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摘要:模型截断设计方法在无限维系统控制中得到广泛的应用,但是其自身存在信息丢失的缺陷而限制了控制
器对高频扰动抑制的性能.本文研究具有内部和Neumann边界控制的抛物型系统,其中系统采用边界测量. 内部控
制采用比例反馈形式,其中反馈增益核由Sturm-Liouville系统稳定性分析来待定;类似地,边界反馈的设计也采用待
定反馈增益核的方式,最终对描述系统稳定性的Sturm-Liouville系统采用伪谱方法进行求解. 数字仿真结果表明了
该方法的有效性.
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unstable parabolic partial differential equations

XU Chao1†, REN Zhi-gang1, OU Yong-sheng2, Eugenio SCHUSTER3, YU Xin4

(1. State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control,
Zhejiang University, Hangzhou Zhejiang 310027, China;

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen Guangdong 518055, China;
3. Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem PA 10085, USA;

4. Department of Information & Computing, Ningbo Institute of Technology, Zhejiang University, Ningbo Zhejiang 315100, China)

Abstract: The reduce-then-design approach is widely used for controller synthesis of infinite dimensional systems.
A drawback of the reduce-then-design method is the inherent loss of information due to the truncation before control
design. Moreover, the order of the model truncation is a trade-off between model accuracy and real time computation. The
stabilization of an unstable linear parabolic partial differential equation (PDE) system with both Neumann boundary control
and interior control is considered in this work. Point output measurement is available at one end of the physical domain.
A proportional state feedback is proposed for the interior control with a symmetric kernel function, and the pseudospectral
method is used to solve the stability conditions governed by the Sturm-Liouville systems. In addition, an observer is
designed using the point measurement at one end of the physical domain, and used to propose an observer–based feedback
controller for the PDE system. Both controller and observer gains are designed numerically to make the eigenvalues of the
associated Sturm-Liouville problems stable. Simulations show the effectiveness of the proposed controller.
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1 Introduction
Control of partial differential equations (PDEs) and as-

sociated numerical solutions have been widely motivated
in the process engineering (e.g., [1–4]). In [5], the dy-
namic model of the heat exchanger is given by two par-
tial differential equations that are used without spatial dis-
cretization to design the control law. In [6], the control
of a DOC (diesel oxidation catalyst) is studied which is
inherently a distributed parameter system due to its elon-

gated geometry where a gas stream is in contact with a
spatially distributed catalyst. In [7], the authors consid-
ered the optimal control of convection-diffusion systems
modeled by parabolic PDEs with time-dependent spatial
domains for application to the crystal temperature regula-
tion problem in the Czochralski (CZ) crystal growth pro-
cess. In [8], a P-type steady-state iterative learning con-
trol (ILC) scheme is applied to the boundary control of
a class of nonlinear processes described by PDEs, which
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cover many important industrial processes such as heat ex-
changers, industrial chemical reactors, biochemical reac-
tors, and biofilters. In [9], the approximation of completely
resonant nonlinear wave systems via deterministic learning
is studied where the plants are distributed parameter sys-
tems (DPS) describing homogeneous and isotropic elastic
vibrating strings with fixed endpoints.

How to establish a bridge to connect the mathemati-
cal PDE system control and finite dimensional synthesis
tool is a quite interesting topic for both mathematicians
and engineers. The main interests in the mathematical con-
trol community focus on the fundamental problems such
as controllability, observability and optimization of dis-
tributed parameter systems using quite advanced mathe-
matical knowledge which are usually not accessible to gen-
eral practical engineers and applied sciences. In the last
decade, two main categories of approaches developed to
handle practical control problems of PDEs arising in en-
gineering practices became quite popular due to the usage
of accessible engineering mathematical tools, i.e., the iner-
tial manifold method and the backstepping technique. The
inertial manifold method uses the attractors of the dissipa-
tive parabolic PDE to split the infinite dimensional system
into fast and slow dynamics, then the controller synthesis
approaches by virtue of finite dimensional control theories
can be used (e.g., [10] and references therein). The back-
stepping has been proved as a powerful approach to PDE
control with both Neumann and Dirichlet boundary actu-
ation where explicit control laws have been proposed for
both parabolic and hyperbolic PDEs (e.g., [11] and refer-
ences therein). Additionally, extensions of adaptive control
to infinite dimensional systems (with interior or bound-
ary control mechanisms) is a very exciting research field
(e.g. [9, 12–15] and references therein).

