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Optimal estimation for networked control systems with

bounded random measurement delays
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Abstract: The optimal estimation problem is studied for networked control systems subject to random measurement

delays and without packet loss. With the given probability distribution of the delays, a new model is proposed to describe

the delay measurements. In order to solve the estimation problem, the measurement model with delays is written as an

equivalent multiple channel measurement with each channel has a single constant delay. The optimal estimator is derived

by using a reorganized innovation analysis approach, and is given in terms of Riccati difference equations. A simulation

example illustrates the efficiency of the proposed method.
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1 Introduction

In recent years, the research on networked control sys-
tems has gained a lot of attention in communication net-
works, control and state estimation!'#. In a networked
control system, the sensor measures outputs of the system
at every sampling time and transmits the measurement to
a data processing center. The random communication de-
lays, out-of-sequence measurements, and packet losses are
inevitable in networked systems by unreliable communi-
cation networks from sensors to a processing center and
from the processing center to end users. The data avail-
able in control and estimation may not be up-to-date due
to stochastic delays or packet dropouts. These problems
should be properly handled in order to achieve satisfactory
estimation and control performance!®>~!,

The estimation problem for networked control systems
with random delays or packet dropouts has received many
results during the past few years®'?!. Nahil'¥l investigates
the estimation problem for system with an uncertain mea-
surement, where sensor data that are simply the measure-
ment noises at some samples are used for updating the esti-
mate. Yaz et al.['*! discussed the least mean square filtering
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problem with random sensor delays or packet dropouts. It
is well known, the time stamp is necessary to reorder the
packets when the measurements arrive out of order. Schen-
ato!'>! proposed the estimators subject to simultaneous ran-
dom packet delay and packet dropped as measurements are
time-stamped and can be re-ordered at the estimator site.
Zhang et al.l'9! studied the optimal estimation problem for
discrete-time systems with time delay in the measurement
channel, and the measurements are time-stamped which
can only take one value at time instant ¢. Sun!!'”l investi-
gated the estimation problem for the systems with bounded
random measurement delays and packet dropouts, which
are described by some binary distributed random variables
with known probabilities. In [17], the measurement model
is received only one or no measurement at time instant ¢,
and one measurement can be received for multiple times.
However, the network transmission has limited capabili-
ties, one measurement should not be re-received. The mea-
surement model does not represent practical communica-
tion systems, because it allows the same measurement to
be received for multiple times and/or generates too much
packet loss. In [18], the measurement model guaranteed
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the packet could be received at most one time with time
stamp, but too much packet loss also possibly happens.

Motivated by the discussion above, with the assump-
tion of no packet loss, we present a more precise measure-
ment model, in which the measurement at the present time
instant is correlated with the previous time instant. The
new measurement model is consistent with practical com-
munication protocols, which guarantees each measurement
can be received only once and also allows to receive multi-
measurements at a time. Then we model the delayed mea-
surements as multiple measurement channels, and the opti-
mal estimation problem is investigated by using the reorga-
nized innovation!'”!. The designed estimator only depends
on the probabilities of the delay at each instant but do not
need to know if a measurement is delayed or received at a
particular instant.

This paper is organized as follows: Problem formu-
lation is given, and the measurement model is proposed
in Section 2. Section 3 presents the solution for the opti-
mal estimation based on the reorganized innovation analy-
sis approach. A numerical example is given in Section 4 to
illustrate the main results. Finally, Section 5 draws some
conclusions of this paper.

2 Problem formulation

Consider the discrete linear stochastic system

x(t+1) = dx(t) + Tw(t), (1)

z(t) = Hz(t) + v(t), ()
where z(t) € R™ is the state, z(t) € R™ is the output that
is the measured signal at time ¢, and the received signal af-
ter network transmission is noted by y(¢). w(¢) € R™ and
v(t) € R™ are white noises. ¢, I, H are matrices with
suitable dimensions. The initial state 2(0) and w(t), v(¢)
are Gaussian, uncorrelated, white, with mean (Zg, 0, 0) and
covariance (P, @, R), respectively.

