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Control design for multi-variable fuzzy systems with
application to parallel hybrid electric vehicles
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Abstract: This paper studies the fuzzy logic controller (FLC) design for multi-variable fuzzy systems based on the
semi-tensor product of matrices, and presents several new results. A new expression of fuzzy rules for multi-variable FLC
is introduced, which is very convenient to use in fuzzy logic inference. Based on the new expression of fuzzy rules, the
complex fuzzy reasoning is converted into simple algebraic equations by constructing structural matrices of the FLC. A
simulation example is given to demonstrate the effectiveness of the proposed approach. A set of least in-degree controls
that remove possible fabricated variables are constructed, and an algorithm is given to design the least in-degree controls
when the control rules are incomplete. Principles are proposed for dealing with the inconsistency of fuzzy control rules.
Finally, the results obtained in this paper are applied to the design of fuzzy controller for energy management and control

strategy of parallel hybrid electric vehicles (PHEV).
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1 Introduction

The fuzzy logic control techniques were originally in-
troduced by Zadeh!'-?! as a means of both collecting hu-
man knowledge or experience and dealing with uncertain-
ties in the control process. Since then, the fuzzy logic con-
trol has attracted a great deal of attention and a lot of works
have been published in the field. The fuzzy logic control
has proved to be a successful control approach to many
complex nonlinear systems or even nonanalytic systems!®!,
However, it is difficult to infer the proper control input for
a multi-variable system since the dimension of its relation
matrix is very large. The high dimensionality of the rela-
tion matrix might lead to not only computational difficul-
ties but also memory overload when the physical control
system is implemented on a computer. To solve this prob-
lem, Gupta et al. proposed a fuzzy control algorithm by
which the multi-variable fuzzy system is decomposed into
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a set of one-dimensional systems. The decomposition of
control rules is preferable since it alleviates the complexity
of the problem.

Recently, the semi-tensor product (STP) of matrices
was proposed in [5], and up to now, it has been widely ap-
plied in many fields and lots of fundamental results have
been presented~'4. By this method, it is very convenient
to convert a logic expression into an algebraic form by con-
structing its structural matrix. It is noted that the fuzzy
logic can be considered as an extended mix-valued logic
in which the truth-values are the values of memberships of
all the elements in a fuzzy set, and by the STP method, the
complex reasoning process can be converted into a prob-
lem of solving a set of algebraic equations, which greatly
simplifies the process of logical reasoning!®8!. In [6], the
authors considered the adequate sets and the normal forms
of general logical mappings, and several interesting results
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were obtained for the fuzzy logic and the resolution of
fuzzy relation equations by STP.

In this paper, we deal with the fuzzy logic controller
(FLC) analysis and design for multi-input multi-output
fuzzy systems based on the semi-tensor product. The main
contributions of this paper are as follows: i) A new expres-
sion of fuzzy control rules for multi-variable FLC is ob-
tained by STP. By the new expression, the complex fuzzy
reasoning is converted into algebraic equations by con-
structing structural matrices of the FLC. Then a new frame-
work is established to study multi-variable FLC. Com-
pared with the existing fuzzy inference, the algebraic ex-
pression of fuzzy reasoning is easier. Simulation results
demonstrate the effectiveness of the proposed method. ii)
Through the analysis of the structural matrices of the FLC,
a set of least in-degree fuzzy controls can be obtain. More-
over, a least in-degree algorithm is presented for the con-
troller design when the control rules are incomplete. iii)
When the fuzzy rules are not consistent, some principles
are proposed to deal with fuzzy controls with inconsis-
tency.

The rest of the paper is organized as follows. Section 2
presents some necessary preliminaries on the semi-tensor
product of matrices and the expression of logical function
and logical variables. We present the main results of this
paper in Section 3. In Section 4, the results obtained in
this paper are applied to the design of fuzzy controller for
energy management and control strategy of parallel hybrid
electric vehicles (PHEV), which is followed by the conclu-
sion in Section 5.

