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A synchronization criterion for dynamical networks with
non-identical nodes and switching topology
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Abstract: Network topology and node dynamics play a key role in forming synchronization of complex networks.
Unfortunately there is no effective synchronization criterion for dynamical networks with non-identical nodes and switching
topology. This paper studies the synchronization problem of a complex network with non-identical nodes and switching
connection topology. Considering the general case where no common equilibrium solution is assumed to exist, we select
the average state of all nodes as the target of synchronization and establish the dynamical error equations. Under the
condition of simultaneous triangularization of the outer connection matrices, a common Lyapunov function is constructed
by those of several lower dimensional dynamic systems, a global synchronization criterion in the sense of boundedness
of the maximum state deviation between the nodes is proposed under arbitrary switching topology. Finally, numerical
simulations are provided to show the effectiveness of the results.
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1 Introduction

In recent years, complex dynamical networks as
an emerging topic have received a great deal of atten-
tion. A complex network is a large set of interconnected
nodes, where the nodes and connections can be every-
thing. Many natural and man-made systems can be de-
scribed as complex dynamical networks'=3!_ such as so-
cial communities, biological neural networks, the Inter-
net, electrical power grids, and the world wide web. In
the past few decades, the synchronization problem of
complex networks has been a hot topic due to its poten-
tial applications!+=!,

Assuming that all network nodes are identical, the
synchronization of complex networks has been inten-
sively studied!®'#!. In [6], the direct Lyapunov method
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was introduced to analyze synchronization of coupled
systems. Pecora and Carroll developed the master sta-
bility function for arrays of coupled oscillators in [7].
Wang and Chen investigate the synchronization prob-
lems for the small-world dynamical networks and the
scale-free dynamical networks in [8]. In [9-10], the
delayed complex dynamical networks were considered,
and some synchronization criteria have been proposed
based on Lyapunov function theory. The synchroniza-
tion of the dynamical networks with uncertainties was
studied in [11], from the perspective of control the-
ory, the controllers have been designed to synchronize
the dynamical networks. In [12], the smart variable
structure control for asymptotical synchronization to its
equilibrium is developed based on the ergodicity char-
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acteristic of chaos nodes. In [13-14], the complex dy-
namical networks have been synchronized by pinning
part of nodes. However, it is not always practical to as-
sume that all network nodes are identical since many
real-world complex networks may consist of different
types of nodes '3, Taking a multi-robot system for ex-
amplel'®!, the multi-robot system can be viewed as a
dynamical network where the nodes consist of robots.
Since individual robots usually have distinct structures
or have different parameters such as masses and iner-
tias, the robot models result in different dynamics and
the multi-robot system is a dynamical network with
non-identical nodes. If the complex networks have non-
identical nodes, the synchronization criteria for net-
works with identical nodes will no longer work in gen-
eral. By now, there have been few studies on this sub-
ject. Based on constructing a common Lyapunov func-
tion for all the nodes, a synchronization criterion was
given under the assumption that all non-identical nodes
have the same equilibrium in [17]. But usually, there is
no common equilibrium solution for each isolated node,
so the synchronization problem become very difficult.
The traditional sense of complete synchronization may
not exist, but it may still exhibit some other kind of syn-
chronization behaviors, such as bounded synchroniza-
tion. Based on constructing the average node dynam-
ics, a global bounded synchronization criterion was pro-
posed!!8!. In [19-20], synchronization of complex net-
works with non-identical chaotic systems were investi-
gated. In [21-22], the synchronization problem of dy-
namical networks with non-identical was investigated
by designing an impulsive consensus control scheme.
In [23], the static gain feedback controller has been pro-
posed to synchronize the complex network with non-
identical nodes and free coupling matrix. Further on,
pinning control method has been used to solved the syn-
chronization problem of complex networks with differ-
ent kinds of nodes in [24].

