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摘要:利用矩阵半张量积方法研究了多变量模糊系统模糊逻辑控制器的设计,并得到了若干新的结果.首先给出
了模糊规则新的表示形式,基于该表示形式,构造了模糊逻辑控制器的结构矩阵,将复杂的模糊推理转变成了简单
的代数等式. 然后当模糊控制规则不完全时,建立了最小入度控制算法;当模糊控制规则不一致时,给出了相应的
处理方法. 最后将得到的结果应用到并行混合电动汽车(PHEV)能量管理和控制策略的模糊控制器设计.
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Control design for multi-variable fuzzy systems with
application to parallel hybrid electric vehicles
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Abstract: This paper studies the fuzzy logic controller (FLC) design for multi-variable fuzzy systems based on the
semi-tensor product of matrices, and presents several new results. A new expression of fuzzy rules for multi-variable FLC
is introduced, which is very convenient to use in fuzzy logic inference. Based on the new expression of fuzzy rules, the
complex fuzzy reasoning is converted into simple algebraic equations by constructing structural matrices of the FLC. A
simulation example is given to demonstrate the effectiveness of the proposed approach. A set of least in-degree controls
that remove possible fabricated variables are constructed, and an algorithm is given to design the least in-degree controls
when the control rules are incomplete. Principles are proposed for dealing with the inconsistency of fuzzy control rules.
Finally, the results obtained in this paper are applied to the design of fuzzy controller for energy management and control
strategy of parallel hybrid electric vehicles (PHEV).
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1 Introduction
The fuzzy logic control techniques were originally in-

troduced by Zadeh[1–2] as a means of both collecting hu-
man knowledge or experience and dealing with uncertain-
ties in the control process. Since then, the fuzzy logic con-
trol has attracted a great deal of attention and a lot of works
have been published in the field. The fuzzy logic control
has proved to be a successful control approach to many
complex nonlinear systems or even nonanalytic systems[3].
However, it is difficult to infer the proper control input for
a multi-variable system since the dimension of its relation
matrix is very large. The high dimensionality of the rela-
tion matrix might lead to not only computational difficul-
ties but also memory overload when the physical control
system is implemented on a computer. To solve this prob-
lem, Gupta[4] et al. proposed a fuzzy control algorithm by
which the multi-variable fuzzy system is decomposed into

a set of one-dimensional systems. The decomposition of
control rules is preferable since it alleviates the complexity
of the problem.

Recently, the semi-tensor product (STP) of matrices
was proposed in [5], and up to now, it has been widely ap-
plied in many fields and lots of fundamental results have
been presented[5–14]. By this method, it is very convenient
to convert a logic expression into an algebraic form by con-
structing its structural matrix. It is noted that the fuzzy
logic can be considered as an extended mix-valued logic
in which the truth-values are the values of memberships of
all the elements in a fuzzy set, and by the STP method, the
complex reasoning process can be converted into a prob-
lem of solving a set of algebraic equations, which greatly
simplifies the process of logical reasoning[6–8]. In [6], the
authors considered the adequate sets and the normal forms
of general logical mappings, and several interesting results
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were obtained for the fuzzy logic and the resolution of
fuzzy relation equations by STP.

In this paper, we deal with the fuzzy logic controller
(FLC) analysis and design for multi-input multi-output
fuzzy systems based on the semi-tensor product. The main
contributions of this paper are as follows: i) A new expres-
sion of fuzzy control rules for multi-variable FLC is ob-
tained by STP. By the new expression, the complex fuzzy
reasoning is converted into algebraic equations by con-
structing structural matrices of the FLC. Then a new frame-
work is established to study multi-variable FLC. Com-
pared with the existing fuzzy inference, the algebraic ex-
pression of fuzzy reasoning is easier. Simulation results
demonstrate the effectiveness of the proposed method. ii)
Through the analysis of the structural matrices of the FLC,
a set of least in-degree fuzzy controls can be obtain. More-
over, a least in-degree algorithm is presented for the con-
troller design when the control rules are incomplete. iii)
When the fuzzy rules are not consistent, some principles
are proposed to deal with fuzzy controls with inconsis-
tency.