2 Preliminaries
First, we introduce some notations, which will be used
in this paper.

* &} : the i-th column of the identity matrix Ij.

« Ap:={6i|i=1,2,-- ,k}. Especially, A :== A,.

* D := {1, 0}. To use matrix expression, ‘1’ and ‘0’
can be expressed with the following vectors, respectively:

1~63,0n~d3.
k—2 k-3
* Dy ={1,——,——,---,0}, k> 2.
e }

* A matrix L € R™*" is called a logical matrix if the
columns of L, denoted by col(L), are of the form of (52,
that is, col(L) C A,,.

* Denote by L, «, the set of n x r logical matrices. If
L € L, «,, by definition, it can be expressed as

L=[6062 . 6] = 8,[ir g -+ i)

Similarly, we identify each k-valued logical value with
a vector as follows:
P
k-1
Then, Dy ~ Ay, where p ~ g denotes the logic equiva-
lence of p and q.
In the following, we recall some definitions and basic
properties about the semi-tensor product'>-°,

Definition 1  The semi-tensor product of two ma-
trices A € R™*" and B € RP*1 is defined as

~OLi=1,2, k.

AxB=(A®12)(B®I2), (1)

where « = lem(n, p) is the least common multiple of n
and p, and ® is the Kronecker product.

Remark 1 It is noted that when n = p, the STP of
A and B becomes the conventional matrix product. Hence, the
STP is a generalization of the conventional matrix product and
remains all the fundamental properties of the latter. Because of
this, we can omit the sign ‘x’ without confusion.

Definition2 A swap matrix W, ,,j is an mnxmn
matrix, defined as follows: Its rows and columns are la-
beled by double index (i, j), the columns are arranged by
the ordered multi-index Id(i, j; m, n), and the rows are ar-
ranged by the ordered multi-index Id(j, i; n, m). Then the
elements at position [(1, J), (4, 7)] is

_ gl _ b I=diadJ =,
W(r,J9)(i,5) = %5 = 0, others.

2

Lemmal LetX € R®*andY € R™ be column

vectors, then
Wi m XY =Y X.

Lemma2 LetX; € R", ¢=1,2,---,k be col-
umn vectors, then
Unyngne s @Winy g1 X1 - Xeo1 Xy X1 - X =
Xy Xy 1 X1 Xy - - X
Let x; € Dy, @ = 1,---,nand z; € Ds;, j =
1,--- ,m. Assume that a logic mapping
F:Dy, x---xDy, —Dg, x---xDs 3)

can be expressed as

Z1 = fl(xlax27" : 71.7’1)7
2o = fa(x1, 20, ,T0),

4)
Zm = fm(xhx%’ t 7xn)7

where fj : Dy, X -+ XDy, — Dy, j=1,---,m.
Lemma 3 Any logical function z = F(x1,x2,
-, Zp) can be uniquely expressed into the multi-linear
form of

Z:F($1,$2,"' 7$n) :MF [Z Zi, (5)

=1
where Mr € Ly« is called the structural matrix of F,
z2€ Ay, 8=5189 Sy, and k = kiko - k.

Lemma 4  Consider Eq.(5). Forany 1 < ¢ < n,
we split MpW ,_,  into k; equal-size blocks as

koo TT k|
[Blky (MW oy ), ++, Blly,(MpW .,
oo TT Kl ko, TT o)

If all the blocks are the same, then z; is a fabri-
cated variable. Moreover, z can be replaced by z =
Mll;vl‘l o Ti—1T41 0 T where

Mp = Blky(MpW . )=MgW .., 6},
[k, TT kp) ki, TT ko]

p=1 p=1

and Blk,(M) denotes the g-th block of the matrix M.
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3 Main results
This section studies the controller design of multi-
variable FLC via STP, and presents the main results.
Consider the linguistic control rules of the multi-
variable fuzzy system
RU:IF 2y is AL,--- Jand z, is Aﬁl,
THEN y; is B!,--- Jandy,,is B!,  (6)
where z; and y; are linguistic variables representing the
process state and the control variable, respectively. R de-

notes the [-th fuzzy inference rule, where [ € {1,--- , L},
and L is the number of fuzzy rules. A;, i = 1,---,n
and B;, j = 1,---,m are the normalized fuzzy set of

linguistic values on universes of discourse X; and Y, re-

spectively.

