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摘要:网络拓扑结构与节点动态在复杂网络的同步化过程中起着关键性的作用,针对具有切换拓扑结构与非恒
等节点的同步化问题还没有非常有效的判据. 本文研究了具有切换拓扑与非恒等节点的复杂网络同步化问题,针
对非恒等节点不存在公共平衡解的情况,选取所有节点的平均状态作为同步化目标,并在此基础上建立起误差动态
方程. 基于所有外部耦合矩阵可以同时三角化的条件下,构建了低维系统的公共Lyapunov函数,提出了在误差向量
范数有界意义下的复杂网络全局同步化判据,保证系统在任意切换策略下实现复杂网络的同步化. 最后通过数值
仿真验证了结果的有效性.
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A synchronization criterion for dynamical networks with
non-identical nodes and switching topology
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Northeastern University, Shenyang Liaoning 110819, China)

Abstract: Network topology and node dynamics play a key role in forming synchronization of complex networks.
Unfortunately there is no effective synchronization criterion for dynamical networks with non-identical nodes and switching
topology. This paper studies the synchronization problem of a complex network with non-identical nodes and switching
connection topology. Considering the general case where no common equilibrium solution is assumed to exist, we select
the average state of all nodes as the target of synchronization and establish the dynamical error equations. Under the
condition of simultaneous triangularization of the outer connection matrices, a common Lyapunov function is constructed
by those of several lower dimensional dynamic systems, a global synchronization criterion in the sense of boundedness
of the maximum state deviation between the nodes is proposed under arbitrary switching topology. Finally, numerical
simulations are provided to show the effectiveness of the results.
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1 Introduction
In recent years, complex dynamical networks as

an emerging topic have received a great deal of atten-
tion. A complex network is a large set of interconnected
nodes, where the nodes and connections can be every-
thing. Many natural and man-made systems can be de-
scribed as complex dynamical networks[1–3], such as so-
cial communities, biological neural networks, the Inter-
net, electrical power grids, and the world wide web. In
the past few decades, the synchronization problem of
complex networks has been a hot topic due to its poten-
tial applications[4–5].

Assuming that all network nodes are identical, the
synchronization of complex networks has been inten-
sively studied[6–14]. In [6], the direct Lyapunov method

was introduced to analyze synchronization of coupled
systems. Pecora and Carroll developed the master sta-
bility function for arrays of coupled oscillators in [7].
Wang and Chen investigate the synchronization prob-
lems for the small-world dynamical networks and the
scale-free dynamical networks in [8]. In [9–10], the
delayed complex dynamical networks were considered,
and some synchronization criteria have been proposed
based on Lyapunov function theory. The synchroniza-
tion of the dynamical networks with uncertainties was
studied in [11], from the perspective of control the-
ory, the controllers have been designed to synchronize
the dynamical networks. In [12], the smart variable
structure control for asymptotical synchronization to its
equilibrium is developed based on the ergodicity char-
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acteristic of chaos nodes. In [13–14], the complex dy-
namical networks have been synchronized by pinning
part of nodes. However, it is not always practical to as-
sume that all network nodes are identical since many
real-world complex networks may consist of different
types of nodes [15]. Taking a multi-robot system for ex-
ample[16], the multi-robot system can be viewed as a
dynamical network where the nodes consist of robots.
Since individual robots usually have distinct structures
or have different parameters such as masses and iner-
tias, the robot models result in different dynamics and
the multi-robot system is a dynamical network with
non-identical nodes. If the complex networks have non-
identical nodes, the synchronization criteria for net-
works with identical nodes will no longer work in gen-
eral. By now, there have been few studies on this sub-
ject. Based on constructing a common Lyapunov func-
tion for all the nodes, a synchronization criterion was
given under the assumption that all non-identical nodes
have the same equilibrium in [17]. But usually, there is
no common equilibrium solution for each isolated node,
so the synchronization problem become very difficult.
The traditional sense of complete synchronization may
not exist, but it may still exhibit some other kind of syn-
chronization behaviors, such as bounded synchroniza-
tion. Based on constructing the average node dynam-
ics, a global bounded synchronization criterion was pro-
posed[18]. In [19–20], synchronization of complex net-
works with non-identical chaotic systems were investi-
gated. In [21–22], the synchronization problem of dy-
namical networks with non-identical was investigated
by designing an impulsive consensus control scheme.
In [23], the static gain feedback controller has been pro-
posed to synchronize the complex network with non-
identical nodes and free coupling matrix. Further on,
pinning control method has been used to solved the syn-
chronization problem of complex networks with differ-
ent kinds of nodes in [24].