The rest of the paper is organized as follows. Section 2
presents some necessary preliminaries on the semi-tensor
product of matrices and the expression of logical function
and logical variables. We present the main results of this
paper in Section 3. In Section 4, the results obtained in
this paper are applied to the design of fuzzy controller for
energy management and control strategy of parallel hybrid
electric vehicles (PHEV), which is followed by the conclu-
sion in Section 5.

2 Preliminaries
First, we introduce some notations, which will be used

in this paper.

·δi
k: the i-th column of the identity matrix Ik.

·∆k := {δi
k|i = 1, 2, · · · , k}. Especially, ∆ := ∆2.

·D := {1, 0}. To use matrix expression, ‘1’ and ‘0’
can be expressed with the following vectors, respectively:

1 ∼ δ1
2 , 0 ∼ δ2

2 .

·Dk := {1,
k − 2
k − 1

,
k − 3
k − 1

, · · · , 0}, k > 2.

·A matrix L ∈ Rm×n is called a logical matrix if the
columns of L, denoted by col(L), are of the form of δk

n,
that is, col(L) ⊂ ∆n.

·Denote by Ln×r the set of n× r logical matrices. If
L ∈ Ln×r, by definition, it can be expressed as

L = [δi1
n δi2

n · · · δir
n ] := δn[i1 i2 · · · ir].

Similarly, we identify each k-valued logical value with
a vector as follows:

k − i

k − 1
∼ δi

k, i = 1, 2, · · · , k.

Then, Dk ∼ ∆k, where p ∼ q denotes the logic equiva-
lence of p and q.

In the following, we recall some definitions and basic
properties about the semi-tensor product[5–6].

Definition 1 The semi-tensor product of two ma-
trices A ∈ Rm×n and B ∈ Rp×q is defined as

AnB = (A⊗ Iα
n
)(B ⊗ Iα

p
), (1)

where α = lcm(n, p) is the least common multiple of n
and p, and ⊗ is the Kronecker product.

Remark 1 It is noted that when n = p, the STP of
A and B becomes the conventional matrix product. Hence, the
STP is a generalization of the conventional matrix product and
remains all the fundamental properties of the latter. Because of
this, we can omit the sign ‘n’ without confusion.

Definition 2 A swap matrix W[m,n] is an mn×mn
matrix, defined as follows: Its rows and columns are la-
beled by double index (i, j), the columns are arranged by
the ordered multi-index Id(i, j;m,n), and the rows are ar-
ranged by the ordered multi-index Id(j, i;n,m). Then the
elements at position [(I, J), (i, j)] is

w(I,J)(i,j) = δI,J
i,j =

{
1, I = i and J = j,

0, others.
(2)

Lemma 1 Let X ∈ Rn and Y ∈ Rm be column
vectors, then

W[n,m]XY = Y X.

Lemma 2 Let Xi ∈ Rni , i = 1, 2, · · · , k be col-
umn vectors, then

[In1n2···nt−1⊗W[nt,nt+1]]X1 · · ·Xt−1XtXt+1 · · ·Xk =
X1 · · ·Xt−1Xt+1Xt · · ·Xk.

Let xi ∈ Dki , i = 1, · · · , n and zj ∈ Dsj , j =
1, · · · ,m. Assume that a logic mapping

F : Dk1 × · · · × Dkn → Ds1 × · · · × Dsm (3)

can be expressed as




z1 = f1(x1, x2, · · · , xn),
z2 = f2(x1, x2, · · · , xn),

...
zm = fm(x1, x2, · · · , xn),

(4)

where fj : Dk1 × · · · × Dkn → Dsj , j = 1, · · · ,m.