Instead of implementing the model reduction tech-
niques before control design, we follow a design-then-
reduce method in this work. We consider a proportional
type interior control for the unstable PDE system. An inte-
gral operation for the product of the proportional feedback
kernel gain and the system state is used for the PDE stabi-
lization in this paper, e.g.,

v(t) =
w 1

0
kvf(y)ψ(y, t)dy,

where f(y) is the control actuation function and kv is the
to-be-designed gain. By substituting the proposed pro-
portional control law into the unstable PDE system, we
use the variable separation method to obtain a self-adjoint
Sturm-Liouville problem associated with the closed-loop
system (i.e., the spectral conditions of the closed-loop
C0-semigroup), which includes the to-be-designed feed-
back controller gain (e.g., kernel function). The closed-
loop Sturm-Liouville system is an integro-differential-type
two boundary value problem which does not admit an an-
alytical solution in general, and numerical methods are
necessary for its solution. Using the eigenfunctions ob-
tained from the uncontrolled Sturm-Liouville problem (rel-
evant to the boundary feedback design), we apply the
pseudospectral method to rewrite the controlled Sturm-
Liouville problem as a finite dimensional matrix eigen-

value problem, which can be equivalently considered as
a pole placement problem for PDE systems.

The spatial-temporal state information needed in the
proposed proportional control law makes it impractical
since this information is usually not available. Therefore,
an observer to estimate the spatial-temporal state informa-
tion is designed exploiting the availability of point mea-
surement at one end of the physical domain. Point mea-
surement by locating sensors at specific points of interests
in the physical domain is common and feasible in engi-
neering practice. The estimation error dynamics define
a non-self-adjoint Sturm-Liouville problem (NSASLP)[16],
which includes the to-be-designed observer gain. NSASLP
is quite common in studying the stability of fluid mechan-
ics and numerical mathematics research is still attracting
much attention. Similarly to the controller case, Galerkin
projection is used to reduce the Sturm-Liouville problem to
a pole placement problem. In this case, the eigenfunctions
obtained by solving the Sturm-Liouville problem associ-
ated with the uncontrolled error dynamics are used during
the Galerkin projection.

Sano employed output feedback in [17] to stabilize the
first order heat exchanger PDEs using Huang’s result on
the spectrum determined growth assumption. More work
along this line can be found in [18–19] and references
therein. However, the analytical study of the spectra asso-
ciated with the closed-loop C0-semigroup is complicated.
The second-order nature of the parabolic PDE under con-
sideration in this work makes the spectral analysis even
more complex when designing the state observer based on
the boundary measurement (by duality the feedback mech-
anism is similar to that in [17]).

This work proposed a novel numerical framework
for the design of an explicit control law with a propor-
tional feedback kernel function (infinite dimensional pro-
portional control) to stabilize infinite dimensional systems.
This approach avoids PDE order truncation to synthesize a
finite dimensional controller. The best advantage of this
method can remain the violent dynamics which need to be
fed back and suppressed but carried out by high frequency
components. Although order truncation is unavoidable
while solving the controller synthesis equations (e.g., the
infinite dimensional Lyapunov equation, Sturm-Liouville
equation, and etc.), but this procedure would not neglect
the information in high frequencies of the temporal-spatial
state. In order to give a formal explantation of the benefit
of this proposed approach, we assume a state feedback Kx,
where K and x represent the feedback gain and the state,
respectively. For the reduce-then-design framework, the
state feedback formulation becomes (K∗+ δK)(x∗+ δx),
where (·)∗ and δ(·) represent the finite dimensional trun-
cations and the associated truncated errors, respectively.
We realize that it is a pure numerical computing problem
for solving the controller synthesis equation (on K) and
the numerical error can be well-controlled under a pre-
defined error tolerance. However, the state is reflected by
the system which could be driven by any possible external
high frequency excitations. In another word, we can make
δK as small as possible numerically but not δx. Thus, it
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is readily to make an extension to the design-then-reduce
framework, i.e., (K∗+δK)x, where δK can be solved un-
der any given error tolerance. The observer design can be
seen as the dual formulation of the stabilization problem.
Both the controller and observer designs are formulated
as Sturm-Liouville problems that can be solved with the
pseudospectral-Galerkin method.