3.1 Controller design of multi-variable fuzzy sys-
tem

The fuzzy control rules considered in this subsection
are both consistent and correct. Next, we study the fuzzy
control rules and the fuzzy reasoning via STP.

For the n inputs and m outputs fuzzy controller (6), let
the number of the linguistic values of x; and y; be, k; and
s; respectively, that is

Ty 6Dk}i7 Ai = {A117 714,]?}7 1= 1) , 1,

Yj EDSJ'7 Bj :{B]l7 R B]SJ}7 ]:17 , M.

We identify
Ay B e A
Bl ~ 605 - Bl o~ 6l
where, i1 = 1,--- k15 -5 i = 1,5+ Jkpy J1 =
1,---,s1; -+ jm = 1,---,5,. Then, rule (6) can be
written as
R':IF =, :5}?1, -« , and z,, :6;;”;,
THEN yy =03}, ---, and y, = 037, (7)

Using the vector form of logical variables, we express the
fuzzy controller as

y1 = Mz,
Y2 = MQJ?,
) (®)
Ym = Mpx,
and
y= Mz, 9)
where y := X Yj, T 1= " ri, Mj € Lg,xp, J = 1,
j=1 i=1
-,m and col;(M) = col;(M;) x --- x col;(M,),

where col; (M) denotes the i-th column of matrix M. For
N e
cee X 52”; = 0i, y; = 0%, we have col;(M;) = 6. If
the fuzzy rules are complete, all the columns of M;, j =
1,--- ,m can be obtained. Then, we have the following
result.

P = iz, si r =
rules ! and y; M;z, since

Theorem 1 The structural matrices M;, j =
1,---,;m and M of the fuzzy controller can be uniquely
determined, if and only if the fuzzy rules of the fuzzy con-
troller are complete.

Proof Sufficiency. For the fuzzy rules (7), let x =
r1 X -+ X Zy,. Assume the fuzzy rules of the fuzzy con-
troller are complete, that is, there are k fuzzy rules. For
the I-th, [ = 1,--- ,k, fuzzy rule, we have z = 4 and
Y = 521 Then the i-th column of M7 can be obtained as

col; (M) = 67t (10)
Repeating this procedure, one can obtain all the columns
of M if the fuzzy rules are complete. Similarly, all
My, .-+, M,, and M can be determined.

Necessity. If the structural matrices M; and M of
the fuzzy controller are uniquely determined, then all the
columns of M; and M are uniquely determined. Because
one column of M can generate one fuzzy rule, one can ob-
tain k fuzzy rules from k columns of M; or M, that is, the
fuzzy rules are complete.

Remark 2 If the rules are not complete, some
columns of M; and M can be determined. In this case, the
model is not unique. In addition, uncertain column(s) of M;
and M can be chosen arbitrarily.

Now we give the following example of binary distil-
lation column control in computer simulation to verify the
effectiveness of this new method.

Example 1 Consider the two-input-two-output
(TITO) Takagi-Sugeno fuzzy controller!!'>!. According to
the shapes of membership function and the rules table!!>,
we identify

e1,71,e2,79: P~ 63, P~ d3,

Auy :aey + bry +my(ces + dry) ~ 8},
ko(aey + bry +my(cex + drg)) ~ 67,
kg(aei+bri+mi(cea+dra)) ~ 83, 0 ~ 81,

Aug :mo(ae; + bry) + ceq + dro ~ 0},
ko[ma(aey + bry) + ces + dra] ~ 62,
kg[(ma(ae1+bri)+cea+drs] ~ 63, 0 ~ 7.
By the STP, we obtain
Auj; = Mjeiriears, j =1,2, (11)

where My = 64 =[1221444444441331]and
My = 04[1441244324431441]. If the values
of the inputs of the fuzzy controller are known, the output
changes of the fuzzy controller can be obtained through
Eq.(11). Here the widely used centroid defuzzifier is em-
ployed to calculate the output changes of the fuzzy con-
troller. It is obviously that the proposed method is easer to
handle than the conventional method used in [15].