Lemma 3 Any logical function z = F (x1, x2,
· · · , xn) can be uniquely expressed into the multi-linear
form of

z = F (x1, x2, · · · , xn) = MF

n
n

i=1
xi, (5)

where MF ∈ Ls×k is called the structural matrix of F ,
z ∈ ∆s, s = s1s2 · · · sm, and k = k1k2 · · · kn.

Lemma 4 Consider Eq.(5). For any 1 6 i 6 n,
we split MF W

[ki,
i−1Q
p=1

kp]
into ki equal-size blocks as

[Blk1(MF W
[ki,

i−1Q
p=1

kp]
), · · · , Blkki

(MF W
[ki,

i−1Q
p=1

kp]
)].

If all the blocks are the same, then xi is a fabri-
cated variable. Moreover, z can be replaced by z =
M ′

F x1 · · ·xi−1xi+1 · · ·xn, where

M ′
F = Blk1(MF W

[ki,
i−1Q
p=1

kp]
) = MF W

[ki,
i−1Q
p=1

kp]
δ1
ki

,

and Blkq(M) denotes the q-th block of the matrix M .
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3 Main results
This section studies the controller design of multi-

variable FLC via STP, and presents the main results.
Consider the linguistic control rules of the multi-

variable fuzzy system

Rl : IF x1 is Al
1, · · · , and xn is Al

n,
THEN y1 is Bl

1, · · · , and ym is Bl
m, (6)

where xi and yj are linguistic variables representing the
process state and the control variable, respectively. Rl de-
notes the l-th fuzzy inference rule, where l ∈ {1, · · · , L},
and L is the number of fuzzy rules. Ai, i = 1, · · · , n
and Bj , j = 1, · · · ,m are the normalized fuzzy set of
linguistic values on universes of discourse Xi and Yj , re-
spectively.

3.1 Controller design of multi-variable fuzzy sys-
tem

The fuzzy control rules considered in this subsection
are both consistent and correct. Next, we study the fuzzy
control rules and the fuzzy reasoning via STP.

For the n inputs and m outputs fuzzy controller (6), let
the number of the linguistic values of xi and yj be, ki and
sj respectively, that is

xi ∈ Dki , Ai = {A1
i , · · · , Aki

i }, i = 1, · · · , n,

yj ∈ Dsj
, Bj = {B1

j , · · · , B
sj

j }, j = 1, · · · ,m.

We identify

Ai1
1 ∼ δi1

k1
; · · · ; Ain

n ∼ δin

kn
,

Bj1
1 ∼ δj1

s1
; · · · ; Bjm

m ∼ δjm
sm

,

where, i1 = 1, · · · , k1; · · · ; in = 1, · · · , kn; j1 =
1, · · · , s1; · · · ; jm = 1, · · · , sm. Then, rule (6) can be
written as

Rl : IF x1 = δi1
k1

, · · · , and xn = δin

kn
,

THEN y1 = δj1
s1

, · · · , and ym = δjm
sm

. (7)
Using the vector form of logical variables, we express the
fuzzy controller as 




y1 = M1x,
y2 = M2x,

...
ym = Mmx,

(8)

and
y = Mx, (9)

where y :=
m
n

j=1
yj , x :=

n
n

i=1
xi, Mj ∈ Lsj×k, j = 1,

· · · ,m and coli(M) = coli(M1) n · · · n coli(Mn),
where coli(M) denotes the i-th column of matrix M . For

rules l and yj = Mjx, since x =
n
n

i=1
xi = δi1

k1
n

· · · n δin

kn
= δi

k, yj = δ
jj
sj , we have coli(Mj) = δ

jj
sj . If

the fuzzy rules are complete, all the columns of Mj , j =
1, · · · ,m can be obtained. Then, we have the following
result.

Theorem 1 The structural matrices Mj , j =
1, · · · ,m and M of the fuzzy controller can be uniquely
determined, if and only if the fuzzy rules of the fuzzy con-
troller are complete.

