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Nonlinear generalized synchronization of two different spatial Julia sets
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Abstract: Referring to the realization of linear generalized synchronization for spatial Julia sets using linear coupling,
we deal with its nonlinear generalized synchronization by applying nonlinear feedback control and introducing a multi-
variable transform in this work. Based on this multi-variable transform, the error spatial Julia system is obtained and
the nonlinear function is given to stabilize the error spatial Julia system such that the generalized synchronization will be
achieved. Moreover, according to the stability domains given for spatial Julia sets, we determine analytically the stability
domain of the coupling strength for the generalized synchronization. Then, the relationship between the complex stable
fixed plane and the synchronization of the spatial Julia sets is also analyzed. Finally, an example is presented to validate the

scheme and the analysis.
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1 Introduction

In 1975, the mathematician Benoit Mandelbrot intro-
duced the word ‘Fractal’, meaning ‘broken’, to describe ir-
regular and complicated natural phenomena such as coast-
lines, plant branching, and mountains that cannot be de-
scribed via Euclidean geometry. Later, Fractal was a fore-
most phenomenon in nonlinear systems and formed the
most classical contents of the nonlinear theories along with
chaos and bifurcation theories. Recently, Fractal has been
widely used in areas of the natural and social sciences!! 3.
For example, the fractal simulation has been used to pro-
duce a library of plant dynamic configuration in favor of
botany via iterative function systems, L-systems, DLA
models and so on*7!. According to the developments of
genetics, molecular biology and biotechnology, the process
of plant growth is simulated by computer, which may guide
the plant breeding and shorten the breeding cycle.

Julia sets, one of the most important fractal sets, has

Received 4 May 2012; revised 31 May 2013.

received much more attention in its properties, its appli-
cations and its control. Beck!® gave the physical mean-
ing of Julia sets based on the deterministic version of the
Langevin problem. The singularity spectra of the Julia sets
of s-state potts model on the diamond hierarchical lattice
was investigated!®!. Wang et al.l'%! also discussed the phys-
ical meaning of Julia sets based on the particle dynamics
characteristics and found that the change law of the parti-
cle’s velocity can be reflected visually by the fractal char-
acteristics of generalized Julia sets. A lot of approaches
have been proposed for realizing the control of Julia sets,
which include feedback control, gradient control, optimal
control and coupling control!!'~13]. These controls satisfy
extensive requirements of the engineering and achieve the
desirable aims.

Obviously, the study of Julia sets has mainly focused
on the one-dimensional Julia sets until now. In fact, the
spatial Julia sets is a new and important research topic. The
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spatial Julia sets in 4-D quaternion was displayed firstly
via boundary tracking method"¥. Since then, a determin-
istic 3—D Julia set has been constructed via the ray trac-
ing and other 3-D Julia set was also produced based on
customized complexified quaternion. Gintz et al.l'! in-
troduced the complexified quaternion algebra to iteratively
compute the boundaries of the spatial Julia sets so as to
obtain the new structures of the fractal sets. Sui et al.l'f]
constructed the Julia sets in coupled map lattice and gave
its some properties.

In fact, the spatial Julia sets have been developed well
in the basic properties and the drawing of the graphics.
Recently, the control has also been introduced to spatial
Julia sets firstly via transforming matrix!7!. This control
method is only a mathematic transform and has limits in
engineering applications. Later, gradient control and op-
timal control were also used to achieve the control of the
stable space of the fixed plane from Julia sets in coupled
map lattice!'8.

It is well known that synchronization has also been ap-
plied widely in the field of secure or private communica-
tions. More generally, it is an important phenomenon not
only observed in nature, but also artificially induced, as
it is of great concern for many problems of physics, ap-
plied sciences and engineering!'®'°1. Without any excep-
tion, synchronization is also introduced to the spatial Julia
sets. The synchronization of different Julia sets in coupled
map lattice is reported firstly!!8!. Later, we studied the lin-
ear generalized synchronization of spatial Julia sets from a
complex iteration z, 41,0 +a2m ni1 = (1+a)?23, ,+c(a
is a real parameter and c is a complex constant)!?’!. While,
in many real cases and engineering applications, two dif-
ferent complex variables need to have nonlinear relation-
ship.

Motivated by the above observation and inspired by
our recent work!?"!, we discuss in this paper the nonlin-
ear generalized synchronization of two different spatial Ju-
lia sets. Here we introduce the multi-variables transform
such that the nonlinear relationship of two different com-
plex variables is satisfied. So the error spatial Julia system
is obtained and the nonlinear function is characterized to
stabilize the error spatial Julia system such that the gener-
alized synchronization is achieved.

