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Abstract: Adaptive dynamic surface control is developed for the tracking control problem of a class of nonlinear systems
with uncertain input delay and disturbances. The explosion of complexity in traditional backstepping design is avoided by
utilizing dynamic surface control. A filter and a virtual observer are constructed respectively to produce the auxiliary
signal. Neural networks are employed to approximate the unknown continuous functions. It is proved that the tracking
error ultimately converges to an adequately small compact set. The theoretical result is illustrated through a simulation

example.
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1 Introduction

Time delays are frequently encountered in practical
control systems, such as aircraft, chemical or process con-
trol systems, etc. The existence of the time delays, either in
the input or in the state, may be the source of instability or
serious deterioration in the performance of the closed-loop
systems!'I. Due to the inherent controller delay and re-
mote transfer delay, the input delay problem is particularly
serious. Therefore, the stability issue and the performance
of input delayed control systems are of both theoretical and
practical importance.

In the past decade, tremendous strides have been made
in the area of controller design for uncertain nonlinear sys-
tems!!?21. Intelligent control techniques including neu-
ral network, fuzzy system, often combined with adaptive
control, have been successfully applied in this area, and
there are a lot of research results about them""'!l.  An
adaptive neural controller is presented for a class of strict-
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feedback nonlinear systems with unknown time delays.
The unknown time delays are compensated for using ap-
propriate Lyapunov-Krasovskii functionals in the design.
It is proved that the proposed design method is able to
guarantee semi-globally uniformly ultimate boundedness
(SGUUB) of all the signals in the closed-loop system and
the tracking error is proven to converge to a small neigh-
borhood of the origin!'~?!. Several neural control schemes
are proposed for different nonlinear systems, such as multi-
input-multi-output (MIMO) systems, strict-feedback sys-
tems, systems with input saturation, etc.>-111,

On the other hand, backstepping is evolved as an
effective methodology. It provides a systematic frame-
work for the controller design of a large class of nonlin-
ear systems!!>"'71. The main advantages of backstepping
methodology include: a) global stability can be achieved
with ease; b) the transient performance can be guaran-
teed and explicitly analyzed. However, an obvious draw-
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back in the traditional backstepping is the problem of ‘ex-
plosion of complexity’, which is caused by the repeated
differentiations of certain nonlinear functions. To over-
come the ‘explosion of complexity’, dynamic surface con-
trol (DSC) is proposed by introducing first-order filtering
of the synthetic virtual control input at each step of tra-
ditional backstepping approach!'®22I. A robust adaptive
tracking control approach is presented for a class of non-
linear systems. By employing radial-basis-function (RBF)
neural networks to account for system uncertainties, the
proposed scheme is developed by combining DSC and
minimal learning parameter (MLP) techniques!'®!. DSC
methodology is also utilized in systems with periodic dis-
turbance, systems with unknown dead zone, magnetic lev-
itation system and servo mechanisms!!-22].

In this note, we deal with the tracking control problem
for a class of uncertain nonlinear systems with uncertain
input delay and time-varying disturbances. The state feed-
back control scheme combined with DSC, neural networks
and adaptive control is proposed. Compared with the pre-
vious works, the main contributions of the paper lie in:
1) The novel definition of the dynamic surface variable in-
cluding the input integral term is presented. By means of
the definition, the input delayed system is converted to a
non-delayed system. 2) DSC technique is introduced to
improve the traditional backstepping method in the con-
trol scheme of input delayed nonlinear systems. 3) A filter
and a virtual observer are constructed to replace the system
state. The theoretic result is illustrated through a simula-
tion example.

2 Problem statement

Consider the nonlinear input delay system described

by

& = fi(Zi) + w1 + hi(z,t), 1 <i<n—1,

in = fu(x) + g(@)ult — 7)) + hn(z,t), (1)

y(t) =T (t)a
where x = [x1 - zn}T € R” is the measurable system
state and ; = [vy --- x;]T, y(t) is the system output,
u(t — 7(t)) € R is the control input, u(t) = 0,¢t < 0,
g(z) is the uncertain control gain function, f;(Z;) are un-
known continuous functions, h;(x,t) are time-varying dis-
turbances. System state x(t) is bounded when ¢ = 0. The
control objective is that the output y(t) follows the refer-
ence signal y,(¢).

The following assumptions and lemma are made
throughout the paper.

Assumption 1 The input delay meets the following
restrictions:

T(t) =T+ AT(t)’ ‘AT(t)| < 07, T(t) 20,720,
where 7 is a known constant and §, is an unknown small
constant.

Assumption 2 The control gain function meets the
following restrictions:

9(2) = g1(Fn1) + Ay 2),

g(x) = go, 91(Tn-1) = go.
where ¢1(Z,—1) is a known differentiable function and
dg, go are unknown small positive constants. Substitute
g1(z) for g1 (Z,—1) throughout the paper.