Proof Sufficiency. For the fuzzy rules (7), let x =
x1 n · · · n xn. Assume the fuzzy rules of the fuzzy con-
troller are complete, that is, there are k fuzzy rules. For
the l-th, l = 1, · · · , k, fuzzy rule, we have x = δi

k and
y1 = δj1

s1
. Then the i-th column of M1 can be obtained as

coli(M1) = δj1
s1

. (10)

Repeating this procedure, one can obtain all the columns
of M1 if the fuzzy rules are complete. Similarly, all
M2, · · · ,Mm and M can be determined.

Necessity. If the structural matrices Mi and M of
the fuzzy controller are uniquely determined, then all the
columns of Mi and M are uniquely determined. Because
one column of M can generate one fuzzy rule, one can ob-
tain k fuzzy rules from k columns of Mi or M , that is, the
fuzzy rules are complete.

Remark 2 If the rules are not complete, some
columns of Mi and M can be determined. In this case, the
model is not unique. In addition, uncertain column(s) of Mi

and M can be chosen arbitrarily.

Now we give the following example of binary distil-
lation column control in computer simulation to verify the
effectiveness of this new method.

Example 1 Consider the two-input-two-output
(TITO) Takagi-Sugeno fuzzy controller[15]. According to
the shapes of membership function and the rules table[15],
we identify

e1, r1, e2, r2 : P ∼ δ1
2 , P ∼ δ2

2 ,

∆u1 : ae1 + br1 + m1(ce2 + dr2) ∼ δ1
4 ,

kα(ae1 + br1 + m1(ce2 + dr2)) ∼ δ2
4 ,

kβ(ae1+br1+m1(ce2+dr2)) ∼ δ3
4 , 0 ∼ δ4

4 ,

∆u2 : m2(ae1 + br1) + ce2 + dr2 ∼ δ1
4 ,

kα[m2(ae1 + br1) + ce2 + dr2] ∼ δ2
4 ,

kβ [(m2(ae1+br1)+ce2+dr2] ∼ δ3
4 , 0 ∼ δ4

4 .

By the STP, we obtain

∆uj = Mje1r1e2r2, j = 1, 2, (11)

where M1 = δ4 = [1 2 2 1 4 4 4 4 4 4 4 4 1 3 3 1] and
M2 = δ4[1 4 4 1 2 4 4 3 2 4 4 3 1 4 4 1]. If the values
of the inputs of the fuzzy controller are known, the output
changes of the fuzzy controller can be obtained through
Eq.(11). Here the widely used centroid defuzzifier is em-
ployed to calculate the output changes of the fuzzy con-
troller. It is obviously that the proposed method is easer to
handle than the conventional method used in [15].

Here, we use the Wood-Berry model as the con-
trolled object to simulate under the proposed fuzzy control
method and the existing fuzzy control method. The model
is Wood and Berry empirical model of a pilot-scale dis-
tillation column that is used to separate a methanol-water
mixture[16]:

[
XD(s)
XB(s)

]
=




12.8e−s

16.7s + 1
−18.9e−3s

21s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1




[
R(s)
S(s)

]
,

(12)
where XD(s) and XB(s) are the overhead and bottom
compositions of methanol, respectively; R(s) is the reflux
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flow rate and S is the steam flow rate. Fig.1 shows the re-
sponses of the controllers system with the fuzzy controller
under the proposed method and the conventional method.
The simulation results illustrate the effectiveness of the
proposed method of fuzzy controller design. The param-
eter values for the fuzzy controller are L = 0.5, kα =
1.5200, kβ = 9.5, m1 = 1.476, m2 = 0.34, a =
0.0104, b = 0.45, c = −0.0065, d = −0.0875.