In the networked systems, the sensor measures the
outputs of the system at every time instant and transmits
the measurement to the estimator. Time-delay is unavoid-
able due to unreliable network communication. Since the
packet delay is random, it is possible that between two con-
secutive sampling periods no packet or multiple packets
are delivered. In this paper, we assume that there is no
packet loss and the largest delay in data transmission are
no more than IN. On the other hand, the measured packets
are not independent and they are correlated with the previ-
ous time. Therefore, let &, ;(k =¢,t —1,--- ,t — N; i =
0,1,---, N) be the indicator function for z(k —4) with the
sample delay ¢ at time k, then the following model for the
measurement received by the estimator is adopted:

§r,02(t)
(1 —&—1,0)&12(t—1)
y(t) = (1- &—270)(1 - ft—1,1)§t722(t —2)
(1—=&-no0) (1 =&-1,n-1)2(t = N)
(3)
where ¢, ; are mutually independent scalar binary dis-

tributed random variables with the known distributions.
We assume at any time k = ¢,¢ — 1,--- , ¢t — N, P{{x; =

1} = ayand P{&; = 0} = 1 — (0 < ¢ < N) with
ap + a1 + --- + ay = 1, i.e., the probability of received
packet is «; with the sample delay i.
For simplicity, we let
ao(t) = &0,

i—1
a;(t) = [T (1 —&—(i—k)k)&tir 0 <i <N,

N-1

an(t) = kli[o(l — & (N=k).k)s
then Eq.(3) is writ;en as
ao(t)z(t)
ay(t)z(t —1)
y(t) = | 2= =2) | 4)

an(t)z(t — N)

Remark 1 In the model (4), the received measure-
ment signal y(¢) is a multi-channel signal with number of vari-
able ranging from 0 to V. For¢ = 0,--- , NV, we have

a;(t)z(t —1) =
z(t —1) if a;(t) =1,
{0, i.e. z(t —4) is not received if a;(t) = 0.

First, we explain the measurement model (4).

For N = 1, at time ¢, then when ¢ = 0, y(t) =
&oz(t); wheni = 1, y(t) = (1 — &—1,0)2(t — 1). The
measurements are not independent but are correlated with
the one in previous time instance ¢ — 1. That is if z(¢ — 1)
is received at time ¢ — 1, then it can not be received at time
t; but if z(t — 1) is not received at time ¢ — 1, it must be
received at time ¢. So, whether y(¢) contains z(¢t — 1) or
not is conditioned on whether z(t — 1) was received pre-
viously. Then, if y(¢ — 1) contains z(¢ — 1), then y(t) =
z(t) with probability «p and y(t) = 0 with probability
1 — «ay; otherwise, y(t — 1) does not contain z(t — 1),
then y(t) = [2(t) =z(t — 1)] is with probability « and
y(t) = z(t — 1) is with probability 1 — «y.

We have known that & ¢ and &,_1 o are stochastic pa-
rameters, and at each time it equals O or 1 with the proba-
bility 1 — ag or oy, respectively. Thus at every time in the
model (4), one possible received measurement () can be
shown as in the following Table 1.

Table 1 Data transmission in network

t 1 23 4 5 6 78 9 10 ---
&o 110 1 0 1 100 O
&-10 0 11 0 1 0 110 O

y(t) z(1) z(2) 02(3), z(4) 0 2(5), 2(6) 2(7) 0 2(8) z(9) - - -

From Table 1, we see that z(1), z(2), z(4), 2(6), 2(7)
are received on time; z(3), z(5), 2(8) and z(9) are de-
layed. Furthermore, z(3), z(4) and z(5), z(6) are respec-
tively received at the same time. Compared to the [17], it is
worthy noting that the new model not only guarantees one
packet to be received only once but also satisfies multiple
packets to be received in the actual network transmission.