On the other hand, in most studies of complex net-
works, it is assumed to have constant outer connec-
tion matrix. Since the connection topology plays a key
role in forming synchronization behaviors of a complex
dynamical networks, time-varying connection topology
is more realistic and covers more situations in prac-
tice. Assuming that the connection topology changes
continuously with time and that the upper bound of
change rate is known, various synchronization criteria
and methods have been given[25–27]. However, the con-
nection structure of a network may jump suddenly in
the real world. For the switching topology is discon-
tinuously fast-varying topology, so the problem of syn-
chronization cannot be handled as general time varying
topology. When the connection outer matrices can be si-
multaneously diagonalized, several synchronization cri-
teria have been proposed [28–29]. Obviously the simulta-

neous diagonalization condition is very difficult to sat-
isfy. Therefore, searching for relaxed conditions on
outer connection matrices is very meaningful and chal-
lenging. By using the simultaneous triangularization
assupmption, the synchronization problem for complex
dynamical networks and switching topology has stud-
ied in [30], and several synchronization criteria have
been established by means of constructing a common
Lyapunov function, single Lyapunov and multiple Lya-
punov functions, respectively. However, identical nodes
are still assumed in this result. As far as we know, no
synchronization criteria have been reported for dynam-
ical networks with non-identical nodes and switching
topology under the simultaneous triangularization as-
sumption, which is motivates our work.

We will study the synchronization problem of a
complex network with non-identical nodes and switch-
ing topology, neither an equilibrium for each isolated
node nor a synchronization manifold is assumed to ex-
ist. Deviation equations are established by introducing
the average dynamics of all nodes. Under the condition
that the connection matrices can be simultaneously tri-
angularized, a synchronization criterion in the sense of
boundedness under arbitrary switchings is given by the
common Lyapunov function method.

2 Model description and preliminaries
This section gives model description and some nec-

essary preliminaries to derive the main results of the
paper. Consider a dynamical network with switching
topology which consists of N non-identical nodes, the
state equations of the network are given below:

ẋi(t)=fi(xi(t))+c
N∑

j=1

l
σ(t)
ij Hxj(t), i=1, · · · , N,

(1)

where xi = (xi1, · · · , xin)T ∈ Rn is the state vari-
able of node i; H ∈ Rn×n is the inner-coupling matrix;
fi(·) are continuously differentiable with Jacobian Dfi;
σ : [0,∞) → Q = {1, 2, · · · ,m} is a switching sig-
nal; c > 0 is the coupling strength; for each k ∈ Q, the
matrix Lk = (lkij)N×N is the outer coupling matrix rep-
resenting topology structure of the network. Suppose

that the diagonal elements of Lk satisfy lk
ii

= −
N∑

j=1
j 6=i

lk
ij

.

Consider the case where there is no common so-
lution to the isolated non-identical nodes, the average
state trajectory is selected as target of synchronization.
Now, we will give the definition of the average node
dynamics

f̄(x) =
1
N

N∑
i=1

fi(x). (2)

The average state trajectory is

s(t) =
1
N

N∑
i=1

xi(t). (3)
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Define the error vector by ei = xi(t)−s(t), we can get
the following error dynamical systems:

ėi = fi(xi) + c
N∑

j=1

lσijHxj −

1
N

N∑
k=1

(fk(xk) + c
N∑

j=1

lσkjHxj) =

fi(s+ei)− 1
N

N∑
k=1

fk(s+ek) +c
N∑

j=1

lσijHej =

fi(s)+c
N∑

j=1

lσijHej +
w 1

0
Dfk(s+τei)eidτ−

1
N

N∑
k=1

(fk(s) +
w 1

0
Dfk(s + τek)ekdτ) =

Df̄(s)ei + c
N∑

j=1

lσijHej +

w 1

0
(Dfi(s + τei)−Df̄(s))eidτ −

1
N

N∑
k=1

w 1

0
Dfk(s + τek)ekdτ + fi(s)− f̄(s).

(4)

Let e = (eT
1 , eT

2 , · · · , eT
N)T, then we can get the

error system of the network

ė =

(IN ⊗Df̄(s) + cLσ ⊗H)e + g(t, e)− 1
N
·



w 1

0
Df1(s+τe1)dτ · · ·

w 1

0
DfN(s+τeN)dτ

...
. . .