Fig. 1 Simulated performance comparisons of Wood-Berry
model under TITO fuzzy control with the STP method
and the convention method

3.2 Least in-degree control design
In this section, we consider the least in-degree control,

and present a least in-degree algorithm for the fuzzy con-
troller design when the fuzzy control rules are incomplete.
The fuzzy control rules considered are also in accordance
with consistency and correctness. We first define an inci-
dence matrix to express the dynamic connection between
the inputs and the outputs for a fuzzy controller.

Definition 3 Consider a fuzzy controller with m
controls and n input variables. An m × n matrix, J =
(rj, i) ∈ Rm×n, is called its incidence matrix, if

rj,i =
{

1, yj depends on xi,
0, otherwise.

Considerfuzzy controllers (7) and (8), the in-degree
of the fuzzy controller output yi, denoted by d(yj), is the
number of fuzzy controller inputs which can influence yj

directly. From the incidence matrix of the fuzzy controller,
we have

d(yj) =
n∑

k=1

rjk, j = 1, · · · ,m. (13)

Definition 4 A set of controllers (8) is said to be
a feasible set of controllers with respect to rule (7), if rule
(7) satisfies Eq.(8).

Definition 5 A feasible set of controllers (8) with
the in-degree d∗(yj), j = 1, · · · ,m, is called a least in-
degree feasible set, if for any other realization with in-
degree d(yj), j = 1, · · · ,m, we have

d∗(yj) 6 d(yj), j = 1, · · · ,m.

Remark 3 From the above definition, we know that
all the equations of a least in-degree feasible set of controls
contain no fabricated variables.

We can apply Lemma 4 to remove fabricated variables
and obtain a least in-degree feasible set of controls when
the fuzzy rules are complete. Since the structural matrix
contains uncertain columns when the fuzzy rules are in-
complete, the feasible set of controls may not be unique.
Next, we will search for a particular feasible set, that is a
least in-degree feasible set of controls. Assume a set of
incomplete rules as

Rl : IF x1 = δi1
k1

, · · · , and xn = δin

kn
,

THEN y1 = δj1
s1

, · · · , and ym = δjm
sm

,

l ∈ {1, · · · , t}, (14)

where Rl denotes the l-th fuzzy control rule, t is the num-
ber of control rules, and t < k. It is obvious that one needs
much less data to obtain a set of least in-degree controls.
Moreover, it is reasonable to assume a real practical fuzzy
controller to be of least in-degree. In the following, we
consider how to get a set of least in-degree controls.

Consider the controls yj = Mjx. Using this set of
fuzzy rules, some columns of the structural matrix Mj can
be determined. For instance,

Mj =δsj [? · · · ? cj1 ? · · · ? · · · ? cjk
? · · · ? ], (15)

where ? stands for the uncertain columns. Eq.(15) is called
the uncertain structural matrix. Let

Mj, i := MjW
[ki,

i−1Q
p=1

kp]
, i = 1, · · · , n.

Then split it into ki equal blocks as
Mj,i := [M1

j,i M2
j,i · · · Mki

j,i].

According to Lemma 4, we have the following result.

Proposition 1 The fuzzy control yj has an alge-
braic form which is independent of xi, if and only if

M1
j,i = M2

j,i = · · · = Mki
j,i (16)

has a solution for uncertain elements.

Proof Sufficiency. Assume Eq.(16) holds. By
Lemma 4, the fuzzy control yj has an algebraic form which
is independent of xi.

Necessity. Assume the fuzzy control yj is independent
of xi, then yj remains invariant whenever xi = δq

ki
, q =

1, · · · , ki. Thus
MjW

[ki,
i−1Q
p=1

kp]
δ1
ki

= · · · = MjW
[ki,

i−1Q
p=1

kp]
δki

ki
,

which implies that Eq.(16) holds. Thus, the proof is com-
pleted.

Now, we give an algorithm to produce a least in-degree
realization.
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Algorithm 1 The process to produce a least in-
degree realization is carried out based on the following
steps.