The paper is organized as follows. We present the
boundary control in Section 2. An infinite-dimensional in-
terior control is presented in Section 3. A simulation study
for the infinite-dimensional controller is carried out in Sec-
tion 5, where both the numerical scheme and a numerical
example are discussed. We close this paper by stating con-
clusions and future research topics in Section 6.

2 Boundary control
For the following system:
{

ψt = ψxx + f(x)v(t) + λψ,

ψx(0, t)=0, ψx(1, t)=w(t), y(t)=ψ(1, t),
(1)

we consider the control Lyapunov function

V (ψ) :=
1
2
‖ψ‖2 =

1
2

w 1

0
|ψ(x, t)|2dx :=

1
2
〈ψ, ψ〉, (2)

where ‖·‖ is the usual norm in L2(0, 1), and 〈·, ·〉 is the in-
ner product. We compute the time derivative of the control
Lyapunov function V to obtain

V̇ =
w

Ω
ψψt =

w
Ω

ψ[ψxx + f(x)v(t) + λψ] =

ψ(1)ψx(1)−
w

Ω
ψ2

xdx +
w

Ω
[λψ2 + v(t)fψ]dx.

We can find that V̇ can be positive to make the system (1)
unstable when λ is sufficient large. To enhance the nega-
tiveness of V̇ , we can let w(t) = −kwψ(1, t), where kw

is the feedback gain. Although it may be possible to stabi-
lize the unstable system (1) without using interior control
by carefully choosing kw high enough, in this paper we set
kw = 1 to avoid high boundary control action and follow a
combined boundary-interior control approach, i.e.,

w(t) = −ψ(1, t). (3)

A feedback law (3) with such simplicity on the boundary is
appreciated due to vulnerability on the physical boundary.
Since the boundary is exposed to external environments,
synthesizing complicated feedback laws is not practical
if not consider environmental noises[15]. Substituting the
feedback law (3) into (1), the PDE system becomes

{
ψt = ψxx + λψ + fv,

ψx(0, t) = ψx(1, t) + ψ(1, t) = 0.
(4)

This is an unstable system if λ is sufficiently large, and we
will use the interior control v to stabilize it in this work.

Remark 1 The boundary feedback law (3) has a quite
simple form although more complicated laws can be generated
by using either the weak variations approach[20] or the back-
stepping technique[11] to achieve better performance. In this
work, we have another freedom to shape the dynamics using
the interior actuator.

3 Interior actuator: control design
We propose an interior feedback control with the fol-

lowing proportional kernel form:

v(t) = −
w

Ω
kvf(y)ψ(y, t)dy, (5)

where the feedback gain kv is to be determined. Then, the
closed-loop system takes the form of

{
ψt = ψxx −

w
Ω

kvf(x)f(y)ψ(y, t)dy + λψ,

ψx(0) = ψx(1) + ψ(1) = 0.
(6)

Theorem 1 Given the unstable system (1) and the
boundary feedback law (3), the interior feedback (5) can
stabilize the system if the eigenvalues of the following sys-
tem satisfies µ < 0:{

X ′′−
w

Ω
kvf(x)f(y)X(y)dy+λX =µX,

X ′(0) = X ′(1) + X(1) = 0.
(7)

Proof Using the variable separation method
(ψ(x, t) = X(x)T (t)), we can rewrite the system (6) as

Ṫ (t)
T (t)

=

X ′′(x)−
w

Ω
kvf(x)f(y)X(y)dy+λX(x)

X(x)
=µ,

with the boundary condition given by X ′(0)T (t) =
[X ′(1) + X(1)]T (t) = 0. Thus, we obtain the eigenvalue
problem (6) and the temporal equation Ṫ (t) − µT (t) = 0
which has exponentially stable solution if µ < 0.