On the other hand, in most studies of complex net-
works, it is assumed to have constant outer connec-
tion matrix. Since the connection topology plays a key
role in forming synchronization behaviors of a complex
dynamical networks, time-varying connection topology
is more realistic and covers more situations in prac-
tice. Assuming that the connection topology changes
continuously with time and that the upper bound of
change rate is known, various synchronization criteria
and methods have been given'>>~?71. However, the con-
nection structure of a network may jump suddenly in
the real world. For the switching topology is discon-
tinuously fast-varying topology, so the problem of syn-
chronization cannot be handled as general time varying
topology. When the connection outer matrices can be si-
multaneously diagonalized, several synchronization cri-
teria have been proposed ?-2°1. Obviously the simulta-

neous diagonalization condition is very difficult to sat-
isfy. Therefore, searching for relaxed conditions on
outer connection matrices is very meaningful and chal-
lenging. By using the simultaneous triangularization
assupmption, the synchronization problem for complex
dynamical networks and switching topology has stud-
ied in [30], and several synchronization criteria have
been established by means of constructing a common
Lyapunov function, single Lyapunov and multiple Lya-
punov functions, respectively. However, identical nodes
are still assumed in this result. As far as we know, no
synchronization criteria have been reported for dynam-
ical networks with non-identical nodes and switching
topology under the simultaneous triangularization as-
sumption, which is motivates our work.

We will study the synchronization problem of a
complex network with non-identical nodes and switch-
ing topology, neither an equilibrium for each isolated
node nor a synchronization manifold is assumed to ex-
ist. Deviation equations are established by introducing
the average dynamics of all nodes. Under the condition
that the connection matrices can be simultaneously tri-
angularized, a synchronization criterion in the sense of
boundedness under arbitrary switchings is given by the
common Lyapunov function method.

2 Model description and preliminaries

This section gives model description and some nec-
essary preliminaries to derive the main results of the
paper. Consider a dynamical network with switching
topology which consists of /N non-identical nodes, the
state equations of the network are given below:

N
a5(t) = filwi(t) +e S 1Y Hay(t), i=1,--- N,
j=1

(1
where z; = (w31, ,2in)T € R™ is the state vari-
able of node ¢; H € R™*™ is the inner-coupling matrix;
fi(+) are continuously differentiable with Jacobian D f;;
o:[0,00) = Q ={1,2,--- ,m} is a switching sig-
nal; ¢ > 0 is the coupling strength; for each k € @), the
matrix Ly, = (I};) . is the outer coupling matrix rep-
resenting topology structure of the network. Suppose

N
that the diagonal elements of Ly, satisfy I* = — >~ I".
=
Consider the case where there is no common so-
lution to the isolated non-identical nodes, the average
state trajectory is selected as target of synchronization.
Now, we will give the definition of the average node
dynamics

_ 1 X
f@) = 5 X filw) @
i=1
The average state trajectory is

sw:;éww 3)
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Define the error vector by e; = x;(t) — s(t), we can get
the following error dynamical systems:

filz )+CZl jHz; —

fi(s)+c > I5H

j=1

% 2 (o) + [ DAs + rer)endr) =

€; +J;) ka(S‘i‘Tei)eidT—

T

~ N
f(s)e;+¢>° I7:He; +
j=1

(Dfi(s+ 1e;) — Df(s))e;dr —

h

% i’: fl Dfi(s+ Tex)erdr + fi(s) — f(5>
4)

1)T, then we can get the

Lete = (e, e5, -+ ,en)t
error system of the network

(In ® Df(s) + cL? @ H)e + g(t,e) — 1

1 1 N
jo Dfi(s+T1ey)dr--- jo Dfy(s+T1en)dr
: . : e+
jolDfl(s—i-Tel)dT e fOIDfN(s—i-TeN)dT
fi(s) = f(s)
() = £
&)

(gl (ta el)Ta o 7gN(t7 eN)T)T7 and

gi(t,e;) = jol (Dfi(s+ T1e1) — Df(s))edr. (6)

To get the result of this paper, we need the following
assumptions.

where g(t,e) =

Assumption 1  There exists a constant § > 0,

such that
lgi(t, el < 0 l[e:]l - (7
Assumption 2 There exists a unitary matrix
@ = (¢ij)nxn, with @1 = &1 = () nxn, which

makes o .
l’fl ljfz lij
o % - Ik .
A e )

0 0 --- Ik,

)\f the eigenvalues of Lj, @, is the ith

1 )T and
7’ .. ’7 an
VN VN

where iﬁ =
column of the @ with &; = (
A =0.