...w 1

0
Df1(s+τe1)dτ · · ·

w 1

0
DfN(s+τeN)dτ


 e+




f1(s)− f̄(s)
...

fN(s)− f̄(s)


 ,

(5)

where g(t, e) = (g1(t, e1)T, · · · , gN(t, eN)T)T, and

gi(t, ei) =
w 1

0
(Df1(s + τe1)−Df̄(s))eidτ . (6)

To get the result of this paper, we need the following
assumptions.

Assumption 1 There exists a constant θ > 0,
such that

‖gi(t, ei)‖ 6 θ ‖ei‖ . (7)

Assumption 2 There exists a unitary matrix
Φ = (φij)N×N , with Φ−1 = ΦT = (ψij)N×N , which
makes

ΦTLkΦ =




l̂k11 l̂k12 · · · l̂k1N

0 l̂k22 · · · l̂k2N
...

...
. . .

...
0 0 · · · l̂kNN


 = L̂k, (8)

where l̂kii = λk
i the eigenvalues of Lk, Φi is the ith

column of the Φ with Φ1 = (
1√
N

, · · · ,
1√
N

)T and

λ1 = 0.

Compared with the simultaneous diagonalization
assumption, assumption Eq.(8) is much weaker. To sim-
plify Eq.(5), let us take the coordinate transformation

w = (wT
1
, wT

2 , · · · , wT
N)T = (ΦT ⊗ In)e, (9)

system (5) can be transformed into

ẇ = (ΦT ⊗ IN)ė =
(IN ⊗Df̄(s) + cL̂σ ⊗H)w + (ΦT ⊗ IN)×
g(t, e)− 1

N
(ΦT ⊗ IN)·



w 1

0
Df1(s+τe1)dτ · · ·

w 1

0
DfN(s+τeN)dτ

...
. . .

...w 1

0
Df1(s+τe1)dτ · · ·

w 1

0
DfN(s+τeN)dτ


 ·

(ΦT ⊗ IN)w + (ΦT ⊗ IN)




f1(s)− f̄(s)
...

fN(s)− f̄(s)


 .

(10)

Let
M =


w 1

0
Df1(s + τe1)dτ · · ·

w 1

0
DfN(s + τeN)dτ

...
. . .

...w 1

0
Df1(s + τe1)dτ · · ·

w 1

0
DfN(s + τeN)dτ


 ,

µ(t) =




f1(s)− f̄(s)
...

fN(s)− f̄(s)


 .

(11)

Then Eq.(10) become

ẇ = (IN ⊗Df̄(s) + cL̂σ ⊗H)w + (ΦT ⊗ IN)×
g(t, e)− 1

N
(ΦT ⊗ IN)×M × (ΦT ⊗ IN)w +

(ΦT ⊗ IN)× µ(t). (12)

Note that

M =
√

N [(Φ1, 0, · · · , 0)⊗
w 1

0
Df1(s + τe1)dτ ] +

√
N [(0, Φ1, · · · , 0)⊗

w 1

0
Df2(s + τe2)dτ ] +

· · ·+
√

N [(0, 0, · · · , Φ1)⊗w 1

0
DfN(s + τeN)dτ ], (13)

since Φ is a unitary matrix, we can get
1
N

(ΦT ⊗ IN)M(Φ⊗ IN) =
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1√
N




φ11 φ12 · · · φ1N

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


⊗

w 1

0
Df1(s + τe1)dτ +

1√
N




φ21 φ22 · · · φ2N

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


⊗

w 1

0
Df2(s + τe1)dτ +

· · ·+ 1√
N




φN1 φN2 · · · φNN

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


⊗

w 1

0
DfN(s + τeN)dτ. (14)

Substituting Eq.(14) into Eq.(10), we can get

ẇ = (IN ⊗Df̄(s) + cL̂σ ⊗H)w +

(ΦT ⊗ IN)g(t, e)−




∗ ∗ · · · ∗
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 w +

(ΦT ⊗ IN)µ(t). (15)