Therefore, the stabilization problem becomes to solve
the integro-differential equation (7). Based on the feed-
back kernel function chosen in (5), we can prove that all
the eigenvalues governed by (6) are real numbers.

Theorem 2 The eigenvalues of the Sturm-
Liouville system (7) are real numbers.

Proof We introduce the operator S1 associated with
(7):

(S1g)(x) =
d2g

dx2
−
w

Ω
kvf(x)f(y)g(y)dy + λg(x),

with the domain D(S1) = {g ∈ H2; g′(0) = g′(1) +
g(1) = 0} and H2 = {g; g, g′ and g′′ ∈ L2(0, 1)}. We
can show that S1 is self-adjoint, i.e., given g1, g2 ∈ D(S1),
it satisfies 〈g2, S1g1〉 = 〈g1, S1g2〉:
〈g2, S1g1〉 =
w 1

0

d2g1

dx2
g2dx−

w 1

0

w 1

0
kvf(x)f(y)g1(y)dyg2(x)dx+

w 1

0
λg1g2dx =

−g1(1)g2(1)−
w 1

0
g′1g

′
2dx−

kv

w 1

0
f(y)g1(y)dy

w 1

0
f(x)g2(x)dx+

w 1

0
λg1g2dx=

w 1

0
g1g

′′
2dx− kv

w 1

0
f(x)g1(x)dx

w 1

0
f(y)g2(y)dy +

w 1

0
λg2g1dx = 〈g1, S1g2〉. (8)

It is known that self-adjoint operators have real eigenval-
ues.
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Therefore, the stabilization problem is to find a feed-
back gain kv such that all the eigenvalues of the operator
S1 are negative. However, the associated Sturm-Liouville
problem for feedback design can not be solved explicitly
for a general control function f(x) and numerical methods
are necessary. The Sturm–Liouville problem of (6), when
kv = 0, is

φ′′n = −γ2
nφn, φ′n(0) = φ′n(1) + φn(1) = 0, n ∈ N.

(9)

We assume that the solution to (7) can be approximated

as X(x) ≈
Ic∑

i=1

aiφi(x), where Ic is a truncation number

of the infinitely many basis functions provided by (9), and
ai(i = 1, 2, · · · , Ic) are constants. Then, we can multiply
both sides of (7) by φj and integrate over [0, 1] to obtain

−
Ic∑

i=1

aiφi(1)φj(1)−
w 1

0

Ic∑
i=1

aiφ
′
i(x)φ′j(x)dx−

kv

Ic∑
i=1

ai

w 1

0

w 1

0
f(x)f(y)φi(y)φj(x)dydx +

λ
Ic∑

i=1

ai

w 1

0
φi(x)φj(x)dx =

−
Ic∑

i=1

[φi(1)φj(1)]ai −
Ic∑

i=1

[
w 1

0
φ′i(x)φ′j(x)dx]ai −

kv

Ic∑
i=1

[fifj ]ai + λ
Ic∑

i=1

[
w 1

0
φi(x)φj(x)dx]ai =

µ
Ic∑

i=1

[
w 1

0
φi(x)φj(x)dx]ai. (10)

We introduce the matrix notation

A1(i, j) = φi(1)φj(1), (11)

A2(i, j) =
w 1

0
φ′i(x)φ′j(x)dx (12)

A3(i, j) =
w 1

0

w 1

0
f(x)f(y)φi(y)φj(x)dydx, (13)

A4(i, j) =
w 1

0
φi(x)φj(x)dx, (14)

a = [a1 · · · aIc ]
T, (15)

and rewrite (10) to obtain the finite dimensional represen-
tation of (7):

(−A1 −A2 − kvA3 + λA4)a = µA4a. (16)

To make equation (16) have non-trivial solutions, we must
satisfy the following equation with respect to µ:

det[(µ− λ)A4 + A1 + A2 + kvA3] = 0. (17)

Therefore, the stabilization problem is to find a control
gain kv to place the roots of (17) on the left half plane
(<(µ) < 0).

