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摘要:在假设测量没有丢包的情况下,研究了带有随机测量时滞的网络控制系统的最优估计问题.利用已知的时
滞分布概率,建立新的模型来描述随机时滞测量. 进一步将带有时滞的测量等价成每个通道是单时滞的多通道测
量,从而利用新息重组方法,通过求解黎卡提方程求解最优估计器. 最后给出仿真实例验证了该算法的有效性.
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Optimal estimation for networked control systems with
bounded random measurement delays

YANG Yuan-hua1†, HAN Chun-yan2, LIU Xiao-hua1

(1. School of Mathematics and Statistics Science, Ludong University, Yantai Shandong 264025, China;
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Abstract: The optimal estimation problem is studied for networked control systems subject to random measurement
delays and without packet loss. With the given probability distribution of the delays, a new model is proposed to describe
the delay measurements. In order to solve the estimation problem, the measurement model with delays is written as an
equivalent multiple channel measurement with each channel has a single constant delay. The optimal estimator is derived
by using a reorganized innovation analysis approach, and is given in terms of Riccati difference equations. A simulation
example illustrates the efficiency of the proposed method.
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1 Introduction
In recent years, the research on networked control sys-

tems has gained a lot of attention in communication net-
works, control and state estimation[1–4]. In a networked
control system, the sensor measures outputs of the system
at every sampling time and transmits the measurement to
a data processing center. The random communication de-
lays, out-of-sequence measurements, and packet losses are
inevitable in networked systems by unreliable communi-
cation networks from sensors to a processing center and
from the processing center to end users. The data avail-
able in control and estimation may not be up-to-date due
to stochastic delays or packet dropouts. These problems
should be properly handled in order to achieve satisfactory
estimation and control performance[5–7].

The estimation problem for networked control systems
with random delays or packet dropouts has received many
results during the past few years[8–12]. Nahi[13] investigates
the estimation problem for system with an uncertain mea-
surement, where sensor data that are simply the measure-
ment noises at some samples are used for updating the esti-
mate. Yaz et al.[14] discussed the least mean square filtering

problem with random sensor delays or packet dropouts. It
is well known, the time stamp is necessary to reorder the
packets when the measurements arrive out of order. Schen-
ato[15] proposed the estimators subject to simultaneous ran-
dom packet delay and packet dropped as measurements are
time-stamped and can be re-ordered at the estimator site.
Zhang et al.[16] studied the optimal estimation problem for
discrete-time systems with time delay in the measurement
channel, and the measurements are time-stamped which
can only take one value at time instant t. Sun[17] investi-
gated the estimation problem for the systems with bounded
random measurement delays and packet dropouts, which
are described by some binary distributed random variables
with known probabilities. In [17], the measurement model
is received only one or no measurement at time instant t,
and one measurement can be received for multiple times.
However, the network transmission has limited capabili-
ties, one measurement should not be re-received. The mea-
surement model does not represent practical communica-
tion systems, because it allows the same measurement to
be received for multiple times and/or generates too much
packet loss. In [18], the measurement model guaranteed
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the packet could be received at most one time with time
stamp, but too much packet loss also possibly happens.

Motivated by the discussion above, with the assump-
tion of no packet loss, we present a more precise measure-
ment model, in which the measurement at the present time
instant is correlated with the previous time instant. The
new measurement model is consistent with practical com-
munication protocols, which guarantees each measurement
can be received only once and also allows to receive multi-
measurements at a time. Then we model the delayed mea-
surements as multiple measurement channels, and the opti-
mal estimation problem is investigated by using the reorga-
nized innovation[19]. The designed estimator only depends
on the probabilities of the delay at each instant but do not
need to know if a measurement is delayed or received at a
particular instant.

This paper is organized as follows: Problem formu-
lation is given, and the measurement model is proposed
in Section 2. Section 3 presents the solution for the opti-
mal estimation based on the reorganized innovation analy-
sis approach. A numerical example is given in Section 4 to
illustrate the main results. Finally, Section 5 draws some
conclusions of this paper.

2 Problem formulation
Consider the discrete linear stochastic system

x(t + 1) = Φx(t) + Γω(t), (1)
z(t) = Hx(t) + υ(t), (2)

where x(t) ∈ Rn is the state, z(t) ∈ Rm is the output that
is the measured signal at time t, and the received signal af-
ter network transmission is noted by y(t). ω(t) ∈ Rn and
υ(t) ∈ Rm are white noises. Φ, Γ, H are matrices with
suitable dimensions. The initial state x(0) and ω(t), υ(t)
are Gaussian, uncorrelated, white, with mean (x̄0, 0, 0) and
covariance (P0, Q, R), respectively.