It is easy to see that the deviations ei satisfy
N∑

i=1

ei =

0. Therefore, w1 ≡ 0, we only need to consider
w2, · · · , wN . So the component form of Eq.(15) is



ẇ2 =

(Df̄(s) + λσ
2cH)w2 + l̂σ23cHw3 + · · ·+

l̂σ2NcHwN + ψ21g1 + ψ22g2 + · · ·+
ψ2NgN+(ΦT

2 ⊗ In)µ(t),
ẇ3 =

(Df̄(s) + λσ
3cH)w3 + l̂σ34cHw4 + · · ·+

l̂σ3NcHwN + ψ31g1 + ψ32g2 + · · ·+
ψ3NgN + (ΦT

3 ⊗ In)µ(t),
...

ẇN−1 =

(Df̄(s) + λσ
N−1cH)wN−1 + l̂σ(N−1)NcHwN+

ψ(N−1)1g1 + ψ(N−1)2g2 + · · ·+ ψ(N−1)NgN+

(ΦT
N−1 ⊗ In)µ(t),

ẇN =

(Df̄(s)+λσ
NcH)wN + ψN1g1+ψN2g2 + · · ·+

ψNNgN + (ΦT
N ⊗ In)µ(t).

(16)

There are several ways to check simultaneous trian-
gularizability. The most useful method is to test nilpo-

tency of {Ak}LA, the Lie algebra generated by the con-
nection matrices {Ak}[30].

3 Synchronization criterion under arbitrary
switchings
In this section, we will develop a synchroniza-

tion criterion in the sense of boundness under arbitrary
switchings. The following lemma is needed to derive
our main result.

Lemma 1[18] Suppose there exist a strictly pos-
itive definite matrix P (t) ∈ PC1

n×n and a constant
δ > 0 such that the derivative of

V (x, t) = xTP (t)x,

along the trajectory of the system:
ẋ = f(x, t), x ∈ Rn, t ∈ [0,∞),

satisfies
V̇ 6 −δ ‖x‖2

, if ‖x‖ > g(t),
where g(t) is a non-negative bounded function defined
on [0,∞), for any t > 0, let Qt = {x|V (x, t) 6

sup
y∈Ω,s>0

{V (y, s)}} and

c =
—
lim
t→∞

(max{‖x‖|x ∈ Qt}),
then x(t) converges to the set M = {x| ‖x‖ 6 c}.

Theorem 1 Suppose assumption (7) and (8)
hold, the network (1) synchronizes to the set

Ω = {e|‖e‖ 6 8
√

a

b

β

(α̃− 2γ)
—
lim
t→∞

µ̄(t)},
under arbitrary switchings, if the following condition is
satisfied:

1) There exist positive definite matrices Pi(t) ∈
PC1

n×n and constants a > 0, b > 0 such that
{

a‖x‖2 6 xTPi(t)x 6 b‖x‖2
, ∀t ∈ R+,

x ∈ Rn, i = 2, · · · , N.
(17)

2) There exist constants αi > 0 such that



Ṗi(t) + Pi(t)(Df̄(s) + cλk
i H)+

(Df̄(s) + cλk
i H)TPi(t) + αiIn < 0,

i = 2, · · · , N, k = 1, · · · ,m,
(18)

and let µ̄(t) = ‖µ(t)‖ be bounded. Define

ᾱi = αi − 2θ‖Pi‖
N∑

k=1

|ψikΦki|,
υij = 2 max

16q6m
|l̂qijc|δi‖PiH‖+

2θδi‖Pi‖
N∑

k=1

|ψikφkj|,

δi =
N − 2
2ᾱi

∑
p<i

υ2
pi

ᾱp

+ 1, δ2 = 1, P̄i = δiPi,

α̃ = min
16i6N

(ᾱi − (N − 2)
∑
j>i

υ2
ji

ᾱj

),

β = (
N∑

i=2

(δi‖Pi‖2)) 1
2 ,

where i = 2, · · · , N , if ᾱi > 0, ᾱi−(N−2)
∑
j>i

υ2
ji

ᾱj

>
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0, γ > 0 and α̃− 2γ > 0.