Substituting Egs.(1)-(2) into Eq.(4), we find that the
system is equivalent to

z(t+1) = dx(t) + T'w(t), Q)
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y(t) = [=0(t) # () - 0] ©)

2i(t) = a;(t)Hz(t — 1) + a;(t)v(t — i),
t=20,---,N. @)
We let 2/(t) = 0 for 0 < ¢t < N in Eq.(7), that is for
t < N, the measurement (6) is written as
y(t) = [26(6) 24(6) - =) 0 - 0],  ®
Remark 2 In view of the distribution of &; ;, we have
these properties

E[6i] = i, Bléi%] = au,

Cov[é& ;] = a;(1 — «;), E[(1 - §t,i)2] =1-q,

Bl (1 —£&,i)] =0, Bl (1 — &k0)] = (1 — o),

B¢ ik, ;] = ajoy, k#t, i # j.

Lemma 1 Random variable a;(t) has the follow-
ing properties with the delayed probabilities «;:

where

ag = E[ao(t)] = g, ©)]
4 = Blas(®) = TL(1 - apai, 0< i< N, (10)
k=0

N-1

anN = E[aN(t)] = kH (1 - ak), (11
=0

Ela;(t) — a;] =0 for all 4, (12)

_ Jai, =7,
Bla(tlay(0] = {20, 157 13
Aij = E[(a;(t) — a:)(a;(t) — a;)] =
a;(1—a;), i=j,
{0, i . 14

Proof Eqgs.(9)—(11) can be obtained directly from
Remark 2. Then we have

E[al(t) — c‘zi] = E[al(t)] —a; = 0,

and Eq.(12) is obtained. In Eq.(13),
Elai(t)a;(t)] =

i1 i1
E{ T (1 = &—(i—r),k)t.i ]H (1 =& —(—r)k)&t,5 )
E=0 k=0

from Remark 2 we know, when i = j,
El¢,"] = i, B[(1=6,0)° = 1 —
and when i # j,
E[&.i&.5] = qiay,
E[(1=&.)1 = &) = (1 —a)(1 —ay),
then we get Eq.(13).
For Eq.(14), we first prove the case 0 < 7 < N: when
1 = 7, we have
Aii = E[(ai(t) — a;)*] = E[af ()] — a; =

i—1

E[kljo(l — &k k)20 — @ = ai(1 — ay),

when i # j,
Aij =E[(a;(t) — ai)(a;(t) — a;)] =
E[ai(t)aj (t)] —a;a; = 0.
For the cases ¢ = 0 and ¢ = N, the Eq.(14) also holds, and

the proof is similar to the above. For simplicity, we will
denote A;; to be A;.

Lemma2 For the system (1), we have the state co-
variance matrix satisfies the following recursion:

S(t+1)=oS(t)d +IrQr”’, (15)

where S(t + 1) = E[z(t + 1)2’(t + 1)], and S(0) =
E[z(0)2'(0)] = Fo.

Our purpose is to find the linear minimum variance op-
timal estimator Z(¢|t) of the state x(¢) based on the sensor
measurements (y(¢),y(t — 1),---,y(0)), i.e. to minimize
the performance

J = E.Ee[(x(t) — 2(t|t)) (x(t) —
‘%(ﬂt))T'g(t)vg’vaPO]a (16)

where E, is the expectation with respect to z(t), w(t),
v(t); and E¢ is the expectation with respect to &, ; con-
sidering the random aspect of the observation. Let g(t) =
{y(t),y(t —1),--- ,y(0)} and note that the values of & ;
are unknown except their probabilities «; are known.

3 Optimal estimator design

In this section, we shall present a solution to the opti-
mal estimation by reorganizing the measurements and ap-
plying the well-known projection method in [19].

3.1 Reorganized measurements

Because y(t) has its entries associated with states
at different time instants due to the delays, the standard
Kalman filtering is not applicable to the estimation prob-
lem. In this section, we adopt a reorganized innovation ap-
proach to the above optimal estimation problem. We will
define another new observation sequence which is delay-
free and contains the same amount of information as g(¢),
so that the Kalman filtering formulation can be applied to
solve the estimation problem.

