-
variance matrix adaptation evolution strategy[7], the space
complexity of DE is low.

Perhaps these advantages triggered the popularity of
DE among researchers all around the world in a short pe-
riod of time. Next, we provide the basic concepts of the
DE algorithm.

DE generates new candidate solutions by combining
the parent individual and several other individuals of the
same population. A candidate replaces its parent only if it
has better fitness. It is a rather greedy selection scheme
that often outperforms traditional EAs[8]. More specifi-
cally DE’s basic strategy can be summarized as follows:

Initialization. DE is a parallel direct search method.
It begins with a randomly initiated population of NP D–
dimensional parameter vectors xi,G, i = 1, 2, · · · , NP as
a population for each generation G. The initial population
(G = 0) of the jth parameter of the ith vector is

xj,i,0 =xj,min+randi,j [0, 1] · (xj,max−xj,min), (2)

where xj,min, xj,max indicate the lower and upper bounds,
respectively. randi,j [0, 1] is a uniformly distributed ran-
dom number lying between 0 and 1.

Mutation. DE mutates and recombines the population
to produce a population of NP trial vectors. Specifically,
for each individual xi,G a mutant vector vi,G, is generated
according to

vi,G = xri
1,G + F · (xri

2,G − xri
3,G), (3)

where F , commonly known as scale factor, is a posi-
tive real number. Three other random individuals xri

1,G,
xri

2,G and xri
3,G are sampled randomly from the current

population such that

ri
1, r

i
2, r

i
3 ∈ {1, 2, · · · , NP}, i 6= ri

1 6= ri
2 6= ri

3.

Crossover. To complement the differential mutation
search strategy, DE adopts a crossover operation, often
referred to as discrete recombination. In particular, DE
crosses each vector with a mutant vector.

uj,i,G =
{

vj,i,G, if randi,j [0, 1] 6 Cr, or j = jrand,
xj,i,G, otherwise,

(4)

where Cr is called the crossover rate.
Selection. To decide whether or not it should become

a member of generation G+1, the trial vector vi,G, is com-
pared to the target vector xi,G, using the greedy criterion.
The selection operation is described as

xi,G+1 =
{

vi,G, if f(ui,G) 6 f(xi,G),
xi,G, otherwise, (5)

where f(x) is the objective function to be minimized.
Variants of DE. There are several variants of DE which

can be classified using the notation DE/x/y/z. where x
represents the vector to be mutated, y is the number of
difference vectors considered for perturbation of x, and
z denotes the crossover scheme. The different mutation
schemes, suggested by Storn and Price[3], are summarized
as follows:

1) DE/rand/1/bin:

vi,G = xri
1,G + F (xri

2,G − xri
3,G).

2) DE/rand/2/bin:

vi,G =xri
1,G+F (xri

2,G−xri
3,G)+F (xri

4,G − xri
5,G).

3) DE/best/1/bin:

vi,G = xbest,G + F (xri
1,G − xri

2,G).

4) DE/best/2/bin:

vi,G =xbest,G+F (xri
1,G−xri

2,G)+F (xri
3,G−xri

4,G).

5) DE/current-to-best/1/bin:

vi,G =xi,G+F (xbest,G−xi,G)+F (xri
1,G−xri

2,G).

Since DE algorithms can tackle a group of candidate
solutions, it seems natural to use them in MOPs to search a
group of optimal solutions. MOPs involve multiple objec-
tives, which should be optimized simultaneously and that
often are in conflict with each other. So in MOPs, the de-
cision is not so straightforward. Then the concept of dom-
inance is used. A solution is said to dominate another so-
lution if it is as good as the other and better in at least one
objective. That is x∗ dominates x, if and only if{∀i ∈ {1, · · · ,m}, fi(x∗) 6 fi(x),

∧∃j ∈ {1, · · · ,m}, fj(x∗) < fj(x). (6)

The outline of DE algorithm for solving MOPs is pre-
sented in Algorithm 1. The candidate replaces the parent
if it dominates the parent. Many variants of creation of a
candidate are possible. The DE scheme DE/rand/1/bin is
described in Algorithm 2.

Algorithm 1 Outline of the DE for solving MOPs.
Step 1 Initialize and evaluate population

PG = {x1,G, · · · , xNP,G}.
Step 2 While stopping criterion is not satisfied, do:
Step 2.1 For each individual xi,G from PG, repeat:
Step 2.1.1 Generate candidate vi,G from parent xi,G.
Step 2.1.2 Evaluate the candidate.
Step 2.1.3 If the candidate dominates the parent, the

candidate replaces the parent. Otherwise, the candidate is
discarded.