Here, we use the Wood-Berry model as the con-
trolled object to simulate under the proposed fuzzy control
method and the existing fuzzy control method. The model
is Wood and Berry empirical model of a pilot-scale dis-
tillation column that is used to separate a methanol-water
mixture!'6]:

12.8¢7% —18.9¢73¢
|:XD(S):| _ | 167s+1 21s+1 [R(s)}
Xg(s) 6.6e~ 75 —19.4e73s | |S(s) |’

109s+1 144s+1
12)
where Xp(s) and Xp(s) are the overhead and bottom
compositions of methanol, respectively; R(s) is the reflux
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flow rate and S is the steam flow rate. Fig.1 shows the re-
sponses of the controllers system with the fuzzy controller
under the proposed method and the conventional method.
The simulation results illustrate the effectiveness of the
proposed method of fuzzy controller design. The param-
eter values for the fuzzy controller are L = 0.5, k, =
1.5200, kg = 9.5, my = 1476, my = 0.34, a =
0.0104, b = 0.45, ¢ = —0.0065, d = —0.0875.

1.0 T T T
— 08 — STP method -
= Conventional method
£ 06f .
5
g 041 .
2
»n 0.2 T

0.0 1 1 1

0 50 100 150 200
t/s

N =

3

& i

=

o

g i

L

ES — STP Method |

Y ook e Conventional Method
100 150 200
t/s

Fig. 1 Simulated performance comparisons of Wood-Berry
model under TITO fuzzy control with the STP method
and the convention method

3.2 Least in-degree control design

In this section, we consider the least in-degree control,
and present a least in-degree algorithm for the fuzzy con-
troller design when the fuzzy control rules are incomplete.
The fuzzy control rules considered are also in accordance
with consistency and correctness. We first define an inci-
dence matrix to express the dynamic connection between
the inputs and the outputs for a fuzzy controller.

Definition 3  Consider a fuzzy controller with m
controls and n input variables. An m X n matrix, J =
(rj, ;) € R™*™ is called its incidence matrix, if

e 1, y; depends on z;,
7% 771 0, otherwise.

Considerfuzzy controllers (7) and (8), the in-degree
of the fuzzy controller output y;, denoted by d(y;), is the
number of fuzzy controller inputs which can influence y;
directly. From the incidence matrix of the fuzzy controller,
we have

k=1

Definition 4 A set of controllers (8) is said to be
a feasible set of controllers with respect to rule (7), if rule
(7) satisfies Eq.(8).

Definition 5 A feasible set of controllers (8) with
the in-degree d*(y;), j = 1,--- ,m, is called a least in-
degree feasible set, if for any other realization with in-
degree d(y;), j = 1,--- ,m, we have

Remark 3  From the above definition, we know that
all the equations of a least in-degree feasible set of controls
contain no fabricated variables.

We can apply Lemma 4 to remove fabricated variables
and obtain a least in-degree feasible set of controls when
the fuzzy rules are complete. Since the structural matrix
contains uncertain columns when the fuzzy rules are in-
complete, the feasible set of controls may not be unique.
Next, we will search for a particular feasible set, that is a
least in-degree feasible set of controls. Assume a set of
incomplete rules as

R':1Fay =6},
THEN 1y, :5§1,~-- ,and Yy, :512,
le {15 vt}7 (]4)

in

,and z, = ;"

where R! denotes the I-th fuzzy control rule, ¢ is the num-
ber of control rules, and ¢t < k. It is obvious that one needs
much less data to obtain a set of least in-degree controls.
Moreover, it is reasonable to assume a real practical fuzzy
controller to be of least in-degree. In the following, we
consider how to get a set of least in-degree controls.