The organization of this paper is as follows. In the
next section, we introduce the definition of generalized
synchronization of spatial Julia sets and accomplish the
nonlinear generalized synchronization between two differ-
ent spatial Julia sets. In Section 3, a numerical example
is taken to verify the feasibility of nonlinear feedback con-
trolled generalized synchronization. Section 4 analyzes the
relationship between the stable fixed plane and nonlinear
synchronization. Finally, conclusions are given in Section
5.

2 Generalized synchronization of the spatial
Julia sets

In this section, the notion of generalized synchroniza-
tion of the spatial Julia sets/?”! is introduced as follows:

Definition 1  Consider two spatial Julia systems:

Zm+1,n + AZmnt+1 = f(zm,n» Wm,n; C1, a)a (l)

Wm+1,n + AQWm n+1 = g(zm,ru Wi, n; C2, a)v (2)

where f and g are the nonlinear functions.
Adding a coupling term p(2y, n, Wi n, C2, @; L) to the
system (1) yields
Zm+1,n + AZm n+1 =
f(zm,nawm,n;cha)+p(zm,nawm,n7c27a;L)7 (3)
where p is a coupling item about 2, y,, Wp,,n, c2 and a, and
L is a coupling strength. Clearly, there exists a Julia set
corresponding to every L. The Julia sets of (2) and (3) are
denoted by J; and Jo, respectively.
If there exists a function ¢(-) such that the spatial Julia

sets of ¢(J) becomes the same with .J; when L tends to
Ly, namely,

Lli:IEID(JzU1/J(J1)\J2m¢(J1)) =4, “)

for some L, the generalized synchronization of Julia sets
of the systems (1) and (2) is achieved.

We take f(Zm,n, Winn; c1,a) = (14+a)?23, ,,+c1 and
9(Zm.ns Wmon; €2,a) = (1 + a)?w}, , + co, then systems
(1)—(3) reduce to
Zm+1in T QZmnt1 = (1 + a)ZZ%q,n + c1, )
Wit 1, + QWimni1 = (1+a)*w), , +c2,  (6)
and

Zm+1,n + AZm,n+1 =
(1 +a)227%1,n +c +p(zm,nvwm,nac27a§[’>7 @)

where ¢; and ¢o are complex parameters and ¢; # co. It
is obvious that the system (7) is driven by the system (6).
Here we take the nonlinear feedback term or the coupling
item as

p(zm,nawm,naCQaa;L) = L[g(zm,nawm,n)]Qa (8)

and the g( 2y, n, W, p) satisfies the following nonlinear re-
lationship

2
g(zm,na wm,n) = G1Zm,n T A2Wy, + as, 9)

which is different from the linear relationship in Ref.[20].
We introduce the error system

Em,n = h(zm,ny wm,n);

so two functions h(2p, n, Wi, n) and g(Zm n, Wi, n) are ex-
pected to ensure that error states €,,41,n, €m,n+1 and ey,
satisfy the error spatial Julia system

e7n+1,n + ae']n,n-i,—l - (1 + a)2€3n7n + C, (10)

and ¢ € (D U D5)(D; and Dy described different stable
domains respectively in Ref.[20]). Generally, there exists
a functional relationship between c and the rest parameters
c1,¢2, L, a, namely, ¢ = ¢(c1, c2, L, a).

According to Theorem 2 of Ref.[20], if we find an ap-
propriate L such that the parameter ¢ of system (10) sat-
isfies ¢ € (D1 U Dy), then the error state e, ,, tends
1++1—4c

2(1+a)
h(Zm.n, Wm,n) = constant, that is, z,, ,, and wy, ,, satisfy
the nonlinear functional relationship. Hence, the nonlinear

to the stable fixed plane e* = , namely,
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generalized synchronization of the spatial Julia system is
achieved.

For simplicity only, the generalized synchronization of
the spatial Julia system with a > 0 is discussed. The other
two similar cases when a < 0 and a # —1 will be omitted.

Substituting (8) into (7), we get

Zm+1,n + azm,n+1 -
(1—|—a)2272n7n—|—c1 +L(a12m,n+a2w%,n+a3)2,
Wm+1,n + AWm nt+1 = (1 + a)2w72n7n + C2,

Y

where L is a coupling strength. Noted that the first sub-
system of subsystem of the system (11) is driven by the
second one.