Step 2.2 If the population exceeds NP , truncate it.
Step 3 Return non-dominated individuals from PG.
Algorithm 2 Candidate generation in DE/rand/

1/bin.
Candidate generation.
Input: Parent xi,G.
Step 1 Randomly select individuals.
Step 2 Calculate candidate vi,G as

vi,G = xri
1,G + F · (xri

2,G − xri
3,G),
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where F is a scale factor.
Step 3 Modify the candidate by binary crossover

with the parent using crossover rate Cr.
Output: Candidate vi,G.
DE algorithms have been proposed in the literature

to overcome the drawbacks of traditional approaches to
MOPs. Indeed, DE algorithms have been proved very effi-
cient in solving MOPs. Many DE algorithms were formu-
lated by the researchers to tackle MOPs in the past years.

Abbass et al.[9] proposed a Pareto-frontier differential
evolution (PDE) algorithm for solving MOPs. The PDE
employed DE to creat new individuals and keep only the
nondominated ones as the basis for the next generation.
The PDE was found to outperform the strength Pareto evo-
lutionary algorithm (SPEA)[10] on two test problems.

Xue et al.[11] proposed a multiobjective differential
evolution (MODE) algorithm. In MODE, the fitness of
an individual was firstly calculated using Pareto-based
ranking and then reduced with respect to the individual’s
crowding distance value. The MODE was tested on five
benchmark problems where it tended to be more effective
in finding the Pareto front in the sense of accuracy and ap-
proximate representation of the real Pareto front with com-
parable efficiency.

Yao et al.[12] proposed a multiobjective DE algorithm,
which took the selection by the non-dominated sorting and
crowding distance. The results indicated that the algo-
rithm was better than the non-dominated sorting genetic
algorithms II (NSGA-II)[13] both in convergence and in di-
versity. Varadarajan[14] presented a DE algorithm to solve
optimal power flow problem with multiple and competing
objectives. The problem was formulated as a nonlinear
constrained true multiobjective optimisation problem with
competing objectives.

Some researchers proposed non-Pareto-based ap-
proaches for solving MOPs. Li and Zhang[15–16] presented
a multiobjective DE algorithm based on decomposition
(MOEA/D-DE) for continuous MOPs with variable link-
ages. The DE/rand/1/bin scheme is used to creat new trial
solutions, and a neighborhood relationship among all the
sub-problems generated is defined, such that they all have
similar optimal solutions. Summation of normalized ob-
jective values with diversified selection approach was used
by Qu and Suganthan[17] without the need for performing
non-dominated sorting.

In this work, we focus on a review of the state-of-theart
in MOPs with DE as a search engine. The remainder of
this paper is organized as follows. Section 2 provides sev-
eral prominent variants of DE for solving MOPs. Section 3
presents the theoretical analyses on DE for solving MOPs.
Section 4 provides an overview of the most significant en-
gineering applications. Section 5 highlights the potential
future research directions. Section 6 concludes this paper.

2 Prominent variants of differential evolu-
tion for solving MOPs
The DE algorithm has attracted the attention of the re-

searchers from different fields since its inception in 1995.
It has resulted in a large number of variants of the basic DE

algorithm. Some variants are designed to deal with specific
applications, and others are generalized for numerical op-
timization. In this section, we undertake an in-depth dis-
cussion of the most important variants of DE for solving
MOPs.

2.1 DE with adaptation strategy
DE algorithms have been successfully used in solving

MOPs. However, there is need to choose the suitable pa-
rameters to ensure the success of the algorithms. The clas-
sical DE algorithms contain three control parameters Cr,
F and NP .

Self-adaptation allows an evolution strategy to adapt
itself without any user interaction[18]. Adaptive parame-
ter control can enhance the robustness of the algorithm by
dynamically adapting the parameters to the characteristic
of different fitness landscapes. It avoids the user’s prior
knowledge of the relationship between the parameter set-
tings and the characteristics of optimization problems[19].
Some researchers developed DE algorithms with adapta-
tion strategy for sloving MOPs.

Abbass[20] proposed a self-adaptive Pareto differen-
tial evolution (SPDE) algorithm for multiobjective opti-
mization. The SPDE algorithm self-adapted the crossover
rate Cr for solving MOPs. The mutation scale factor F
was generated from the normal distribution U(0, 1) for
each variable. The experiments reported by Abbass
showed that the SPDE algorithm is very competitive to
other evolutionary multiobjective optimization algorithms.
Bi and Xiao[21] proposed a self-adaptive differential evo-
lution multi-objective optimization (SDEMO). The elitist
selection strategy and the crowding distance calculation
in the model of SDEMO were improved to achieve better
convergence performance based on the model of NSGA-II.