In the networked systems, the sensor measures the
outputs of the system at every time instant and transmits
the measurement to the estimator. Time-delay is unavoid-
able due to unreliable network communication. Since the
packet delay is random, it is possible that between two con-
secutive sampling periods no packet or multiple packets
are delivered. In this paper, we assume that there is no
packet loss and the largest delay in data transmission are
no more than N . On the other hand, the measured packets
are not independent and they are correlated with the previ-
ous time. Therefore, let ξk,i(k = t, t− 1, · · · , t−N ; i =
0, 1, · · · , N) be the indicator function for z(k− i) with the
sample delay i at time k, then the following model for the
measurement received by the estimator is adopted:

y(t) =




ξt,0z(t)
(1− ξt−1,0)ξt,1z(t− 1)

(1− ξt−2,0)(1− ξt−1,1)ξt,2z(t− 2)
...

(1− ξt−N,0) · · · (1− ξt−1,N−1)z(t−N)




,

(3)

where ξk,i are mutually independent scalar binary dis-
tributed random variables with the known distributions.
We assume at any time k = t, t− 1, · · · , t−N , P{ξk,i =

1} = αi and P{ξk,i = 0} = 1 − αi(0 6 i 6 N) with
α0 + α1 + · · · + αN = 1, i.e., the probability of received
packet is αi with the sample delay i.

For simplicity, we let
a0(t) = ξt,0,

ai(t) =
i−1∏
k=0

(1− ξt−(i−k),k)ξt,i, 0 < i < N,

aN (t) =
N−1∏
k=0

(1− ξt−(N−k),k),

then Eq.(3) is written as

y(t) =




a0(t)z(t)
a1(t)z(t− 1)
a2(t)z(t− 2)

...
aN (t)z(t−N)




. (4)

Remark 1 In the model (4), the received measure-
ment signal y(t) is a multi-channel signal with number of vari-
able ranging from 0 to N . For i = 0, · · · , N , we have

ai(t)z(t− i) =
z(t− i) if ai(t) = 1,

0, i.e. z(t− i) is not received if ai(t) = 0.

First, we explain the measurement model (4).
For N = 1, at time t, then when i = 0, y(t) =

ξt,0z(t); when i = 1, y(t) = (1 − ξt−1,0)z(t − 1). The
measurements are not independent but are correlated with
the one in previous time instance t− 1. That is if z(t− 1)
is received at time t− 1, then it can not be received at time
t; but if z(t − 1) is not received at time t − 1, it must be
received at time t. So, whether y(t) contains z(t − 1) or
not is conditioned on whether z(t − 1) was received pre-
viously. Then, if y(t − 1) contains z(t − 1), then y(t) =
z(t) with probability α0 and y(t) = 0 with probability
1 − α0; otherwise, y(t − 1) does not contain z(t − 1),
then y(t) = [z(t) z(t − 1)] is with probability α0 and
y(t) = z(t− 1) is with probability 1− α0.

We have known that ξt,0 and ξt−1,0 are stochastic pa-
rameters, and at each time it equals 0 or 1 with the proba-
bility 1− α0 or α0, respectively. Thus at every time in the
model (4), one possible received measurement y(t) can be
shown as in the following Table 1.

Table 1 Data transmission in network

t 1 2 3 4 5 6 7 8 9 10 · · ·
ξt,0 1 1 0 1 0 1 1 0 0 0 · · ·

ξt−1,0 0 1 1 0 1 0 1 1 0 0 · · ·
y(t) z(1) z(2) 0 z(3), z(4) 0 z(5), z(6) z(7) 0 z(8) z(9) · · ·

From Table 1, we see that z(1), z(2), z(4), z(6), z(7)
are received on time; z(3), z(5), z(8) and z(9) are de-
layed. Furthermore, z(3), z(4) and z(5), z(6) are respec-
tively received at the same time. Compared to the [17], it is
worthy noting that the new model not only guarantees one
packet to be received only once but also satisfies multiple
packets to be received in the actual network transmission.