4 Interior actuator: observer design
We can assume that the observer takes the following

form:{
ψ̂t = ψ̂xx + f(x)v + λψ̂ + ko(x)[ψ(1)− ψ̂(1)],

ψ̂x(0) = ψ̂x(1) + kwψ(1) = 0,

where ko(x) is the observer gain to be designed. We define
e = ψ − ψ̂, which is governed by

{
et = exx + λe− ko(x)e(1),
ex(0) = ex(1) = 0.

(18)

We use the variable separation method (e(x, t) =
Y (x)T (t)) to obtain the Sturm–Liouville problem of (18),

{
Y ′′ − ko(x)Y (1) + λY = νY,

Y ′(0) = Y ′(1) = 0,
(19)

where ν can be a complex number since the operator

S2ϕ =
d2ϕ(x)

dx2
− ko(x)ϕ(1) + λϕ(x)

over the domain D(S2) = {ϕ ∈ H2;ϕ′(0) = ϕ′(1) =
0} is non self-adjoint, i.e., 〈ϕ2, S2ϕ1〉 6= 〈ϕ1, S2ϕ2〉,
∀ϕ1, ϕ2 ∈ D(S2). We can explicitly solve the eigenvalue
problem S2ϕ = νϕ, ν ∈ C, when ko(x) is a simple func-
tion, such as a constant or a harmonic function as discussed
below. However, a numerical approach is needed in the
general case.

4.1 Constant gain
If the feedback gain in the observer is a constant ko,

the Sturm-Liouville problem (19) becomes

d2ϕ(x)
dx2

− koϕ(1) + λϕ(x) = νϕ(x), (20)

dϕ

dx
(0) =

dϕ

dx
(1) = 0. (21)

We first check that ν = λ is not the eigenvalue. If ν = λ,
we have the solution ϕ(x) = C1x

2 + C2x + C3, where
C1, C2, C3 are constants determined by ϕ′(0) = C2 = 0,
ϕ′(1) = 2C1 = 0, but ϕ′′(x) = 2C1 = 0 6= koϕ(1). Then
ν 6= λ and the general solution is given by

ϕ(x) = C1 cos(
√

ν − λx) + C2 sin(
√

ν − λx) +
koϕ(1)
ν − λ

, (22)

where C1 and C2 are constants. When C1 = C2 = 0, we
have a constant solution,

ϕ(x) =
−koϕ(1)
ν − λ

=⇒ ν = −ko + λ. (23)

Then, we can find that a constant gain ko can change the
eigenvalue λ. The general solution (22) satisfies the bound-
ary conditions ϕ′(0) = ϕ′(1) = 0 where C1(6= 0) and
C2(= 0) are constants to be determined by the boundary
conditions (21), i.e.,




C1

√
ν − λ sin 0− C2

√
ν − λ cos 0 = 0,

C1

√
ν − λ sin(

√
ν − λ)−

C2

√
ν − λ cos(

√
ν − λ) = 0.

Then, the eigenvalue ν is determined by sin(
√

ν − λ)
= 0 which is independent of ko. This is an interesting
result that shows that a constant gain ko can only change
the eigenvalue corresponding to the first constant eigen-
function. Therefore, to design an effective observer based
on the point measurement output, a gain function including
positive frequency harmonics is required.



No. 7

XU Chao et al: Pseudospectral expansion-based model reduction for control and boundary observation of

unstable parabolic partial differential equations 797

4.2 Harmonic function gain
We choose sine functions as the feedback gain, i.e.,

ko(x) = sin(nπx), n ∈ N, then (19) becomes

d2ϕ(x)
dx2

− ko sin(nπx)ϕ(1) + λϕ(x) = νϕ(x), (24)

dϕ

dx
(0) =

dϕ

dx
(1) = 0, (25)

whose solution is given by

ϕ(x)
koϕ(1)

=
nπ sin

√
ν − λx√

ν − λ(ν − λ− n2π2)
−

sin(nπx)
ν − λ− n2π2

+

nπ cos(
√

ν − λx)(cos
√

ν − λ− cos(nπ))√
ν − λ(ν − λ− n2π2) sin(

√
ν − λ)

,

(26)

when ν 6= λ, ν − λ 6= n2π2 and ν − λ 6= nπ. The other
cases are

ν = λ :
ϕ(x)

koϕ(1)
=

sin(nπx)− 1
n2π2

, (27)