The concept of self-adaptive DE has been extended
to handle MOPs by some researchers in the past years.
Wu et al.[22] proposed a multiobjective self-adaptive dif-
ferential evolution (MOSADE) algorithm for the simulta-
neous optimization of component sizing and control strat-
egy in parallel hybrid electric vehicles. The MOSADE al-
gorithm adopted an external elitist archive to retain non-
dominated solutions that were found during the evolution-
ary process. And the MOSADE algorithm employed a
progressive comparison truncation operator based on the
normalized nearest neighbor distance to preserve the di-
versity of Pareto optimal solutions. The results indicated
the capability of the proposed algorithm to generate well-
distributed Pareto optimal solutions. Huang et al.[23–24]

proposed a multiobjective self-adaptive differential evolu-
tion with objective-wise learning strategies to solve numer-
ical optimization problems with multiple conflicting objec-
tives. Zamuda et al.[25] proposed a differential evolution
for multiobjective optimization with self-adaptation (DE-
MOwSA) algorithm. The DEMOwSA uses the adaptation
mechanism from evolution strategies to adapt F and Cr

parameters of the candidate creation in DE.
Xue et al.[26] presented a fuzzy logic controller to ad-

just the parameters of the multiobjective DE algorithm dy-
namically. The fuzzy logic controlled multiobjctive DE
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(FLCMODE) was applied to a suite of benchmark func-
tions proposed by Zitzler et al.[27]. Compared with those
results obtained by using MODE with constant parameter
settings, the results showed that the FLC-MODE obtained
were better in 80% of the testing examples. Qian and Li[28]

proposed a new adaptive differential evolution algorithm
(ADEA) for solving MOPs. In the ADEA, the parame-
ter F based on the number of the current Pareto front and
the diversity of the current solutions is given for adjusting
search size in every generation to find Pareto solutions in
mutation operator.

2.2 DE based on opposite operation
The opposite operation used in DE for solving MOPs

has been demonstrated effecitively[29]. Dong and Wang[30]

proposed a multiobjective DE algorithm based on opposite
operation. The opposite number is given as follows:

Definition 1 (Opposite number.) Let x ∈ [a, b] be
a real number. The opposite number x̃ is defined by

x̃ = a + b− x. (7)

The multiobjective DE based on opposite operation is
presented in Algorithm 3.

Algorithm 3 ODE based on opposite operation.
Step 1 Initialize the population P using opposite op-

eration and choose the non-dominated set E.
Step 2 While stopping criterion is not met, do:
Step 2.1 Perform mutation using DE scheme.
Step 2.2 Perform crossover.
Step 2.3 Repair the offspring which is out of the de-

cision space. P ′ consists of the offspring.
Step 2.4 Generate opposite points of offspring ac-

cording to the number of new non-dominated solutions.
The opposite population is denoted by OP ′.

Step 2.5 In set P ∪ P ′ ∪OP ′, select the next gener-
ation and update the external non-dominated set.

Step 3 Return the external non-dominated set E.

2.3 Hybrid DE algorithms
Hybridisation primarily refers to the process of com-

bining the best features of more algorithms together, to
form a new algorithm that is expected to outperform its
ancestors over application-specific or general benchmark
problems[31]. Researchers have hybridized DE with other
algorithms. Deb et al.[32] proposed a hybrid methodology
evolutionary and local search approaches. Local search ap-
proaches primarily explore a small neighborhood of a can-
didate solution in the search space until a locally optimal
point is found. In [33–34] the authors combine DE with
chaotic theory. These approaches aim to aggregate the ad-
vantages of both methods efficiently tackle the MOPs.

Chang and Wu[35] investigated the optimal multiobjec-
tive planning of large-scale passive harmonic filters using
the hybrid DE (HDE) algorithm. The migrant and acceler-
ating operating embedded in HDE are used to handle local
optimal solutions and time consumption problems. Gu-
jarathi and Babu[36] presented a hybrid strategy of multiob-
jective DE (hybrid-mode). The hybrid-MODE is consisted
of an EA for global search and a deterministic algorithm

for local search.

2.4 DE based on multi-populations
Santana-Quintero and Coello Coello[37] proposed the

ε-MyDE algorithm. The algorithm adopts a secondary
population in order to retain the non-dominated solutions
found during the evolutionary process. Additionally, the
algorithm also incorporates the concept of ε-dominance to
get a good distribution of the solutions retained.

Yao et al.[38] presented a DE algorithm based on
multi-swarm and sub-objective optimization to solve the
difficulty in selecting the weighting coefficients in pro-
cessing the objective function of hot strip mills．Each
sub-swarm optimizes a sub-objective and evolves inde-
pendently．This not only solves the issue of weight-
ing coefficients, but also increases the convergence speed
and accuracy. Song and Zhang[39] proposed a multi-
population mechanism for DE to make the Pareto fronts
more evenly distributed. Compared with NSGA-II, the
proposed method is more efficient.