Compared with the simultaneous diagonalization

assumption, assumption Eq.(8) is much weaker. To sim-
plify Eq.(5), let us take the coordinate transformation
w=(wwy, - wy)" = (@ ®IL)e, ()
system (5) can be transformed into
W= (T @ Iy)é =
(In®@Df(s)+cL, @ Hw + (?T @ Iy)x
o(t,0) ~ (7 © Iy):

j Dfi(s+7ep)dr - f Dfy s—|—7'eN)d

jolDfl(s—l—Tel)dT -fOlDfN(s—l—TeN)dT
fi(s) = f(s)
(PT @ Iy)w + (PT @ Iy) :
fn(s) = f(s)
(10)
Let
M —
jonl(s +71ep)dr --- jo Dfn(s+ Tey)dr
LlDfl(s+Tel)dT -jolDfN(s—i-TeN)dT
fi(s) = f(s)
p(t) = P
fn(s) = f(s)
(11)

Then Eq.(10) become
= (Iy @ Df(s) + cL, ® H)w + (#T @ Iy) x
1
g(tie) = = (" @ In) x M x (" @ Iy)w +

N
(DT ® Iy) x p(t). (12)
Note that
M = VN[(@,,0,---,0) @ jol Dfi(s + rer)dr] +

VN0, 81, ,0)® [ Dfals + rea)dr] +
-~ +VN[(0,0,--- ,P)) ®
Ll Dfn(s+ Ten)dr], (13)

since @ is a unitary matrix, we can get

1
@ O IM(@® Iy) =
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$11 Q127 Pin
1 o o0 .
TN - ®f0 fi(s +7er)dr +
0 0 - 0
21 P22 - -+ Pan
1 o o0 .
ﬁ SRR ®L Df2(3+7'61)d7—+
0 0 --- 0
ON1 PN2 - ONN
1 0O 0 --- 0
+ — . . . ®
VN SR
0O 0 --- 0
1
_[0 Dfy(s+ Tey)dr. (14)

Substituting Eq.(14) into Eq.(10), we can get
= (Iy ® Df(s) + cL, ® H)w +

ook e *
- 00 ---0
(D" @ 1INn)g(t,e) — S | wt
0 0---0
(@ © In)p(t). (15)
N
It is easy to see that the deviations e; satisfy ) _ e; =
=1
0. Therefore, w; = 0, we only need to consider
Wa, + -+, Wy. S0 the component form of Eq.(15) is

( iy =
(Df(s) + AcH)wy + I5;cHws + - - - +
15ycHwy + o191 + Pongo + -+
Yangn+H(Py @ L) (),

w3 =

(Df(s) + \cH)ws + §,cHwy + -+ +

liyeHwy + 3191 + 3292 + - - +
Ysngn + (D3 ® L,)p(t),

WN-1 =
(Df(s) + A% _jcH)wy_y + i?N_l)NcHwN+

Yv-1)191 + Vv-1)292 + -+ Yn_y)NINT

(Q%—l ® L) u(t),

Wy =

(Df(s)+AycH)wy + Pni1g1+¥nags + -+ +
Yngn + (PN @ L) u(t).

(16)

There are several ways to check simultaneous trian-
gularizability. The most useful method is to test nilpo-

tency of { Ay } 4, the Lie algebra generated by the con-

nection matrices { Ay }13.

3 Synchronization criterion under arbitrary
switchings

In this section, we will develop a synchroniza-
tion criterion in the sense of boundness under arbitrary
switchings. The following lemma is needed to derive
our main result.