ν = λ + n2π2 : (28)

ϕ(x)
koϕ(1)

=
enπ(1−x)[enπ − (−1)n]

2n2π2(−1 + e2nπ)
−

enπx[(−1)nenπ − 1]
2n2π2(−1 + e2nπ)

+
sin(nπx)
2n2π2

, (29)

ν = λ + nπ : (30)

ϕ(x)
koϕ(1)

=
e
√

nπx
[
−1 + (−1)ne

√
nπ

]

(1 + nπ)
√

nπ
(−1 + e2

√
nπ

)−

e
√

nπ(1−x)[(−1)n−e
√

nπ]

(1 + nπ)
√

nπ
(−1 + e2

√
nπ

)+

sin(nπx)
nπ(1 + nπ)

. (31)

By making x = 1 in (26), we can obtain the characteris-
tic equation for ν (n ∈ N, ν 6= λ, ν − λ 6= n2π2 and
ν − λ 6= nπ):√

ν − λ(ν − λ− n2π2) sin
√

ν − λ+

konπ[(−1)n cos
√

ν − λ− 1] = 0. (32)

We neglect the other three cases in (27)–(31), since the
eigenvalue ν is positive and not of our interest. Therefore,
the eigenvalues of the operator S2 is given by σ(S2) :=
{ν : equation (32)} ∩ {ν : ν 6= λ} ∩ {ν : ν − λ 6=
nπ}∩{ν : ν−λ 6= n2π2}. The stabilization problem is to
find a feedback gain ko such that the roots of (32) in σ(S2)
reside on the left half plane. However, this is a transcen-
dental complex equation and not always able to be solved
explicitly. Therefore, numerical computation is necessary
to solve the Sturm-Liouville problem (19) associated with
the observer design problem.

4.3 General function gain-numerical approach
The Sturm-Liouville problem of (18), when ko(x)

= 0, is

ϕ′′n = −ω2
nϕn, ϕ′n(0) = ϕ′n(1) = 0, n ∈ N. (33)

We assume that the solution to (19) can be expressed as

Y (x) ≈
Io∑

i=1

biϕi(x), where Io is a truncation number

of the infinitely many basis functions provided by (33) and
bi(i = 1, 2, · · · , Io) are constants. Then, we can multiply
both sides of (19) by ϕj and integrate over [0, 1] to obtain

−
w 1

0

Io∑
i=1

biϕ
′
i(x)ϕ′j(x)dx−

Io∑
i=1

biϕi(1)
w 1

0
ko(x)ϕj(x)dx =

(ν − λ)
w 1

0

Io∑
i=1

biϕi(x)ϕj(x)dx. (34)

We introduce the matrix notation

B1(i, j) = 〈ϕi, ϕj〉, (35)

B2(i, j) = 〈ϕ′i, ϕ′j〉, (36)

B3(i, j) = ϕi(1)ko,j , (37)

where ko,j =
w 1

0
ko(x)ϕj(x)dx, and rewrite (34) to obtain

the finite dimensional representation of (19):

(λB1 −B2 −B3)b = νB1b. (38)

To ensure that equation (38) has non-trivial solution b :=
[b1 b2 · · · bIo ]

T, we require

det((λ− ν)B1 −B2 −B3) = 0. (39)

Therefore, the observer design problem is to find ko,j such
that the roots of (39) reside on the left half plane, i.e.,
<(ν) < 0.

5 Simulation study
5.1 Numerical approach

The closed-loop system is governed by the following
coupled PDEs:





ψt =ψxx−f(x)
w 1

0
kvf(y)ψ(y, t)dy+λψ+

f(x)
w 1

0
kvf(y)e(y, t)dy,

et = exx + λe− ko(x)e(1),
ψx(0) = ψx(1) + ψ(1) = 0,

ex(0) = ex(1) = 0.