Let
zo(s)
z1(s+1)
zn(s+ N)
zo(s)
z1(s+1)
Ui—s(s) = . , =N <s<t. (13)
Zt,s(t)

Now the measurements §(-) are delay-free and shown in
the following:

gn(s) = Hy(s)z(s) +on(s), 0<s<t—N, (19)
Ji—s(s) = Hi—s(s)x(s) + vi—s(s), t — N < s < ¢,
(20)
where
ap(s)H
ai(s+1)H
Hy(s) = : . 2D

an(s+ N)H
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ao(s)v(s) Ui—s(s) =E[Gi_s(5)] = B[H,_s(s)2(s) + v;_s(s)] =
ar(s + 1)v(s) BN
un(s) = ) , (22) His(s)2(s,t — ), (30)
an (s + N)v(s) with H,_,(s) = [agH' a1 H' - a_ H']'.
ao(s)H The sequences {7;(s)} defined in above are white
ai(s+1)H noise with zero mean and covariance Qm»(s) and span the
Hys(s) = : ) (23)  same linear space as {{Zn(s)}.20s {Fe—s()}oi nia )
: As usual, the sequences 7);(s) are termed as the in-
ar—s () H novation associated with the reorganized measurement
ao(s)v(s) {{gn ()15 {Ge—s(8)}: __ n41}- Thus the optimal es-
ay ( s+ )U(S) timator &(¢|¢) is the projection of the state z(t) onto the lin-
vp—s(8) = _ ) (24) ear space spanned by {nx(0), -+ ,nn(t — N);nn_1(t —

ar—s(t)v(s)
with vy (s), vi—s(s) are white noise of zero mean and by
the Remark 2, the covariance matrix is

Ry(s) = E[un(s)vi(s)] =

ap(s)v(s)
ai(s+ 1v(s)

a(s)v'(s)
ay(s+ 1)v'(s)

an(s+ .N)U/(S)
,anR}. (25)

an(s+ N)v(s)
diag{aoR,a1 R, - - -

In the similar way, we get

Ri_y(s) = diag{aoR,a1R, - ,a,_sR}.  (26)

It is clear that the original measurement set g(¢) contains
the same amount of information about the system as the

set {{QN(S) s= 0a {T—s(s )}2:t7N+1}~ Thus, the opti-
mal linear estimation problem to be addressed in this pa-

per can be restated as: given the measurement sequence
{IN ()}e=0's {5i-s(8)} oy 41 to minimize Eq.(16)
in order to get the estimator & (¢|t) of the state x(t).

3.2 Reorganized innovation sequence

In this subsection we shall define the innovation asso-
ciated with the reorganized measurements.

Definition 1  Consider the reorganized measure-

ment {{gn(s) f;f)vg {Gt—s(s)} —4_ N1}, and define the
following:
For0 <s<t— N,

nn(s) 2 Gn(s) — yn(s), s=0,--- ,t =N, (27)

where ¢y (s) is the projection (optimal estimation) of

gn(s) based on the measurements {gn(0), -+ ,gn(s —
1)}, and
yn(s) =Eljn(s)] = E[Hy (s)a(s) +vn(s)] =
Hy(s)i(s, N), (28)
with Hy (s) = [agH' @ H' --- anH']'.
Fors >t— N,
Me—s(8) 2 Gems(8) = Ge—s(s), (29)

where 7;_,(s) is the projection (optimal estimation) of
Jt—s(s) based on the measurements {gx (0), - ,Jn(t —
N)gn-1(t = (N =1)),-- , G—(s—1)(s = 1) }.