Substituting Eqs.(1)–(2) into Eq.(4), we find that the
system is equivalent to

x(t + 1) = Φx(t) + Γω(t), (5)
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y(t) =
[
z′0(t) z′1(t) · · · z′N (t)

]′
, (6)

where
z′i(t) = ai(t)Hx(t− i) + ai(t)υ(t− i),

i = 0, · · · , N. (7)
We let z′i(t) ≡ 0 for 0 < t < N in Eq.(7), that is for
t < N , the measurement (6) is written as

y(t) =
[
z′0(t) z′1(t) · · · z′t(t) 0 · · · 0

]′
. (8)

Remark 2 In view of the distribution of ξt,i, we have
these properties

E[ξt,i] = αi, E[ξt,i
2] = αi,

Cov[ξt,i] = αi(1− αi), E[(1− ξt,i)
2] = 1− αi,

E[ξt,i(1− ξt,i)] = 0, E[ξt,i(1− ξk,i)] = αi(1− αi),

E[ξt,iξk,j ] = αiαj , k 6= t, i 6= j.

Lemma 1 Random variable ai(t) has the follow-
ing properties with the delayed probabilities αi:

ā0 = E[a0(t)] = α0, (9)

āi = E[ai(t)] =
i−1∏
k=0

(1− αk)αi, 0 < i < N, (10)

āN = E[aN (t)] =
N−1∏
k=0

(1− αk), (11)

E[ai(t)− āi] = 0 for all i, (12)

E[ai(t)aj(t)] =
{

āi, i = j,
āiāj , i 6= j,

(13)

Aij = E[(ai(t)− āi)(aj(t)− āj)] ={
āi(1− āi), i = j,
0, i 6= j.

(14)

Proof Eqs.(9)–(11) can be obtained directly from
Remark 2. Then we have

E[ai(t)− āi] = E[ai(t)]− āi = 0,

and Eq.(12) is obtained. In Eq.(13),
E[ai(t)aj(t)] =

E{
i−1∏
k=0

(1− ξt−(i−k),k)ξt,i

j−1∏
k=0

(1− ξt−(j−k),k)ξt,j},

from Remark 2 we know, when i = j,
E[ξt,i

2] = αi, E[(1− ξt,i)2] = 1− αi,

and when i 6= j,
E[ξt,iξt,j ] = αiαj ,

E[(1− ξt,i)(1− ξt,j)] = (1− αi)(1− αj),

then we get Eq.(13).
For Eq.(14), we first prove the case 0 < i < N : when

i = j, we have
Aii = E[(ai(t)− āi)2] = E[a2

i (t)]− ā2
i =

E[
i−1∏
k=0

(1− ξt−(i−k),k)2ξ2
t,i]− ā2

i = āi(1− āi),

when i 6= j,
Aij =E[(ai(t)− āi)(aj(t)− āj)] =

E[ai(t)aj(t)]− āiāj = 0.

For the cases i = 0 and i = N , the Eq.(14) also holds, and
the proof is similar to the above. For simplicity, we will
denote Aii to be Ai.

Lemma 2 For the system (1), we have the state co-
variance matrix satisfies the following recursion:

S(t + 1) = ΦS(t)Φ′ + ΓQΓ ′, (15)

where S(t + 1) = E[x(t + 1)x′(t + 1)], and S(0) =
E[x(0)x′(0)] = P0.

Our purpose is to find the linear minimum variance op-
timal estimator x̂(t|t) of the state x(t) based on the sensor
measurements (y(t), y(t− 1), · · · , y(0)), i.e. to minimize
the performance

J = ExEξ[(x(t)− x̂(t|t))(x(t)−
x̂(t|t))T|ỹ(t), ξ, x̄0, P0], (16)

where Ex is the expectation with respect to x(t), ω(t),
υ(t); and Eξ is the expectation with respect to ξt,i con-
sidering the random aspect of the observation. Let ỹ(t) =
{y(t), y(t − 1), · · · , y(0)} and note that the values of ξt,i

are unknown except their probabilities αi are known.

3 Optimal estimator design
In this section, we shall present a solution to the opti-

mal estimation by reorganizing the measurements and ap-
plying the well-known projection method in [19].

3.1 Reorganized measurements
Because y(t) has its entries associated with states

at different time instants due to the delays, the standard
Kalman filtering is not applicable to the estimation prob-
lem. In this section, we adopt a reorganized innovation ap-
proach to the above optimal estimation problem. We will
define another new observation sequence which is delay-
free and contains the same amount of information as ỹ(t),
so that the Kalman filtering formulation can be applied to
solve the estimation problem.