Lemma 13 Suppose there exist a strictly pos-
itive definite matrix P(t) € PC}!, . and a constant
& > 0 such that the derivative of

V(z,t) =2 P(t)z,
along the trajectory of the system:
&= f(x,t), z € R", t € [0,00),
satisfies )
V< sl it el > g(t),
where g(t) is a non-negative bounded function defined
on [0,00), for any t > 0, let Q;, = {z|V(z,t) <
sup {V(y,s)}} and

y€e2,520
¢ = fim (max{]lz]|z € Q).

then z(t) converges to the set M = {z| ||z|| < c}.

Theorem 1 Suppose assumption (7) and (8)
hold, the network (1) synchronizes to the set
a f —
0= <8/——"—lim ()},
felllel < 8§ =255 m ()
under arbitrary switchings, if the following condition is
satisfied:

1) There exist positive definite matrices P;(t) €
PC?}.., and constants a > 0, b > 0 such that

al|lz)|* < 2TP(t)x < bl|z|?, Vi € RY,
reR" i=2.-- N.

2) There exist constants «; > 0 such that
Py(t) + Pi(t)(Df(s) + eAFH )+
(Df(s) + cAFH)TPy(t) + a1, <0,  (18)

=2,--- ,N, k=1,---,m,

and let fi(t) = ||u(t)|| be bounded. Define

N
a; = a; = 20| Pyl 3 [vhix Pl
k=1

o fa s P
vy = 2 g}fgﬂ|lzgc|5z||PzHH+

a7

~.

N
2001 P]| X2 |in
k=1
N -2 _ v _
57,_ Z$+1752:17-P7,:61-P17

20 p<i O

2
V4.
~ . =~ _ _Je
a_lglgnjv(az (N 2);@),
N
231
5= (53 BRI,
1= 2
Ve,
wherei = 2,--- ,N,ifa; >0, a;—(N-2) > L >

j>i g
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0, vy>0and & — 2y > 0.
Proof Under the coordinate transformation
(@ '@ 1,)e,

we have expression (16). Choose V5 (ws) = w3 Pyws.
When the g-th subnetwork is connected, we can get

Vo = wl(Py+ (Df + McH)TP, + Py(Df +
)\%CH))w2 + 2ig3cw2TP2Hw3 “+ -+

w:(w:l“7w;[" 7w%):

~

212 cwy PyHwy +2w;y Py Z a9, (L, €ep) +

2wy Py (P @ In)pu(t). (19)
Note that the last term of Eq.(19) satisfies
2wy Po(P5" @ In)p(t) < 2|| Pol|Jws| (1)
(20)
+ gijwN, we can get

In view of €; = ¢jiwq + - -

HZ Pingp(t; ep)|| <0 Z (Z |Yinrs])[[wsl. 21

Usmg Eqs.(7)—(8)(20)—(21), it turns out that
V2 < —aszzH2 + 2[l3scll| P2 H || [|wall[|ws]| +
-+ 2|i NCIIIPzHIIIIwQIIHwNH +

20| Pl 21 (kZ1 @2 ) | ws [ [[w;]] +
=i
2|| Py[[[wo || () <

N
(g — 20| Py|| 3 [thaxBra) w2 |? +
k=1

=

2 max [13;c|8 | Py | oo | ooy | +

~
Il
w

Mz

952’\P2H Z Vo B; ||| w2l ||w;]| +

IIleHIszI#( ) <

N
—o|Jwa|* + ngzy‘”%HijH +
iz

<.
Il

2| Pa | Jwa | a(t). (22)
On the basis of Young’s inequality, we have
luall eyl < 5— s ] +
2U2j(N— )
Vi (N
2D @
Thus lead to
. 1 N v%-(N—2)
V < = 2 ey 12
2 2042”102H +]§3 9% [|w; [|* +
2|[ Py |[Jwol[ f(t).- (24)