(40)

Defining an operator

S0e := f(x)
w 1

0
kvf(y)e(y, t)dy, (41)

we can rewrite the closed-loop system (40) as
d
dt

(
ψ
e

)
=

(
S1 S0

0 S2

)(
ψ
e

)
, (42)

where the separation principle holds (see, e.g., [21]) to en-
sure closed-loop stability. For the numerical simulation,
we can use the Galerkin method to solve the closed-loop
system (40). We make the following expansion:

ψ(IN) =
IN∑
i

zi(t)φi(x), e(IN) =
IN∑
i

εi(t)ϕi(x), (43)

where the basis functions {φi}IN
i=1 and {ϕi}IN

i=1 solve (9)
and (33), respectively. We note that the index ‘IN’ in de-
riving the numerical scheme in this section is always cho-
sen larger than or equal to ‘Ic’ and ‘Io’ in Section 3. Now
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we substitute (43) into the system (40) and use Galerkin
projection to obtain




IN∑
i=1

〈φi, φj〉żi =−
IN∑
i=1

φi(1)φj(1)zi−
IN∑
i=1

〈φ′i, φ′j〉zi−

kv

IN∑
i=1

fifjzi + λ
IN∑
i=1

〈φi, φj〉zi+

kvfj

w 1

0
f(y)e(IN)(y, t)dy,

IN∑
i=1

〈ϕi, ϕj〉ε̇i =−
IN∑
i=1

〈ϕ′i, ϕ′j〉εi+λ
IN∑
i=1

〈ϕi, ϕj〉εi−
IN∑
i=1

ϕi(1)ko,jεi.

(44)

We first solve the ε-equations in (44), then substitute

e(IN)(x, t) =
IN∑
i=1

εi(t)ϕi(x) into the z-equations in (44)

to solve the state equations. Defining

z=(z1, z2, · · ·, zIN)T, ε=(ε1, ε2, · · ·, εIN)T, (45)

A1(i, j)=φi(1)φj(1), A2(i, j)=
w 1

0
φ′i(x)φ′j(x)dx,

(46)

A3(i, j) = fifj =
w 1

0

w 1

0
f(x)f(y)φi(y)φj(x)dydx,

(47)

A4(i, j) =
w 1

0
φi(x)φj(x)dx, (48)

B1(i, j) = 〈ϕi, ϕj〉, B2(i, j) = 〈ϕ′i, ϕ′j〉, (49)

B3(i, j)=ϕi(1)ko,j , F (j)=fj

w 1

0
f(y)e(IN)(y, t)dy,

(50)

we can rewrite system (44) as




A4
dz

dt
=−(A1+A2+kvA3−λA4)z+F(ε),

B1
dε

dt
= −(B2 − λB1 + B3)ε.

(51)

Remark 2 It is interesting to note that the closed-loop
system (51) can be rewritten in the complex domain by using
the Laplace transform (assuming the initial values are zeros):

(
sA4ž = −(A1 + A2 + kvA3 − λA4)ž + F̌ ,

sB1ε̌ = −(B2 − λB1 + B3)ε̌,
(52)

where f̌ is defined as the Laplace transform, i.e.,

f̌(s) =
w∞
0

estf(t)dt, s ∈ C.

Then, we can obtain the characteristic equations for both the
state and observer equations

|sA4 + (A1 + A2 + kvA3 − λA4)| = 0, (53)

|sB1 + B2 − λB1 + B3)| = 0, (54)

which become the design conditions obtained in (17) (if Ic =

IN) and (39) (if Io = IN), respectively.

5.2 Numerical examples
In this subsection, we assume the input function

f(x) = cos(0.86x) + fh cos(9.53x),

and λ = 10, where fh is a constant. We solve the Sturm-
Liouville problem (9) to obtain the first four eigenvalues
γ1 = 0.86, γ2 = 3.43, γ3 = 6.44, γ4 = 9.53 and associ-
ated eigenfunctions

φ1(x) = cos(0.86x), φ2(x) = cos(3.43x),
φ3(x) = cos(6.44x), φ4(x) = cos(9.53x).

We solve the Sturm-Liouville problem (33) for n = 0 and
n ∈ N: νn = nπ, ϕn(x) = cos(νnx).