Consider the controls y; = Mj;x. Using this set of
fuzzy rules, some columns of the structural matrix M; can
be determined. For instance,

szésj[*...*cjl *“-*...*Cjk*”.*]? (15)
where x stands for the uncertain columns. Eq.(15) is called
the uncertain structural matrix. Let
Mj,i = MJW i—1
(ki 131 kp]

=1, ,n.

Then split it into k; equal blocks as

M= [M}; M?; - Mj’f’;l].

According to Lemma 4, we have the following result.

Proposition 1  The fuzzy control y; has an alge-
braic form which is independent of x;, if and only if

1 _ a2 ki
Mj,; = Mj,; =--- = Mj; (16)
has a solution for uncertain elements.

Proof Sufficiency. Assume Eq.(16) holds. By
Lemma 4, the fuzzy control y; has an algebraic form which
is independent of z;.

Necessity. Assume the fuzzy control y; is independent
of x;, then y; remains invariant whenever z; = 6,1, q =
1, ce ,kl‘. Thus

MW

5% ::MW i—1 5k17
O ’ .

[k, TT K]
which implies that Eq.(16) holds. Thus, the proof is com-
pleted.

Now, we give an algorithm to produce a least in-degree
realization.
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Algorithm 1  The process to produce a least in-
degree realization is carried out based on the following
steps.

Step 1  For each component-wise algebraic equa-
tion of fuzzy controls, using the incomplete rules to iden-
tify some columns of the structural matrix M; as Eq.(15).
Define the setas P; = {1,2,--- ,n},i=1,2,--- ,n.

Step2 Wheni = 1, consider x1, we construct

M; = [Mj M} --- M| (17)
to check whether
1 _ 2 _ _ k
M} =M} == M} (18)

has a solution or not. If it has a solution, we can ascertain
some uncertain columns and update the fuzzy control as

M} K
Y; = G
/ T =2

Then go to the next step.

Step 3(: < n) Check whether Eq.(16) has a solu-
tion. If it does, ascertain some uncertain columns and up-
date the fuzzy control to

n
Y = Mjlﬂ» X T X Xk (19)
1<k<i—1, keP\{i}  k=i+1

In the following, we give an example to illustrate this
algorithm.

Example 2  Consider a fuzzy controller, which has
4 inputs: x1,x3 € Da, 29,24 € D3 and 2 outputs (con-
trols): y1 € D3, y2 € Dy.

In the vector form, we assume that there are a set of
control rules as:

IF 2y = 0}, my = 5§7 T3 = 531,, and x4 = 04, THEN
y1 = 03, and yo = 03;

IF r = (55, Tg = 5%, xr3 = 6%, and Ty = (5%, THEN
Y1 = 5%, and yo = 52;

IF r1 = 6%, To = (Sg, T3 = 5%, and Ty = 5%, THEN
y1 = 03, and y = 0;

IF r1 = 55, To = (5%7 T3 = 5%, and Ty = (%, THEN
y1 = 03, and y» = 0f;

IF 2y = 62, 1y = 557 r3 =01, and 14 = 52, THEN
Y1 = (Sg, and Y2 = 53,

IF r1 = (Sg, Ty = 5?7 xr3 = 6%, and Ty = (Sg, THEN
y1 = 03, and yo = 5.

Now, we would like to get a least in-degree feasible set
of controls. Some columns of M; and M5 can be identified
as

My =03[2 % %% *x %k x*%%x2 k% *x % x % x 1
* 1k xkkx x3% &k *k x x * 3 x],

My =042 % x % *x % *x kx4 % * % x % x % 1
* 3k ok ok ok ok k2K Kk Kk ok Kk kx4 K],

where ‘x’ denotes the unknown element. Now, we check
whether 1 can be a fabricated variable of y;. Split M into
two equal blocks as My = [M{ M2, and let M} = M?
which yields the solution as

Ml = ME=063[21 xH,xk: x324x: xkx*31].