Let

ỹN (s) ,




z0(s)
z1(s + 1)

...
zN (s + N)


 , 0 6 s 6 t−N, (17)

ỹt−s(s) ,




z0(s)
z1(s + 1)

...
zt−s(t)


 , t−N 6 s 6 t. (18)

Now the measurements ỹ(·) are delay-free and shown in
the following:

ỹN (s) = HN (s)x(s) + υN (s), 0 6 s 6 t−N, (19)
ỹt−s(s) = Ht−s(s)x(s) + υt−s(s), t−N 6 s 6 t,

(20)

where

HN (s) =




a0(s)H
a1(s + 1)H

...
aN (s + N)H


 , (21)
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υN (s) =




a0(s)υ(s)
a1(s + 1)υ(s)

...
aN (s + N)υ(s)


 , (22)

Ht−s(s) =




a0(s)H
a1(s + 1)H

...
at−s(t)H


 , (23)

υt−s(s) =




a0(s)υ(s)
a1(s + 1)υ(s)

...
at−s(t)υ(s)


 , (24)

with υN (s), υt−s(s) are white noise of zero mean and by
the Remark 2, the covariance matrix is

RN (s) = E[υN (s)υ′N (s)] =

E




a0(s)υ(s)
a1(s + 1)υ(s)

...
aN (s + N)υ(s)


 ·




a0(s)υ′(s)
a1(s + 1)υ′(s)

...
aN (s + N)υ′(s)




T

=

diag{ā0R, ā1R, · · · , āNR}. (25)

In the similar way, we get

Rt−s(s) = diag{ā0R, ā1R, · · · , āt−sR}. (26)

It is clear that the original measurement set ỹ(t) contains
the same amount of information about the system as the
set {{ỹN (s)}t−N

s=0 ; {ỹt−s(s)}t
s=t−N+1}. Thus, the opti-

mal linear estimation problem to be addressed in this pa-
per can be restated as: given the measurement sequence
{{ỹN (s)}t−N

s=0 ; {ỹt−s(s)}t
s=t−N+1}, to minimize Eq.(16)

in order to get the estimator x̂(t|t) of the state x(t).

3.2 Reorganized innovation sequence
In this subsection we shall define the innovation asso-

ciated with the reorganized measurements.
Definition 1 Consider the reorganized measure-

ment {{ỹN (s)}t−N
s=0 ; {ỹt−s(s)}t

s=t−N+1}, and define the
following:

For 0 6 s 6 t−N ,

ηN (s) , ỹN (s)− ˆ̃yN (s), s = 0, · · · , t−N, (27)

where ˆ̃yN (s) is the projection (optimal estimation) of
ỹN (s) based on the measurements {ỹN (0), · · · , ỹN (s −
1)}, and

ˆ̃yN (s) =E[ỹN (s)] = E[HN (s)x(s) + υN (s)] =

H̃N (s)x̂(s,N), (28)

with H̃N (s) = [ā0H
′ ā1H

′ · · · āNH ′]′.
For s > t−N ,

ηt−s(s) , ỹt−s(s)− ˆ̃yt−s(s), (29)

where ˆ̃yt−s(s) is the projection (optimal estimation) of
ỹt−s(s) based on the measurements {ỹN (0), · · · , ỹN (t −
N); ỹN−1(t− (N − 1)), · · · , ỹt−(s−1)(s− 1)}.

ˆ̃yt−s(s) =E[ỹt−s(s)] = E[Ht−s(s)x(s) + υt−s(s)] =

H̃t−s(s)x̂(s, t− s), (30)

with H̃t−s(s) = [ā0H
′ ā1H

′ · · · āt−sH
′]′.

The sequences {ηi(s)} defined in above are white
noise with zero mean and covariance Qηi(s) and span the
same linear space as {{ỹN (s)}t−N

s=0 ; {ỹt−s(s)}t
s=t−N+1}.

As usual, the sequences ηi(s) are termed as the in-
novation associated with the reorganized measurement
{{ỹN (s)}t−N

s=0 ; {ỹt−s(s)}t
s=t−N+1}. Thus the optimal es-

timator x̂(t|t) is the projection of the state x(t) onto the lin-
ear space spanned by {ηN (0), · · · , ηN (t − N); ηN−1(t −
(N − 1)), · · · , η0(t)}.