Proof Under the coordinate transformation
w = (wT

1
, wT

2 , · · · , wT
N) = (Φ−1 ⊗ In)e,

we have expression (16). Choose V2(w2) = wT
2 P̄2w2.

When the q-th subnetwork is connected, we can get
V̇2 = wT

2 (Ṗ2 + (Df̄ + λq
2cH)TP2 + P2(Df̄ +

λq
2cH))w2 + 2l̂q23cw

T
2 P2Hw3 + · · ·+

2l̂q2NcwT
2 P2HwN +2wT

2 P2

N∑
p=1

ψ2pgp(t, ep) +

2wT
2 P2(ΦT

2 ⊗ IN)µ(t). (19)

Note that the last term of Eq.(19) satisfies
2wT

2 P2(Φ−1
2 ⊗ IN)µ(t) 6 2‖P2‖‖w2‖µ̄(t).

(20)

In view of ej = φj1w1 + · · ·+ φjNwN , we can get

‖
N∑

p=1

ψipgp(t, ep)‖ 6 θ
N∑

j=1

(
N∑

k=1

|ψikφkj|)‖wj‖. (21)

Using Eqs.(7)–(8)(20)–(21), it turns out that
V̇2 6 −α2‖w2‖2 + 2|l̂q23c|‖P2H‖‖w2‖‖w3‖+

· · ·+ 2|l̂q2Nc|‖P2H‖‖w2‖‖wN‖+

2θ‖P2‖
N∑

j=1

(
N∑

k=1

|ψ2kφkj|)‖w2‖‖wj‖+

2‖P2‖‖w2‖µ̄(t) 6

−(α2 − 2θ‖P2‖
N∑

k=1

|ψ2kΦk2|)‖w2‖2 +

N∑
j=3

2 max
16q6m

|l̂q2jc|δ2‖P2H‖‖w2‖‖wj‖+

N∑
j=3

2θδ2‖P2‖
N∑

k=1

|ψ2kφkj|‖w2‖‖wj‖+

2‖P2‖‖w2‖µ̄(t) 6

−ᾱ2‖w2‖2 +
N∑

j=3

υ2j‖w2‖‖wj‖+

2‖P2‖‖w2‖µ̄(t). (22)

On the basis of Young’s inequality, we have

‖w2‖‖wj‖ 6 ᾱ2

2υ2j(N − 2)
‖w2‖2 +

υ2j(N − 2)
2ᾱ2

‖wj‖2. (23)

Thus lead to

V̇2 6 −1
2
ᾱ2‖w2‖2 +

N∑
j=3

υ2
2j(N − 2)

2ᾱ2

‖wj‖2 +

2‖P2‖‖w2‖µ̄(t). (24)

By analogy, after having Vi−1(wi−1), let define Vi(wi)
= wT

i P̄iwi, then, we have

V̇i 6−(
(N − 2)

2
∑
p<i

υ2
pi

ᾱp

+
1
2
ᾱi)‖wi‖2 +

N∑
j=2,j 6=i

υ2
ij(N−2)

2ᾱi

‖wj‖2+2δi‖Pi‖‖wi‖µ̄(t). (25)

Construct the common Lyapunov function V (w) =
N∑

i=2

Vi(wi), we have

V̇ 6 −1
2

N∑
i=2

(ᾱi − (N − 2)
∑
j>i

υ2
ji

ᾱj

)‖wi‖2 +

2
N∑

i=2

δi‖Pi‖‖wi‖µ̄(t) 6

−1
2
α̃‖w‖2 + 2µ̄(t)‖w‖(

N∑
i=2

(δi‖Pi‖)2) 1
2 =

−1
2
α̃‖w‖2 + 2βµ̄(t)‖w‖, (26)

if ‖w‖ > 4β

α̃− 2γ
µ̄(t), then

V̇ 6 −γ‖w‖2.

By Lemma 1, it is easy to see that network (1) synchro-
nizes to the set, which completes the proof.

Remark 1 When
—
lim

t→∞µ̄(t) = 0, we have asymptotic

synchronization in the classical sense.