(N =1)),- ,mo(t)}.
3.3 Optimal estimator z(t|t)
In order to calculate the optimal estimator with the in-
novation sequence as in the above subsection, we firstly
give the following definition.
Definition 2  Given time instant ¢,
For0 <s<t—N,let
P(s) = E[z(s, N)

be the covariance matrix of the state estimation error,
where

#'(s,N)] @31

Z(s,N) = x(s) — (s, N), (32)

and (s, N) is the projection of state x(s) onto the linear
space generated by

L{gn(0),--- ,gn(s — 1)} =
L{nn(0),--- ,nn(s—1)}. (33)

For s >t— N, denote the covariance matrix of the state
estimation error

Pi—s(s) £ EE(s,t — s)T'(s,t —s)], (34
where

Z(s,t —s) = x(s) —

and Z (s, t— s) is the projection of state x(s) onto the linear
space generated by

j:(sat_s)v (35)

L{gn(0), -+, gn(t = N);
gn—1(t = (N =1)),  Ge—(s—1)(s — 1)} =
E{nN(O)v anN(t_N);

N1t = (N =1)),-- m—(e-p)(s =1} (36)

With the definition, we get the solution to the optimal
filtering problem by applying the reorganized innovation
sequence and the Riccati equations.

Theorem 1  Consider the system (1)-(2) with the
bounded random measurement delays, and the time-delay
probability «; (0 < ¢ < N), the optimal estimator Z(¢[t) is
given by

i(t]t) =[I, — Pr(t)Hy(£)Qy, (t) Ho(t)]a(t, 1)+

Py (t) Hg (1)@, (1)30(1), (37)

where Z(t, 1) is as in Definition 2, which is computed by
the following iteration:

F(s+1,t—s) =
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Dy_s(s)T(s,t — (s — 1)) + Ki—s(8)Gi—s(s), (38)

where
By o(s) =P — Ky o(s)Hy—o(s), (39)
Ky s(s) = PP o1 (s)Hi_ ()@ (s),  (40)
mes(s) =

diag{AgHS(s)H', AyHS(s)H',- -,
A HS(s)H'}+
diag{agH Pi—s41(s)H',ai HP,— (s +1)H',

cap JHP(HH'} + Ri_s(s), (41)
with the error covariance equation is
Pis(s+1) =PP,_(,_1)(s)P' —
Kt*S(S)Qm—s (S)Kéfs(s) + FQF/7
(42)

with the initial values Py (0) = Py. When s <t — N, we
let ¢t — s = N in the above, then the estimator is obtalned
corresponding to the above.

Proof i(t|t) is the projection of the state x(t)
onto the linear space spanned by {nn(0),--- ,nn(t —
N); ny-1(t — (N —1)),--- ,m0(t)}. Since this sequence
is orthogonal, the estimator is calculated by using the pro-
jection formula as:

E(t[t) =P{x()lnn(0), - N (t = N);
N1t = (N = 1)), ,m(t = 1)}+
P{a(t)[no(t)} =
&(t, 1) + Bz ()no (4)]Elmo (¢)no ()]~ no(t).
(43)
From Egs.(30) and (20), we have
10(t) =7o(t) — o(t) =
Ho(t)z(t) — Ho(t)#(t, 1) +vo(t) =
ao(t)Hz(t) — agHE(t, 1) + ap(t)v(t). (44)
According to Eq.(35) and the orthogonality, we have
Z(t,1)LZ(t,1) and z(t) Lv(t), then substituting Eq.(44)
into Eq.(43), we obtain
Efz(t)n5()]
Elz(t)(ao(t)Hz(t) — agHi(t, 1) + ao(t)u(t))'] =
)(ao(t)

Efz(t)(

aog(t)v(t))'] =

Elao(t)z(t)2’(t)H'] — aoElz(t)z’ (t)H']+
aoE[z(t)z' (t,1)H'] =

aoB[E(t, 1) (t, 1)H'] = ag Py (t)H' = Py(t)H}(t).