3.3 Optimal estimator x̂(t|t)
In order to calculate the optimal estimator with the in-

novation sequence as in the above subsection, we firstly
give the following definition.

Definition 2 Given time instant t,
For 0 6 s 6 t−N , let

PN (s) , E[x̃(s,N)x̃′(s,N)] (31)

be the covariance matrix of the state estimation error,
where

x̃(s,N) = x(s)− x̂(s,N), (32)

and x̂(s,N) is the projection of state x(s) onto the linear
space generated by

L{ỹN (0), · · · , ỹN (s− 1)} =
L{ηN (0), · · · , ηN (s− 1)}. (33)

For s>t−N , denote the covariance matrix of the state
estimation error

Pt−s(s) , E[x̃(s, t− s)x̃′(s, t− s)], (34)

where
x̃(s, t− s) = x(s)− x̂(s, t− s), (35)

and x̂(s, t−s) is the projection of state x(s) onto the linear
space generated by
L{ỹN (0), · · · , ỹN (t−N);

ỹN−1(t− (N − 1)), · · · , ỹt−(s−1)(s− 1)} =
L{ηN (0), · · · , ηN (t−N);

ηN−1(t− (N − 1)), · · · , ηt−(s−1)(s− 1)}. (36)

With the definition, we get the solution to the optimal
filtering problem by applying the reorganized innovation
sequence and the Riccati equations.

Theorem 1 Consider the system (1)–(2) with the
bounded random measurement delays, and the time-delay
probability αi(0 6 i 6 N), the optimal estimator x̂(t|t) is
given by

x̂(t|t) =[In − P1(t)H̃ ′
0(t)Q

−1
η0

(t)H̃0(t)]x̂(t, 1)+

P1(t)H̃ ′
0(t)Q

−1
η0

(t)ỹ0(t), (37)

where x̂(t, 1) is as in Definition 2, which is computed by
the following iteration:

x̂(s + 1, t− s) =
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Φt−s(s)x̂(s, t− (s− 1)) + Kt−s(s)ỹt−s(s), (38)

where

Φt−s(s) = Φ−Kt−s(s)H̃t−s(s), (39)

Kt−s(s) = ΦPt−s+1(s)H̃ ′
t−s(s)Q

−1
ηt−s

(s), (40)

Qηt−s(s) =
diag{A0HS(s)H ′, A1HS(s)H ′, · · · ,

At−sHS(s)H ′}+
diag{ā2

0HPt−s+1(s)H ′, ā2
1HPt−s(s+1)H ′,

· · · , ā2
t−sHP1(t)H ′}+ Rt−s(s), (41)

with the error covariance equation is

Pt−s(s + 1) =ΦPt−(s−1)(s)Φ′−
Kt−s(s)Qηt−s

(s)K ′
t−s(s) + ΓQΓ ′,

(42)

with the initial values PN (0) = P0. When s 6 t−N , we
let t − s = N in the above, then the estimator is obtained
corresponding to the above.

Proof x̂(t|t) is the projection of the state x(t)
onto the linear space spanned by {ηN (0), · · · , ηN (t −
N); ηN−1(t− (N − 1)), · · · , η0(t)}. Since this sequence
is orthogonal, the estimator is calculated by using the pro-
jection formula as:

x̂(t|t) = P{x(t)|ηN (0), · · · , ηN (t−N);
ηN−1(t− (N − 1)), · · · , η1(t− 1)}+
P{x(t)|η0(t)} =

x̂(t, 1) + E[x(t)η′0(t)]E[η0(t)η′0(t)]
−1η0(t).

(43)
From Eqs.(30) and (20), we have

η0(t) =ỹ0(t)− ˆ̃y0(t) =

H0(t)x(t)− H̃0(t)x̂(t, 1) + υ0(t) =
a0(t)Hx(t)− ā0Hx̂(t, 1) + a0(t)υ(t). (44)

According to Eq.(35) and the orthogonality, we have
x̂(t, 1)⊥x̃(t, 1) and x(t)⊥υ(t), then substituting Eq.(44)
into Eq.(43), we obtain

E[x(t)η′0(t)] =
E[x(t)(a0(t)Hx(t)− ā0Hx̂(t, 1) + a0(t)υ(t))′] =
E[x(t)(a0(t)Hx(t)− ā0H(x(t)− x̃(t, 1))+
a0(t)υ(t))′] =
E[a0(t)x(t)x′(t)H ′]− ā0E[x(t)x′(t)H ′]+
ā0E[x(t)x̃′(t, 1)H ′] =

ā0E[x̃(t, 1)x̃′(t, 1)H ′] = ā0P1(t)H ′ = P1(t)H̃ ′
0(t).