The stabilization and observer design problems are to
find kv ∈ R, and ko(x) such that (17) and (39) have all
the roots on the left half plane, i.e., <(µ) < 0, <(ν) < 0.
For the feedback gain design, we choose Ic = 3 and com-
pute the matrices defined in (11)–(15). The characteristic
equation (17) becomes

c0µ
3 + c1µ

2 + c2µ + c3 = 0,

where the coefficients ci, (i = 0, 1, 2, 3) are given by

c0 = 0.2176, (55)

c1 = 0.2763kv + 5.2039, (56)

c2 = 9.1672kv − 54.9763, (57)

c3 = 15.0723kv − 109.9055. (58)

By using the Hurwitz stability criterion, we can obtain the
stability condition with respect to the feedback gain kv:

ci >0(i = 2, 3), c1c2 >c0c3 ⇒ kv >5.9256. (59)

We choose that the observer gain function takes the
form of ko(x) = a + b cos(πx). Let Ic = 3, then we com-
pute the matrices defined in (35)–(37). The characteristic
equation (39) becomes

d0ν
3 + d1ν

2 + d2ν + d3 = 0, (60)

where the coefficients di, (i = 0, 1, 2, 3) are given by

d0 = 0.25, (61)

d1 = 0.25a− 0.50b + 4.84, (62)

d2 = 7.34a− 9.74b− 74.33, (63)

d3 = −0.96a + 147.39b + 9.61. (64)

By using the Hurwitz stability criterion, we can obtain the
stability condition with respect to (a, b):

di > 0(i = 1, 2, 3), d1d2 > d0d3. (65)

For the numerical simulation, we choose IN = 4 and
compute the matrices defined in (46)–(50):

A1 =




0.43 −0.63 0.64 −0.65
−0.63 0.92 −0.95 0.95
0.64 −0.95 0.98 −0.98
−0.65 0.95 −0.98 0.99


 , (66)

A2 =




0.16 0.62 −0.64 0.64
0.62 5.38 0.95 −0.96
−0.64 0.95 20.11 1.00
0.64 −0.96 1.00 44.62


 , (67)

A3 =




1 0 0 fh

0 0 0 0
0 0 0 0
fh 0 0 f2

h


 , B3 =




a b 0 0
−a −b 0 0
a b 0 0
−a −b 0 0


 , (68)
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A4 = diag{0.79, 0.55, 0.52, 0.51}, (69)

B1 = diag{1, 0.5, 0.5, 0.5}, (70)

B2 = diag{0, 4.93, 19.74, 44.41}. (71)

We choose

kv = 12, a = 12, b = 0.8

to satisfy the stability conditions (59)–(65). When fh = 0,
i.e., there is no truncation error for the input function f(x)
involved in the control design, the closed-loop dynamics
is shown in Fig.1, and the observer dynamics is shown in
Fig.2. The observer-based feedback system dynamics is
shown in Fig.3.

Fig. 1 Simulation of the controlled system without
observer (kv = 12)

Fig. 2 Simulation of the observer equation (a = 12, b = 0.8)

Fig. 3 Simulation of the controlled system with observer

6 Conclusions
Sturm-Liouville theory and numerical spectral ana-

lysis of differential operators are used in this work to ap-
proach the stabilization problem of an unstable parabolic
PDE with constant diffusion coefficient. The stabilization
mechanism includes two components: boundary (Neu-
mann) and interior controls. In addition to the case of
reaction-diffusion PDEs with constant diffusion coeffi-
cients in isotropic medias, we intend to consider the stabi-
lization problem of dynamical systems in anisotropic me-
dias, where the diffusion coefficients may vary with respect
to the spatial coordinate. This method reduces the control
synthesis for linear PDE systems to a parametric stabiliza-
tion problem for a Sturm-Liouville system, which is solved
using the finite dimensional truncation approach based on
the pseudo-spectral method. The design of a state observer
based on a boundary measurement is also approached in
this work. Analytical and numerical work is carried out for
the solution of the Sturm-Liouville system arising during
the observer design in terms of three different scenarios for
the observer gain: constant, harmonic and general gains.
The analysis concludes that it is required to have harmonic
components in the observer gains instead of pure constants.
A numerical algorithm using the pseudo-spectral method is
proposed for the observer design with general gain.
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