By analogy, after having V;_; (w;_), let define V;(w;)
= w, Pyw;, then, we have

: N-2) vy 1

R

p<i Xp

N UQ(N ) 9
> 7__”10;” +26;]| Pi||[[wsl | a(t) - (25)
j=2gti 200

Construct the common Lyapunov function V(w) =

N
> Vi(w;), we have

=2
’ 1 & szi 2
V<5 > (= (N =2) > =) [Jwill* +
=2 j>i G
N
22, il Pallllwill ) <
1. 1
—5allwl® +2a(t )Ilw\l(z CAVADREE
1. _
—5allwl® +28a(0)|w], (26)
if |w|| = = i(t), then
ull > 55 (0
V< =Allwl®.

By Lemma 1, it is easy to see that network (1) synchro-
nizes to the set, which completes the proof.

Remark 1

synchronization in the classical sense.

Remark 2

that all non-identical nodes have the same equilibrium. In [18],

When fli_m f(t) = 0, we have asymptotic
[— 0O

In [17], it only consider the simple case

the bounded synchronization of complex networks with non-
identical nodes was studied, but it’s results are based on the
assumption that the connection matrix is symmetric and can be
diagonalized. In addition, [17] and [18] did not considered the
general case that the complex networks have switching topol-
ogy, in [30], synchronization of complex networks with switch-
ing topology was studied, and several synchronization criteria
have been established, but unfortunately, identical nodes are
still assumed in this result. Compared with the existing results
of [17-18, 30], the results we obtained have three distinct fea-
tures. First of all, we consider the dynamical networks with
non-identical nodes where neither an equilibrium for each iso-
lated node nor a synchronization manifold exists. Secondly,
we consider the dynamical networks with switching topology
structure, and the different outer coupling configuration can be
switched arbitrarily. Thirdly, the result of this paper is based
on the assumption that all the connection outer matrices are
simultaneous triangularized which is much weaker than the as-
sumption of simultaneous diagonalization. Therefore, our re-
sult covers more general cases of the dynamical networks in the
real world, and it is more extensive than the existing results.

4 Example

Consider the following dynamical network with 3
non-identical nodes:

N
&= Airi+g(x)+ 17 Hry, i=1,2,3, 0€[1,2],
j=1

27
where
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4 2 2
0 —33],
0 0 0

’ H = dlag{27232},

(-3 2 1
L1 = O - 2 2 9 L2 =
[0 0 0
[—2 0 0
Al - 0 - 2 O 5
0 0 -2
[—24 —04 04
Ay=1 04 —23 —04
| —0.3 04 —22]
[—1.6 04 —04]
A;=|—-04 —1.7 04
03 —04 —1.8]

ro = (1,0.5,—1,1,-2,—1,—1,1.5, 1)T,

and

. TTX;1 . T2
)= (-2 -2
g(@) = (~2sin(Gok + ), ~2sin(5 22 + ),
. T3 T
-2 .
sin( 39 + 7))

Applying Theorem 1 we know synchronization in the
sense of boundedness under arbitrary switching is
achieved. Simulation results are depicted in Fig.1.

1.0 T T T T T

g
n
=y
1

t/s

-1.0f b

t/s

Fig. 1 The synchronization errors of the switched network

Form Fig.1, it is easy to see that the state of error
system is very large at the initial time, but after a while,
it converge to a bounded area quickly, and the state tra-
jectory never leave the band region from then on, so the
complex network is achieved bounded synchronization,
which verify the validity of the Theorem 1.

5 Conclusion

We have studied the synchronization problem of a
complex network with non-identical nodes and switch-
ing topology. Based on constructing common Lyapunov
function, a criterion for global synchronization under
arbitrary switchings is presented. To reduce the con-
servative and expand the scope of application, the as-
sumption is relaxed to simultaneous triangularization of
the connection outer matrices, which is much weaker
than the assumption of simultaneous diagonalization re-
quired by some existing papers. This paper only discuss
the arbitrary switchings case. How to synchronize this
kind of complex network by design switching laws is a
challenging and difficult problem which deserve to do
future research.
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