(45)
By the Lemma 1 and 2, we obtain the covariance of inno-
vation η0(t) as

Qη0(t) = E[η0(t)η′0(t)] =
E[(a0(t)Hx(t)− ā0Hx̂(t, 1) + a0(t)υ(t))
· (a0(t)Hx(t)− ā0Hx̂(t, 1) + a0(t)υ(t))′] =
E[((a0(t)H − ā0H)x(t) + ā0Hx̃(t, 1)+
a0(t)υ(t))((a0(t)H − ā0H)x(t)+
ā0Hx̃(t, 1) + a0(t)υ(t))′] =

E[(a0(t)H − ā0H)x(t)x′(t)(a0(t)H − ā0H)′]+
E[(a0(t)H − ā0H)x(t)x̃′(t, 1)ā0H

′]+
E[ā0Hx̃(t, 1)x′(t)(a0(t)H − ā0H)′]+

ā2
0E[Hx̃(t, 1)x̃′(t, 1)H ′]+

E[a0(t)υ(t)υ′(t)a0(t)] =

A0HE[x(t)x′(t)]H ′ + ā2
0HP1(t)H ′ + ā0R =

A0HS(t)H ′ + ā2
0HP1(t)H ′ + ā0R. (46)

Substituting the Eqs.(45) and (46) into Eq.(43), we obtain
Eq.(37).

For the case of s > t−N ,
x̂(s + 1, t− s) =
P{x(s + 1)|ηN (0), · · · , ηN (t−N);

ηN−1(t− (N − 1)), · · · , ηt−s(s)} =
Φx̂(s, t− s + 1) + Proj{x(s + 1)|ηt−s(s)} =
Φx̂(s, t− s + 1) + ΦProj{x(s)|ηt−s(s)}. (47)

With a similar discussion as above,
P{x(s)|ηt−s(s)} =

Pt−s+1(s)H̃ ′
t−s(s)Q

−1
ηt−s

(s)ηt−s(s). (48)

Substituting Eqs.(48)(29)–(30) into Eq.(47), we obtain
x̂(s + 1, t− s) =
Φx̂(s, t− s + 1)+

ΦPt−s+1(s)H̃ ′
t−s(s)Q

−1
ηt−s

(s)ηt−s(s) =

Φx̂(s, t− s + 1) + Kt−s(s)(ỹt−s(s)−
H̃t−s(s)x̂(s, t− s + 1) =
Φt−s(s)x̂(s, t− s + 1) + Kt−s(s)ỹt−s(s), (49)

where Kt−s(s) = ΦPt−s+1(s)H̃ ′
t−s(s)Q

−1
ηt−s

(s) with
Φt−s(s) = Φ − Kt−s(s)H̃t−s(s). Qηt−s

(s) is the inno-
vation covariance as shown in the following:

Qηt−s(s) = E[ηt−s(s)η′t−s(s)] =

E[(ỹt−s(s)− ˆ̃yt−s(s))(ỹt−s(s)− ˆ̃yt−s(s))′] =

E[(Ht−s(s)x(s)− H̃t−s(s)x̂(s, t− s + 1)+

υt−s(s))(Ht−s(s)x(s)− H̃t−s(s)x̂(s, t− s + 1)+
υt−s(s))′] =

E[(Ht−s(s)− H̃t−s(s))x(s)x′(s)(Ht−s(s)−
H̃t−s(s))′] + E[(Ht−s(s)−
H̃t−s(s))x(s)x̃′(s, t− s + 1)H̃ ′

t−s(s)]+

E[H̃t−s(s)x̃(s, t− s + 1)x′(s)(Ht−s(s)−
H̃t−s(s))′] + E[H̃t−s(s)x̃(s, t− s + 1)·
x̃′(s, t− s + 1)H̃ ′

t−s(s)] + Rt−s(s) =
diag{A0HE[x(s)x′(s)]H ′, A1HE[x(s)x′(s)]H ′,

· · · , At−sHE[x(s)x′(s)]H ′}+
diag{ā2

0HPt−s+1(s)H ′, ā2
1HPt−s(s + 1)H ′,

· · · , ā2
t−sHP1(t)H ′}+ Rt−s(s) =

diag{A0HS(s)H ′, A1HS(s)H ′, · · · ,

At−sHS(s)H ′}+
diag{ā2

0HPt−s+1(s)H ′, ā2
1HPt−s(s + 1)H ′,
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· · · , ā2
t−sHP1(t)H ′}+ Rt−s(s). (50)