To guarantee that systems (5) and (6) realize general-
ized synchronization, namely, the error state e, ,, satisfies
the error spatial Julia system (10), we consider the follow-
ing multi-variables transform:

€p,g = QZp gt ﬂaqinwz,q + (2Bawm n1Wm+1,n +
P 4y — 1, (12)
where p,q,m,n € Ny = {0,1,2---}, with p > m and
q = n. Then
Em+1,n =
aZerl,n + 6w72n+17n+
2ﬁa/wrn,nJr1u}7n+1,n + Y (13)

— 2
6m.,n+1 - azm,n+1 + ﬁawm,n+1 + e
_ 2
em,n - azm,n + ﬂwm,n + -

It follows from (13) that
E€m+1,n + ACm nt+1 =
OZmg1n + ﬂwfnﬂm + 2B0Wm, 141 Wm+1,n+
7+ al@zmnrr + Bawy, ) =
a(zm+1,n + azm,,n+1) + /B(wm+1,n+
AW nt1)”- (14)
Substituting the third equation of (13) into the error spatial
Julia system (10), we have
Em+1,n + am nt+1 =
(L +a)*(@zmn + Py, , +7)° +c. (19

From equations (14) and (15), we obtain

L
=14+ — a2 B=——
« +l;(1+a)2a1ﬂ ﬂ (1+a)2a1a27
Y= mﬂha&
La? 16
C:La§+(1_’_7;)201+01+ (16)
Lalag 2+ L
c aia
(1+a2 2" 14a
as = —(1+a)?ay, a3 = —aco.
Setting a; = 1 for simplicity, we get az = —(1 + a)?,
a3 = —co and

9(zmms Winn) = Zmm — (L+ 0w, — co.

Then the coupled system (11) reduces to
Zm+1,n + AZm,n+1 =
(1 + a)2z72n,n +c1+ L[me*
(1 + a)2w72n,n - C2]27
Wm+1,n + AGWmn+1 = (1 + a)2w7271,n + c2,

7)

and «, (3, v and ¢ become

LD
T e
ﬂ = _L7
Les 18
7 C(14a)? e
L
c=c + m[Cl - (]. + a)CQ].
Hence, ¢ = ¢; + m[cl — (1 4 a)co] satisfies the
a

condition of ¢ € D1(The stable domain 1D, was shown in
Fig.1(a) of Ref.[20]).
Based on the fourth formula of (18), we get

(1+a)?
L=—— " _(c—c). 19
c1— (L+a)eo (c=e1) (19)
Denote
(1+a)?
Cc1 — (1 + G)CQ n
(1+a)? .
——————(cos 0 +1isin 0),
FEEE )
where
0 = — arctan fm(e, — (1 +a)cp)

Re(c; — (1 +a)ez)’

Then the formula (19) becomes

(1+a)? .
L=——"—"—(cos f+isin 0)(c—cy), 20
|cl—(1+a)02|( Je=er), 20
1 2
where % is a telescopic multiple and
e1 = (1 +a)ey

cos 0 + isin 0 is a rotation of 6 degree. The stable
domain D of the coupling strength L is obtained af-
ter moving the domain D; to the right c¢;, becoming
(1+ a)?
ler = (14 a)ez|
tating through 6 clockwise. Taking a = 0.5, ¢; = 0.51
and ¢o = —0.5 + 0.51, we get the domain D7 of the cou-
pling strength L as shown in Fig.1.

times of the domain D; in size, and ro-

0.0 T T T T

05+ -

Re(z)
Fig. | The stability domain D with a > 0

The nonlinear generalized synchronization of the sys-
tems (5) and (6) is discussed as follows. Substituting o, 5
and v of (18) into the third equation of (13), and letting

L
M = m, we obtain
a
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Em,n = (1+M)Zm,n _M(1+a)2w7271,n —Mes,

namely,
2 1+ M 1 C2
Wy m = Zmn — —Cmn— T 5
T M(14a)2T" M(1+4a)2 " (14a)?
Substituting wfnyn into the coupled subsystem of (17), we
have

Zm41,n + AZmnt+1 =

1+ M 9 Emmn \9
]- m,n ~ ’
R G R ey v
1+ a)?
(1+1‘; e2,, + 1. 1)

From systems (10)(21) and the forth formula of equation
(18), we get

1
Zm41,n — meerl,n +
1
a(zm+1,n - mem+l,n) ==
1+ M 9 1
1 mmn ~ 7 . aremmn
(L4 @) = T emn) +
M
1 . 22
T M( +a)cy (22)
Similarly, we let
w, = 1 (23)
m,n Zm,n M + 16m,n7
namely,
1
Wm+1,n = Zm+1,n — mem+l,na
1
Wm n = Zm,n — 35 . < Emmn+i1-
mtl = Zmontl T Cmantl
Then the coupled system (22) becomes
Wm+1,n + an,n+1 —
1+ M 2012 (14 a)es
1 W —_ 24
L Wit RS

The system (24) is the same with the system (33) of
Ref.[20]. The spatial Julia sets from the the coupled sys-
tem (24) have been analysised detailedly in Ref.[20]. Here
we will not repeat discussion about the spatial Julia set ob-
tained by the nonlinear generalized synchronization.