Remark 2 In [17], it only consider the simple case
that all non-identical nodes have the same equilibrium. In [18],
the bounded synchronization of complex networks with non-
identical nodes was studied, but it’s results are based on the
assumption that the connection matrix is symmetric and can be
diagonalized. In addition, [17] and [18] did not considered the
general case that the complex networks have switching topol-
ogy, in [30], synchronization of complex networks with switch-
ing topology was studied, and several synchronization criteria
have been established, but unfortunately, identical nodes are
still assumed in this result. Compared with the existing results
of [17–18, 30], the results we obtained have three distinct fea-
tures. First of all, we consider the dynamical networks with
non-identical nodes where neither an equilibrium for each iso-
lated node nor a synchronization manifold exists. Secondly,
we consider the dynamical networks with switching topology
structure, and the different outer coupling configuration can be
switched arbitrarily. Thirdly, the result of this paper is based
on the assumption that all the connection outer matrices are
simultaneous triangularized which is much weaker than the as-
sumption of simultaneous diagonalization. Therefore, our re-
sult covers more general cases of the dynamical networks in the
real world, and it is more extensive than the existing results.

4 Example
Consider the following dynamical network with 3

non-identical nodes:

ẋi =Aixi+g(xi)+
N∑

j=1

lσ
ij
Hxj, i=1, 2, 3, σ∈ [1, 2],

(27)
where
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L1 =



−3 2 1
0 − 2 2
0 0 0


 , L2 =



−4 2 2
0 − 3 3
0 0 0


 ,

A1 =



−2 0 0
0 − 2 0
0 0 − 2


 ,

A2 =



−2.4 − 0.4 0.4
0.4 − 2.3 − 0.4
−0.3 0.4 − 2.2


 ,

A3 =



−1.6 0.4 − 0.4
−0.4 − 1.7 0.4
0.3 − 0.4 − 1.8


 , H = diag{2, 2, 2},

x0 = (1, 0.5,−1, 1,−2,−1,−1, 1.5, 1)T,

and
g(xi) = (−2 sin(

πxi1

3.2
+ π),−2 sin(

πxi2

3.2
+ π),

− 2 sin(
πxi3

3.2
+ π))T.

Applying Theorem 1 we know synchronization in the
sense of boundedness under arbitrary switching is
achieved. Simulation results are depicted in Fig.1.

Fig. 1 The synchronization errors of the switched network

Form Fig.1, it is easy to see that the state of error
system is very large at the initial time, but after a while,
it converge to a bounded area quickly, and the state tra-
jectory never leave the band region from then on, so the
complex network is achieved bounded synchronization,
which verify the validity of the Theorem 1.

5 Conclusion
We have studied the synchronization problem of a

complex network with non-identical nodes and switch-
ing topology. Based on constructing common Lyapunov
function, a criterion for global synchronization under
arbitrary switchings is presented. To reduce the con-
servative and expand the scope of application, the as-
sumption is relaxed to simultaneous triangularization of
the connection outer matrices, which is much weaker
than the assumption of simultaneous diagonalization re-
quired by some existing papers. This paper only discuss
the arbitrary switchings case. How to synchronize this
kind of complex network by design switching laws is a
challenging and difficult problem which deserve to do
future research.
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[28] LÜ J, CHEN G. LA time-varying complex dynamical network model
and its controlled synchronization criteria [J]. IEEE Transactions on
Automatic Control, 2005, 50(6): 841 – 846.

[29] LIU T, ZHAO J. Synchronization of complex switched delay dy-
namical networks with simultaneously diagonalizable coupling ma-
trices [J]. Journal of Control Theory and Applications, 2008, 6(4):
351 – 356.

[30] ZHAO J, DAVID J H, LIU T. Synchronization of complex dynam-
ical networks with switching topology: a switched system point of
view [J]. Automatica, 2009, 45(11): 2502 – 2511.

作者简介:
杜杜杜利利利明明明 (1976–),男,博士研究生,主要研究方向为复杂网络同

步化、切换系统, E-mail: duliboy@163.com;

赵赵赵 军军军 (1957–),男,教授,博士生导师,主要研究方向为复杂

非线性系统结构、切换系统等, E-mail: zhaojun@mail.neu.edu.cn.