Hence, the control can be simplified as y; = Ml]'x2$3l'4.
Now, we check xo. Splitting M into three equal blocks as
(MY M2 M]3 and letting M{! = M{? = M]3, it can
be updated as

Mt =MP=MP=6[213231],

which satisfies y; = M1111'3934. Next, check x5 and x4.
Since MWy 3 = 63(2 21 3 3 1], 3 and x4 are not
fabricated variables. Finally, we obtain

Y1 :53[2 2133 1].%‘35(}4.

Similarly, we have yo = 04[2 4 3 4 2 1|zgay.
Hence, the least in-degree realization can finally be ob-
tained as

=03/221331 ,
{yl 3[ ]333564 (20)

Y2 :54[2 4342 1]1‘3584.

3.3 Inconsistency of fuzzy rules

In the previous parts, the fuzzy control rules are in ac-
cordance with consistency and correctness. In this subsec-
tion, some basic ideas are proposed to deal with inconsis-
tency of rules.

If there are conflicting data caused by measurement
or others, in extracting fuzzy rules there may be the fuzzy
rules which are inconsistent. For example, it is obtained
from the data that

COli(Ml) = (5511, s

COli(Ml) =08 ...

817

,coly (M) = 05™, a times,

) COli (M'rn) - 62::7 b times,

where the number of p, = qr, k= 1,--- ,m are less than
m.

1) If a > b, then ignore %! and let col;(M;) =
5};]?, i=1--,8,j=1,--,m.

2) If a < b, then ignore 61¢ and let col;(M;) =

i=1, 85, 5 =1, ,m.
3) If a =~ b, then more data may be need or (when
data are already enough) it is concluded the fuzzy rules are
not acceptable so that col;(M;) can be considered as error
columns and set col;(M) = x, i.e., thinking of them as
uncertain columns.

We would like to mention that, if a fuzzy controller
is constructed and later on there are new rules via addi-
tional data, the controller could be updated in the following
way: If the k-th control verifies new rules, it remains avail-
able. Otherwise, new identified columns could be added to
the existing set and used to construct new structural matrix
Mj,. Then the new k-th control can be updated.

4 Application to PHEV

In the following, we use the proposed approach in the
design of fuzzy controller based on energy management
and control strategy of PHEV.

From the membership functions for input variables!!”!,
we can get that the variable Pg,iver 1S represented by the
linguistic terms ‘ normal’ and ‘high’, SOC is represented
by the linguistic terms ‘too low’, ‘low’, ‘normal’ and ‘too
high’, wgy is represented by the linguistic terms ‘ low’,
‘optimal” and ‘high’.

We identify

04

S]’7
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SOC ~ 1, Pariver ~ T2, WEM ~ T3;

Pyen ~ y1, scale factor ~ y»;

too low ~ 6}, low ~ 07,

normal ~ &3, too high ~ §3;

normal ~ &3, high ~ 62; 21
low ~ &3, optimal ~ 62, high ~ d5;

0kW ~ 82, 5kW ~ 62, 10kW ~ 42,
15kW ~ 63, P, ~ 82

1~ 63,0~ 62

enxnax

Then, the fuzzy rules!'”! can be expressed into the follow-
ing form:

IFz, = 62, Ty = 5%, T3 = 5%, THEN y; = 551, Yo = 5%;
IF2, = 03, ©3 = 03, 3 = 62, THENy; = 6%, yp = 63;
IFa; = 62, @y = 6}, 23 = 63, THENy; = 6}, s = 61
IFay =02, 25 = 63, w3 = 64, THEN y; = 6%, yy = 61
IFz, = 63, To = 53, T3 = 55, THENy; = 6;;, Yo = 5%;
IFz; = 52, Lo = 5%, T3 = 63, THEN y;, = 5;, Yo = 5%;
IF2, =03, w3 = 83, 3 = 63, THENy; = 63, yp = 63;
IFa; =03, 25 = 63, w3 = 64, THEN y; = 6%, yp = 61
IFz; = 62, To = 55, T3 = 531,, THEN y; = (5;;, Yo = 5%;
IFz; = 52’, Lo = 5%, T3 = 53, THENy;, = 551, Yo = 5%;
IF2, =03, x3 = 03, 3 = 65, THENy; = 63, yo = 63;
IF2y = 62, x5 = 0}, 3 = 65, THENy; = 62, y3 = 64
IF2y = 62, x5 = 0}, x5 = 62, THENy; = 62, yp = 61
IF2, = 03, x5 = 03, 3 = 65, THENy; = 62, y = 6a;
IF2, =0}, x2 = 03, 3 = 63, THENy; = 62, yp = 63;
IF2; = 6}, x5 = 0}, 23 = 62, THENy; = 62, y3 = 62;
IRz =0}, o5 = 63, w3 = 63, THEN yy = 62, yp = 63;
IFz, = 641, Ty = 53, T3 = 5%, THEN y; = 5?, Yo = 53;
IF2, =0}, x3 = 03, 3 = 62, THENy; = 62, yp = 63;
IF2; = 6L, x5 = 0}, 23 = 63, THENy; = 62, y3 = 62;
IFa; = 02, 15 = 63, w3 = 64, THEN y; = 6%, yp = 61
IFz, = 62, To = 53, T3 = 55, THEN y; = 6%, Yo = 5%;
IF2, = 03, x5 = 03, 3 = 65, THENy; = 62, yp = 63;
IFa, =03, 13 = 03, 3 = 62, THENy; = 63, y2 = 63.

From the above form of the fuzzy rules, we obtain

M; =65[555555244111131111111111],
My =62[222222111111111111111111],

then y; = Mix12923, Yo = Moxixo23.
Now using Lemma 4, we check whether x1, 22 or 23
is a fabricated variable of y;. It is easy to verify that

M,y =

65[555555:244111:131111:111111],

MWigy =05[55524413 11

1311
55511111111 1],

and

MlW[3}8]265[552 11111554 1
31115541111 1].
Obviously, we know 1, 2, 23 are not fabricated variables
of y1. Similarly, we check whether =1, x5 or x3 is a fabri-
cated variable of yo. Since

My =

5[222222:111111:111111:111111],

MyWpyg=06022211111111 1
22211111111 1],

and
MQW[s,S]:(SQ[QQl 111112211

111122111111],
xo and x3 are fabricated variables in the dynamical equa-
tion of 5. Set x5 = 83 and w3 = 5%, then
Yo = MQW[378]$3W[274].%2$1 = (52[2 11 l]xl.
Thus, the control can be simplified as yo = MJjxq, where
M} =632111].

Assume that SOC is low, Pgyiver 18 normal and wgyy is
optimal, we have y; = Mjz17v913 = M1620362 = 62
and yo = Mjz; = 62[2111]67 = 43, which means
Pyen = 15kW, and scale factor is 1.

5 Conclusion

In this paper, we have studied the analysis and design
of multi-variable fuzzy logic controller based on the semi-
tensor product of matrices. Using the basic properties of
STP, we convert the fuzzy control rules and fuzzy logic in-
ference into an algebraic form. When the control rules are
not enough, we obtain a reasonable set of control rules and
give a set of least in-degree rules by the structural matrix of
the fuzzy controller. we introduce the consistency of fuzzy
control rules, and propose some principles for dealing with
fuzzy controls with inconsistency. Examples are proved to
illustrate the effectiveness of the proposed method. More-
over, we have applied the approach in this paper to design
of the fuzzy controller for energy management and control
strategy of parallel hybrid vehicles.
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