22
(a) The spatial Julia set of system (5) with
c1 =051,a>0

2.0

0.5 b
0.0
2

. e
v 2 ¥

(b) The cross-section with ¢; = 0.5i and a = 0, 0.5, 1.5

2077

L5

0.5 -
0.0 -
2

-
v =) ¥

(c) The spatial Julia set of system (6) with
co=—05+0.5,a=>0

A

15"

0.5 b
0.0 k-

-
v 2 ¥

(d) The cross-section with co = —0.5 + 0.5i and
a=20,0.5,15

Fig. 2 The spatial Julia sets of systems (5) and (6) and
their cross-sections

3 Applications

The generation of spatial Julia sets has been given in
Ref.[20]. Similarly, we fixed ¢ = ¢, = 0 in this pa-
per, then we consider the points (z,y,s,0) of the spa-
tial Julia sets. Thereby, the spatial Julia sets are depicted
in three-dimensional space R3. We take ¢; = 0.5i and
co = —0.5 + 0.51 in the systems (5) and (6).

Definition 2.2 and Lemma 2 of Ref.[20] imply that the
two systems satisfy the condition of the spatial Julia sets as
shown in Figs.2(a) and 2(c)(a > 0). Their cross-sections
are also depicted in Figs.2(b) and 2(d) with a = 0,0.5, 1.5.
Since the parameter ¢ € D, a > 0 and the forth formula
of (18), we take a = 0.5 and obtain an inequality

|Cl + [Cl — (1 + 0.5)02” < 0.67.

_L
(1+05)2
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Hence, the states z,,, , and w,, ,, satisfy a determinate non-
linear relationship as shown in Fig.3.

2.0
1.0
0.0

2.0
-3.0
4.0

1 ~7 -
m(wm,n) -2 ' ?\e@m»")

(a) The linear relationship figure of wm, » by
Re(zm,n) and Im(wm,n)

e w,

\]
05
D s M e

(b) The nonlinear relationship figure of zm » by
Re(zm,n) and Im(wm,n)

Fig. 3 The nonlinear relationship of zm,n and wm,n

Here ¢ = 0.2(a = 0.5, L = 0.99 — 1.17i), the system
(10) becomes
emtim + 0.5€mny1 = 2.25¢2, 4 0.2. (25)

Therefore, z, ., and w,y, , achieve generalized synchro-
nization for sufficiently large m and n as shown in Figs.4
and 5. Fig.4(a) shows the dynamic behavior of e, ;
with the change of m. Similarly, Fig.4(b) shows it with
the change of n. When a = 0,1, 1.5, the cross-section
of Fig.5(a) is Fig.5(b). These cross-sections given in
Figs.2(b)(d) and Fig.5(b) show that the Julia sets decreases
gradually with the increase of its parameter a. From Fig.5,
the position of the spatia Julia sets obtained is just trans-

1
formed. The coefficient make the spatial Julia

set of the system (24) dwindle and rotate, where M =

m = 0.44 — 0.52i. M is determined by L, when

a is certain.

(a) Dynamic behavior of e, » with the change of m

e(m,n)

(b) Dynamic behavior of em, » with the change of n

Fig. 4 zm,n and wm,n achieve generalized synchronization

¢ 2 b

(a) The spatial Julia set of generalized synchronization

4 35 $
(b) The cross-section of the spatial Julia set with
a=0,0.5,1.5

Fig. 5 The spatial Julia set from the nonlinear generalized
synchronization between systems (5) and (6)

The discussion of the spatial Julia sets in the other
cases as ¥ = xg Or y = Yo Or § = Sg is similar and will
thus be omitted.

4 The relationship between the complex
fixed plane and synchronization

According to Theorem 1 of Ref.[20], we obtain the
fixed plane e] = 0.48 and e5 = 0.18 of system (25). The-
orem 2 from Ref.[20] implies that the parameter ¢ € D1,
then there exists a stable fixed plane of system (25). In the
light of Lemma 1 of Ref.[20], we know that e3 is a stable
fixed plane, which is confirmed by Fig.6. From Fig.7, sys-
tem (25) is controlled to its stable fixed plane e5 = 0.18
with the increasing of n.
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5

Fig. 6 The stable fixed plane of system (25)

The stable fixed plane
of system (25)

Fig. 7 System (25) is controlled to the fixed plane

Conclusions
In this paper, based on the basic theory in [20], we

have achieved nonlinear generalized synchronization of
two different spatial Julia sets via nonlinear feedback con-
trol method and introducing a multi-variables transform.

At

the same time, we have also specified the stable do-

mains of the coupling strength. The numerical example
has shown that the proposed scheme and analysis are ef-
fective and feasible.
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