From Eq.(35), we have
x̃(s + 1, t− s) = x(s + 1)− x̂(s + 1, t− s) =
Φx̃(s, t− s) + Γω(s)−Kt−s(s)ηt−s(s), (51)

since x̃(s, t−s) is uncorrelated with ω(s), by Eqs.(51) and
(50), we obtain the error covariance

Pt−s(s + 1) = E[x̃(s + 1, t− s)x̃′(s + 1, t− s)] =
ΦPt−s+1(s)Φ′ −Kt−s(s)Qηt−s

(s)K ′
t−s(s) + ΓQΓ ′,

(52)
thus the recursive equation (42) is obtained.

In the case of 0 6 s 6 t−N , we just let t− s = N in
the above, then following the similar way, we obtain

x̂(s + 1, N) =P{x(s + 1)|ηN (0), · · · , ηN (s)} =
Φx̂(s,N) + P{x(s + 1)|ηN (s)} =
Φx̂(s,N) + KN (s)ηN (s), (53)

then Eqs.(39)–(42) can be easily derived for t− s = N .
Remark 3 With the assumption of no packet loss, we

propose the measurement model in which the received mea-
surement is correlated with previous measurement. Thus our
estimator just uses the probabilities of the delay at each time,
and the obtained estimator is concerned with the state covari-
ance matrix (15), this is the mainly different from [18].

4 Simulation example
In this section, we present a simple example to illus-

trate the previous theoretical results. Consider the system
(1)–(2) with the following specifications:

Φ =
[
0.5 0.05
0 0.86

]
, Γ =

[
1

0.5

]
, H = [2 1],

and the white noises ω(t) and υ(t) with mean zero and
their covariances are Q = 1 and R = 1, respectively. Since
ξk,i are mutually independent scalar binary distributed ran-
dom variables with the known distributions，we assume
that the maximal random time delay N = 2, thus the
probability of received packet is α0 + α1 + α2 = 1.
Setting α0 = 0.8, α1 = 0.1, α2 = 0.1 and the ini-
tial state value x(0) = [0 0]′, as the initial conditions,
we calculate the estimator by using Theorem 1 proposed
in Section 3, Fig.1 gives the trace of the estimation er-
ror covariance by the proposed algorithm, and shows the
comparison with the trace of estimation error covariance
for the standard Kalman filtering assuming that there is
no time delay. It can be seen that the proposed estima-
tor in the paper has a better performance, and also the
steady-state estimation error variance matrices is obtained

as P =
[

1.1034 0.58666
0.58666 0.3363

]
. The optimal estimator

x̂(t|t) is shown in Fig.2 and Fig.3. It is also shown that the
proposed estimation algorithm effectively tracks the states
of the system.

Fig.4 shows the performance comparison of the sum
of estimation error covariance in this paper and [18]. We
see that the method in our paper is not as good as the opti-
mal method in [18]. This is understandable because in the
optimal method of [18] the time stamps are exactly known
at each time, and it uses much more information in estima-
tion than the probabilities of the delay we use in our paper.

Fig. 1 The comparison of the trace of estimation error
covariance

Fig. 2 The first state component x1(t) and the
estimator x̂1(t|t)

Fig. 3 The second state component x2(t) and the
estimator x̂2(t|t)

Fig. 4 The comparison of the sum of estimation error
covariance with [18]
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5 Conclusions
In this paper, for discrete-time stochastic linear sys-

tems with bounded random measurement delays, the op-
timal estimator is proposed. Firstly, we present a novel
measurement model by using time stamps which are corre-
lated with the previous time. The model ensures that each
measurement is received and received only once, which is
more precisely to describe the actual communication pro-
tocols. Then by applying the reorganized innovation anal-
ysis approach, the estimator is derived by solving a set of
recursive discrete-time Riccati equations with the known
probabilities of the delay. Our estimator can be computed
off-line as it only depends on the data arrival probability at
each time instant.
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