45)
By the Lemma 1 and 2, we obtain the covariance of inno-
vation 7o (t) as

Qo (t) = Elno(t)no(t)] =

El(ao(t)Hx(t) — agHz(t,1) + ao(t)v(t)
(ag(t)Hz(t) — agHZ(t,1) + ap(t)v(t))] =
E[((ap(t)H — aoH)x(t) + agHZ(t, 1)+
ao(t)v(t))((ao(t)H — aoH)x(t)+
agHZ(t,1) + aop(t)v(t))'] =

—agH)x(t)2'(t)(ao(t)H — aoH)']+
— aoH)z(t)# (t,1)aoH']+
- ZLQH)/]"F

E[(ao(t)H
E[(ao(t)H
ElaoHZ(t, 1)z (t)(ao(t)H
asE[H#(t, 1) (t, 1) H']+
Elao(t)o()0' (Hao(t)] =
AgHE[z(t)x' (t)|H' +a2HP,(t)H' 4+ agR =
AgHS(t)H' +aiHP,(t)H' + aoR. (46)
Substituting the Eqgs.(45) and (46) into Eq.(43), we obtain
Eq.(37).
For the case of s >t — N,
T(s+1,t—s)=
Pla(s + Dlnn (), nn(t = N):
IN-1(t = (N = 1)), ym—s(s)} =
Si(s,t — s+ 1)+ Proj{z(s + 1)|n—s(s)} =
Di(s,t — s+ 1) + PProj{z(s)|m—s(s)}. 47)

With a similar discussion as above,

P{z(s)[ne—s(s)} =

P ($)H{_(5)Qp" (s)m—s(s).  (48)
Substituting Eqgs.(48)(29)-(30) into Eq.(47), we obtain
T(s+1,t—s) =

Pi(s,t —s+ 1)+

BPi—si1(8)H{_()Qn  (8)me—s(5) =

Pi(s,t — s+ 1)+ Ki—s(8)(Je—s(s)—

Hy_y(s)i(s,t —s+1) =

Dy (s)T(s,t —s+ 1)+ Ki_o(8)Gr—s(s), (49)
where K (s) = ®P_o1(s)H]_(5)Q; . (s) with

B 5(s) = & — Ki—s(s)Hy—s(5). Qy, .(s) is the inno-
vation covariance as shown in the following:

Qntﬂ-(s) = E[m—s(S)??Ls(S)] =
— Gr—s(s ))(Qt s(s)

E[(g1—s(s) —1_s(5))] =
E[(Hi-s(s)z(s) — Hi—s(s)(s,t — s + 1)+
Vt—s(8)) (Hi—s(s)z ( ) H,_ s(8)x(s,t —s+1)+
ve—s(s))] =
E[(Hy—s(5) — Hi—s(s))2(s)" (s) (Hy—s(5)—
Hyo(5))]+ E[(Hi—s(s)—
Hyo(s)z(s)¥ (s,t — s + 1) Hy_(s)]+
E[H;s(s)%(s,t — s + 1)’ (s) (Hy—s(5)—

)
Hi—s(5))'] + E[He—s(s)2(s,t — s+ 1)
i'(s,t — s+ 1)H]_(s)] + Ri_s(s) =
diag{ AgHE[z(s)z'(s)|H', Ay HE[x(s)z'(s)|H’,
- A HE[z(s)2' (s)| H' }+

diag{agH Pi—s41(s)H',aiHP; (s + 1) H',

L ap JHP(t)H'} + Ry—(s) =
diag{AgHS(s)H', AyHS(s)H’

Ay HS(s)H'}+
diag{agHP;_sy1(s)H',a3HP;_4(s + 1)H’,
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caz JHP(t)H'} + Ry_(s). (50)
From Eq.(35), we have
Zs+Lt—s)=a(s+1)—a(s+1,t—s) =
Pi(s,t — )+ Tw(s) — Ki_s(s)ne—s(s), (51)

since Z(s, t — s) is uncorrelated with w(s), by Egs.(51) and
(50), we obtain the error covariance
P _o(s+1)=E[Z(s+1,t—5)F (s +1,t —s)] =
PP s41(5)0 — Ki—s(5)Qn,_, () K _(s) + T'QI,
(52)
thus the recursive equation (42) is obtained.
Inthe case of 0 < s <t— N,wejustlett —s = N in
the above, then following the similar way, we obtain

(s +1,N) =P{z(s + 1)|nn(0), - ,nn(s)} =
Pi(s, N) +P{a(s + 1)|nn(s)} =
Pi(s,N) + Kn(s)nn(s), (53)
then Eqgs.(39)—(42) can be easily derived fort — s = N.