Step 1 For each component-wise algebraic equa-
tion of fuzzy controls, using the incomplete rules to iden-
tify some columns of the structural matrix Mj as Eq.(15).
Define the set as Pi = {1, 2, · · · , n}, i = 1, 2, · · · , n.

Step 2 When i = 1, consider x1, we construct

Mj = [M1
j M2

j · · · Mk1
j ] (17)

to check whether

M1
j = M2

j = · · · = Mk1
j (18)

has a solution or not. If it has a solution, we can ascertain
some uncertain columns and update the fuzzy control as

yj = M1
j

n
n

i=2
xi.

Then go to the next step.

Step 3 (i 6 n) Check whether Eq.(16) has a solu-
tion. If it does, ascertain some uncertain columns and up-
date the fuzzy control to

yj = M1
j,i n

16k6i−1, k∈Pi\{i}
xk

n
n

k=i+1
xk. (19)

In the following, we give an example to illustrate this
algorithm.

Example 2 Consider a fuzzy controller, which has
4 inputs: x1, x3 ∈ D2, x2, x4 ∈ D3 and 2 outputs (con-
trols): y1 ∈ D3, y2 ∈ D4.

In the vector form, we assume that there are a set of
control rules as:

IF x1 = δ1
2 , x2 = δ1

3 , x3 = δ1
3 , and x4 = δ1

2 , THEN
y1 = δ2

3 , and y2 = δ2
4 ;

IF x1 = δ1
2 , x2 = δ2

3 , x3 = δ2
2 , and x4 = δ1

3 , THEN
y1 = δ2

3 , and y2 = δ4
4 ;

IF x1 = δ1
2 , x2 = δ3

3 , x3 = δ2
2 , and x4 = δ3

3 , THEN
y1 = δ1

3 , and y2 = δ1
4 ;

IF x1 = δ2
2 , x2 = δ1

3 , x3 = δ1
2 , and x4 = δ1

3 , THEN
y1 = δ1

3 , and y2 = δ3
4 ;

IF x1 = δ2
2 , x2 = δ2

3 , x3 = δ1
2 , and x4 = δ3

3 , THEN
y1 = δ3

3 , and y2 = δ2
4 ;

IF x1 = δ2
3 , x2 = δ3

3 , x3 = δ2
2 , and x4 = δ2

3 , THEN
y1 = δ3

3 , and y2 = δ4
4 .

Now, we would like to get a least in-degree feasible set
of controls. Some columns of M1 and M2 can be identified
as

M1 = δ3[ 2 ? ? ? ? ? ? ? ? 2 ? ? ? ? ? ? ? 1
? 1 ? ? ? ? ? ? 3 ? ? ? ? ? ? ? 3 ? ],

M2 = δ4[ 2 ? ? ? ? ? ? ? ? 4 ? ? ? ? ? ? ? 1
? 3 ? ? ? ? ? ? 2 ? ? ? ? ? ? ? 4 ? ],

where ‘?’ denotes the unknown element. Now, we check
whether x1 can be a fabricated variable of y1. Split M1 into
two equal blocks as M1 = [M1

1 M2
1 ], and let M1

1 = M2
1

which yields the solution as

M1
1 = M2

1 = δ3[2 1 ? ? ? ?
... ? ? 3 2 ? ?

... ? ? ? ? 3 1].

Hence, the control can be simplified as y1 = M1
1 x2x3x4.

Now, we check x2. Splitting M1
1 into three equal blocks as

[M11
1 M12

1 M13
1 ] and letting M11

1 = M12
1 = M13

1 , it can
be updated as

M11
1 = M12

1 = M13
1 = δ3[2 1 3 2 3 1],

which satisfies y1 = M11
1 x3x4. Next, check x3 and x4.

Since M11
1 W[2,3] = δ3[2 2 1 3 3 1], x3 and x4 are not

fabricated variables. Finally, we obtain

y1 = δ3[ 2 2 1 3 3 1]x3x4.

Similarly, we have y2 = δ4[ 2 4 3 4 2 1]x3x4.