3 Theoretical analyses on DE for solving
MOPs
The theoretical analysis of MOPs is more difficult than

its single objective counterpart since it involves issues such
as the size of Pareto set, diversity of the obtained solutions
and convergence to the Pareto front[40]. Consequently,
there are few results on theoretical analysis of DE for solv-
ing MOPs.

Convergence analyses on DE for solving MOPs are
very important to understand their search behaviors. Some
convergence analyses about multiobjective extensions of
DE have been done. Xue et al.[41] performed a mathe-
matical modeling and convergence analysis of a contin-
uous multiobjective DE (C-MODE) algorithm. The au-
thors study the C-MODE operators and their effects on the
convergence properties of the algorithm by examining the
evolving probability distribution of the population. To fa-
cilitate the mathematical analysis, the authors assume the
population is initialized by sampling from a Gaussian dis-
tribution with a mean µ0 and a covariance matrix Σ0. The
authors prove that the initial population P0 is Gaussian dis-
tribution and contains the Pareto optimal set Λ∗, the subse-
quent populations generated by the C-MODE without se-
lection are also Gaussian distribution and the population
mean converges to the center of the Pareto optimal set Λ∗,
i.e., if Xt be a solution vector belonging to the population
Pt at the generation t, then

lim
t→∞

E(Xt) = E(X∗), (8)

where X∗ denotes a uniformly distributed random solution
with probability support of Λ∗. The convergence proper-
ties of C-MODE were studied in a similar manner to the
work presented by Hanne in [42].

Running time analysis of DE for solving MOPs is a
critical issue by its own right. Meng et al[38] compared the
time complexity of DE based on double populations for
constrained MOPs with NSGA-II and SPEA. The authors
considered the population size influence on time complex-
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ity only. The runtime complexity is

O((N1 + N3)3) + O((N1 + N3)2) +
O((N1 + N3) log(N1 + N3)),

where N1 is the population size of feasible solutions, N3

is the maximum population size of the best infeasible solu-
tions O(N3). The authors point out that the runtime com-
plexity is less than N3, where N = N1 + N2 + N3, and
N2 is the population size of infeasible solutions.

4 Engineering applications of DE for solving
MOPs
Due to the multicriteria nature of most real-world

problems, the literature on engineering applications of DE
for solving MOPs is huge and multifaceted. There are
more than thousands of application papers in diverse ar-
eas. For the sake of space economy, the major applications
are summarized in Table 1.

Table 1 Engineering applications of DE for solving MOPs

Subareas and details Types of DE applied

Digital filter design Hybrid DE[35]

Signal processing Microwave filter design Generalized DE[43]

Micro-Array data analysis Multiobjective DE[44]

Optimization of adiabatic styrene reactor Hybrid-MODE[36]
Chemical engineering

Optimization of chemical process Improved DE[45]

PID regulator design DE based on double populations[46]
Control system

Multiobjective robust PID controller Multiobjective DE[47]

Power system Reactive power optimization Opposition-based DE[48]

Economic environmental dispatch Multiobjective DE[49]
Economics

Portfolio optimization DEMPO[50]

Engineering design DE with hybrid selection mechanism[51]

Others Product development Multiobjective DE[52]

Hybrid electric vehicles optimal design Self-adaptive DE[53]

5 Potential future research directions with
DE for solving MOPs
Like all other metaheuristics to solve MOPs such as

particle swarm optimization (PSO)[54], DE also has some
disadvantages. Most multiobjective versions of DE seem
to converge very fast to the vicinity of the true Pareto front,
but present problems to actually reach it and to spread so-
lutions along the front. There are still many problems and
new application areas are continually emerging for the al-
gorithm. Below, we pointed out some potential future re-
search directions with DE for solving MOPs.

Unlike the significant advancement made in the the-
oretical understanding of GA, the theoretical analysis on
DE has still not made a considerable progress. Not much
research has so far been devoted to theoretically analyze
the search mechanism. The timing complexity analysis of
DE for solving MOPs has been reported scarcely. Con-
vergence properties analysis is still a challenging field of
future search.

Many MOPs typically deal with more than three ob-
jective functions. Many conventional MOEAs applying
Pareto optimality as a ranking metric may perform poorly
over a large number of objective functions. Extending
the multiobjective variants of DE to solve many-objective
problems remains open as an active and challenging field
of future research so far.

6 Conclusions
This paper attempted to provide an overall picture

of the state-of-the-art research on DE for solving MOPs.

Starting with a comprehensive introduction to the basic
strategy of DE, it provided several prominent variants of
DE for solving MOPs. Moreover, it provided the theoret-
ical analyses on DE for solving MOPs. Next it provided
an overview of the most significant engineering applica-
tions. Finally, it pointed out the potential future research
directions. The content of this paper indicates that DE for
solving MOPs will continue to remain an active and chal-
lenging research field in the years to come.
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