Remark 3  With the assumption of no packet loss, we
propose the measurement model in which the received mea-
surement is correlated with previous measurement. Thus our
estimator just uses the probabilities of the delay at each time,
and the obtained estimator is concerned with the state covari-
ance matrix (15), this is the mainly different from [18].

4 Simulation example

In this section, we present a simple example to illus-
trate the previous theoretical results. Consider the system
(1)—(2) with the following specifications:

0.5 0.05 1
?= [ 0 0.86}  I'= [0.5

and the white noises w(t) and v(t) with mean zero and
their covariances are ) = 1 and R = 1, respectively. Since
&k,; are mutually independent scalar binary distributed ran-
dom variables with the known distributions, we assume
that the maximal random time delay N = 2, thus the
probability of received packet is ag + a1 + az = 1.
Setting g = 0.8, a3 = 0.1, @ = 0.1 and the ini-
tial state value 2(0) = [0 0], as the initial conditions,
we calculate the estimator by using Theorem 1 proposed
in Section 3, Fig.1 gives the trace of the estimation er-
ror covariance by the proposed algorithm, and shows the
comparison with the trace of estimation error covariance
for the standard Kalman filtering assuming that there is
no time delay. It can be seen that the proposed estima-
tor in the paper has a better performance, and also the
steady-state estimation error variance matrices is obtained
as P — 1.1034 0.58666

0.58666 0.3363 |
Z(t[t) is shown in Fig.2 and Fig.3. It is also shown that the
proposed estimation algorithm effectively tracks the states
of the system.

Fig.4 shows the performance comparison of the sum
of estimation error covariance in this paper and [18]. We
see that the method in our paper is not as good as the opti-
mal method in [18]. This is understandable because in the
optimal method of [18] the time stamps are exactly known
at each time, and it uses much more information in estima-
tion than the probabilities of the delay we use in our paper.

},H:[Q 1],

The optimal estimator

tr(P)

Fig. 1

l .8 T T T T
1.6
i

1.2
08 f
04 Our presented method

: — Standard Kalman filtering
0.0 . 1 Il | 1

0 20 40 60 80

t

The comparison of the trace of estimation error
covariance

100

-2 — Actual state value x,

<<<<<< Estimation state value &,
1 1 1

0 20 40 60
t

80

100

Fig. 2 The first state component z1 (¢) and the

estimator &1 (¢]t)

t

“LOT Y —— Actual state value X,
------ Estimation state value &,
-2.0 : ' . '
0 20 40 60 80

100

Fig. 3 The second state component x(¢) and the

Sum of estimation error covariance

estimator &2 (¢|t)

40 — Optimal method in [17]
------ Suboptimal method in [17]

--=+ Our presented method /

Fig. 4 The comparison of the sum of estimation error

covariance with [18]
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5 Conclusions

In this paper, for discrete-time stochastic linear sys-
tems with bounded random measurement delays, the op-
timal estimator is proposed. Firstly, we present a novel
measurement model by using time stamps which are corre-
lated with the previous time. The model ensures that each
measurement is received and received only once, which is
more precisely to describe the actual communication pro-
tocols. Then by applying the reorganized innovation anal-
ysis approach, the estimator is derived by solving a set of
recursive discrete-time Riccati equations with the known
probabilities of the delay. Our estimator can be computed
off-line as it only depends on the data arrival probability at
each time instant.
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