Hence, the least in-degree realization can finally be ob-
tained as {

y1 = δ3[ 2 2 1 3 3 1]x3x4,

y2 = δ4[ 2 4 3 4 2 1]x3x4.
(20)

3.3 Inconsistency of fuzzy rules
In the previous parts, the fuzzy control rules are in ac-

cordance with consistency and correctness. In this subsec-
tion, some basic ideas are proposed to deal with inconsis-
tency of rules.

If there are conflicting data caused by measurement
or others, in extracting fuzzy rules there may be the fuzzy
rules which are inconsistent. For example, it is obtained
from the data that

coli(M1) = δp1
s1

, · · · , coli(Mm) = δpm
sm

, a times,

coli(M1) = δq1
s1

, · · · , coli(Mm) = δqm
sm

, b times,

where the number of pk = qk, k = 1, · · · ,m are less than
m.

1) If a À b, then ignore δqi
sj

and let coli(Mj) =
δpi
sj

, i = 1, · · · , sj , j = 1, · · · ,m.
2) If a ¿ b, then ignore δpi

sj
and let coli(Mj) =

δqi
sj

, i = 1, · · · , sj , j = 1, · · · ,m.
3) If a ≈ b, then more data may be need or (when

data are already enough) it is concluded the fuzzy rules are
not acceptable so that coli(Mi) can be considered as error
columns and set coli(M) = ?, i.e., thinking of them as
uncertain columns.

We would like to mention that, if a fuzzy controller
is constructed and later on there are new rules via addi-
tional data, the controller could be updated in the following
way: If the k-th control verifies new rules, it remains avail-
able. Otherwise, new identified columns could be added to
the existing set and used to construct new structural matrix
Mk. Then the new k-th control can be updated.

4 Application to PHEV
In the following, we use the proposed approach in the

design of fuzzy controller based on energy management
and control strategy of PHEV.

From the membership functions for input variables[17],
we can get that the variable Pdriver is represented by the
linguistic terms ‘ normal’ and ‘ high’, SOC is represented
by the linguistic terms ‘too low’, ‘low’, ‘normal’ and ‘too
high’, ωEM is represented by the linguistic terms ‘ low’,
‘optimal’ and ‘high’.

We identify
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



SOC ∼ x1, Pdriver ∼ x2, ωEM ∼ x3;
Pgen ∼ y1, scale factor ∼ y2;

too low ∼ δ1
4 , low ∼ δ2

4 ,

normal ∼ δ3
4 , too high ∼ δ4

4 ;

normal ∼ δ1
2 , high ∼ δ2

2 ;

low ∼ δ1
3 , optimal ∼ δ2

3 , high ∼ δ3
3 ;

0 kW ∼ δ1
5 , 5 kW ∼ δ2

5 , 10 kW ∼ δ3
5 ,

15 kW ∼ δ4
5 , Pgenmax

∼ δ5
5 ;

1 ∼ δ1
2 , 0 ∼ δ2

2 .

(21)

Then, the fuzzy rules[17] can be expressed into the follow-
ing form:

IF x1 = δ4
4 , x2 = δ1

2 , x3 = δ1
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ4
4 , x2 = δ1

2 , x3 = δ2
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ4
4 , x2 = δ1

2 , x3 = δ3
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ4
4 , x2 = δ2

2 , x3 = δ1
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ4
4 , x2 = δ2

2 , x3 = δ2
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ4
4 , x2 = δ2

2 , x3 = δ3
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ1

2 , x3 = δ2
3 , THEN y1 = δ3

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ1

2 , x3 = δ1
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ2

2 , x3 = δ1
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ1

2 , x3 = δ3
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ2

2 , x3 = δ3
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ2
4 , x2 = δ1

2 , x3 = δ1
3 , THEN y1 = δ2

5 , y2 = δ1
2 ;

IF x1 = δ2
4 , x2 = δ1

2 , x3 = δ2
3 , THEN y1 = δ4

5 , y2 = δ1
2 ;

IF x1 = δ2
4 , x2 = δ1

2 , x3 = δ3
3 , THEN y1 = δ4

5 , y2 = δ1
2 ;

IF x1 = δ1
4 , x2 = δ1

2 , x3 = δ1
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ1
4 , x2 = δ1

2 , x3 = δ2
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ1
4 , x2 = δ1

2 , x3 = δ3
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ1
4 , x2 = δ2

2 , x3 = δ1
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ1
4 , x2 = δ1

2 , x3 = δ2
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ1
4 , x2 = δ1

2 , x3 = δ3
3 , THEN y1 = δ5

5 , y2 = δ2
2 ;

IF x1 = δ2
4 , x2 = δ2

2 , x3 = δ1
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ2
4 , x2 = δ2

2 , x3 = δ2
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ2
4 , x2 = δ2

2 , x3 = δ3
3 , THEN y1 = δ1

5 , y2 = δ1
2 ;

IF x1 = δ3
4 , x2 = δ2

2 , x3 = δ2
3 , THEN y1 = δ1

5 , y2 = δ1
2 .

From the above form of the fuzzy rules, we obtain

M1 = δ5[ 5 5 5 5 5 5 2 4 4 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1],
M2 = δ2[ 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],

then y1 = M1x1x2x3, y2 = M2x1x2x3.
Now using Lemma 4, we check whether x1, x2 or x3

is a fabricated variable of y1. It is easy to verify that

M1 =

δ5[5 5 5 5 5 5
... 2 4 4 1 1 1

... 1 3 1 1 1 1
... 1 1 1 1 1 1],

M1W[2,4] = δ5[ 5 5 5 2 4 4 1 3 1 1 1 1
5 5 5 1 1 1 1 1 1 1 1 1],

and

M1W[3,8] = δ5[ 5 5 2 1 1 1 1 1 5 5 4 1
3 1 1 1 5 5 4 1 1 1 1 1].

Obviously, we know x1, x2, x3 are not fabricated variables
of y1. Similarly, we check whether x1, x2 or x3 is a fabri-
cated variable of y2. Since

M2 =

δ2[ 2 2 2 2 2 2
... 1 1 1 1 1 1

... 1 1 1 1 1 1
... 1 1 1 1 1 1],

M2W[2,4] = δ2[ 2 2 2 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1],

and
M2W[3,8] = δ2[ 2 2 1 1 1 1 1 1 2 2 1 1

1 1 1 1 2 2 1 1 1 1 1 1],
x2 and x3 are fabricated variables in the dynamical equa-
tion of y2. Set x2 = δ1

2 and x3 = δ1
3 , then

y2 = M2W[3,8]x3W[2,4]x2x1 = δ2[2 1 1 1]x1.

Thus, the control can be simplified as y2 = M ′
2x1, where

M ′
2 = δ3[2 1 1 1].

Assume that SOC is low, Pdriver is normal and ωEM is
optimal, we have y1 = M1x1x2x3 = M1δ

2
4δ1

2δ2
3 = δ4

5

and y2 = M ′
2x1 = δ2[2 1 1 1]δ2

4 = δ1
2 , which means

Pgen = 15 kW, and scale factor is 1.

5 Conclusion
In this paper, we have studied the analysis and design

of multi-variable fuzzy logic controller based on the semi-
tensor product of matrices. Using the basic properties of
STP, we convert the fuzzy control rules and fuzzy logic in-
ference into an algebraic form. When the control rules are
not enough, we obtain a reasonable set of control rules and
give a set of least in-degree rules by the structural matrix of
the fuzzy controller. we introduce the consistency of fuzzy
control rules, and propose some principles for dealing with
fuzzy controls with inconsistency. Examples are proved to
illustrate the effectiveness of the proposed method. More-
over, we have applied the approach in this paper to design
of the fuzzy controller for energy management and control
strategy of parallel hybrid vehicles.
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