Ay()] < dg,

Assumption 3 The unknown disturbances h;(-)
(1 < i < n) satisfy |h;(-)| < hy, where h; are unknown
constants, respectively.

Assumption 4 The reference signal y,(t) is differ-
entiable. y.(¢t) < 4, 9:(t) < ¥, where g, is an unknown
constant.

Lemma 1 For the continuous function g;();) and the
bounded closed set C),, there is a neural network satisfy-
ing[ZS]

gi(Ni) = Wi Si(Ni) + eu, (i), YA € Ch,,

where S;(\i) = [Si1(N\i) <+ Sim,(Ni)]T. The Gaus-
(—nxrgi,juz)

sian basis function is selected as S; ;(\;) =e  *7i

W; € R™: is the weight vector of the neural network.

lew, (Ai)| < &y, is the estimation error. Denote the best

weight vector as

W i=arg min { sup |[W;'Si(A) — hi(N)|}-

Wi€R™i ") eCy,

Define WW; as the estimation of W,

The conclusion can be easily promoted to the vector
functions. For the continuous vector function f(z) and the
bounded closed set C';, by the estimate ability of RBF neu-
ral networks, there is a perfect RBF neural network which
satisfies

flx) =o(@x)0 +ef(x), Vo € Cp,

where o(x) = [6T(@) - oL@, 4ula) =

[@i1(x) -+ ¢iq(x)]. The Gaussian basis function is se-
—lz—pi 11

lected as ¢; ;j(z) = e 2% . 6 € RYis the weight

vector of the neural network. ||e(z)| < & is the estima-
tion error. Denote the best weight vector as

0" = arg 52%@{5;& [p(2)0 — f(2)]}-

For convenience, 6 is used to denote 6* in some equations
below without confusion, and W is used to denote W* in
some equations below too.

Notation || - || denotes the 2-norm of a vector or the
Frobenius norm of a matrix.
3 Main result

By Lemma 1, system (1) can be denoted as

& = Az + Bg(x)u(t — 7(t)) + ¢(x)0+

€f(:L’) + h(:ﬂ, t)v (2)
y = Cu,
where
01 0
A=t " |.B=||.c=110---0],
0o 1 0
00--- 0 1
¢1(ff1) %(%l) 8,
o= || = | =1
fu(2) s, (@) b

¢i(Z;) € RY9 h(x,t) = [hi(z,t) - hp(z,t)]T,
llef (@)l < &
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Substitute h;,e5 for h;(x,t),er(x) respectively through-
out the paper.
Construct a filter as!>*!

{f = A€ + Ky + Bgi(x)u(t — 1), 3)
2=A002+ ¢(x),
and a virtual observer as/?*!
B =E+ 00, @)
where
k1 &1 1 91
K=1]:,é=],2=|:],2=|1[,
kn, én T, 2
2;(t) € RY*4,
)]

and k; > 0(¢ = 1,--- ,n) is a design constant which sat-
isfies that Ag = A K C' is Hurwitz. The observer T is
called ‘virtual’, because it is unimplementable when the
optimal value 6 is unknown. The purpose of introducing
a filter and an observer here is to be discussed later as a
remark.

Define
e=x—1, 6)
where e = [e; -+ e,]T. Therefore, we get
€= Ape + (BA, +e¢(x) + h(z,1)), @)
where

Au = g(@)u(t —7(t))

In equation (7), if we take the whole item BA, +
e¢(x) + h(z,t) as the system control input, and let an
identity matrix to be the control gain matrix, the error sys-
tem is a linear time invariant (LTT) system. Because A is
Hurwitz, according to the linear system theory, the system
is input state stable (ISS). It is assumed that ||e(t)| < e.
Similarly by equations (3), {2 is ISS with respect to ¢ ().
Therefore, ||2;(t)|| < £2;.

Define one-order filters as

—zi a1, 2< 1< N, ©

— g1(x)u(t — 7). )

Liii =
where ¢; are positive design parameters. The virtual con-
trols «; are defined in the following.

Define dynamic surfaces as

1 =21 — Yr,

Si=x;— 2z, 2<i<n—1, (10)

0
Snzgn*'zn‘i’gl I)ITUt+U

Define assistant functions
a1 (M) = ¢1(x1)0 — g + (7 + D)s1,
qi(Ni) = 6i(T:)0 — 2 + (0] + 1.5)s,

2<i<n—1,

n—1 a
n(xl_gl)_2n+ aigl
j=1 0T (11)

k
[° e+ v)dvles i + 65 (@)0]+

Sl (8—% fi)T u(t +v)dv)?s,+

where v > 0, 7; > 0(¢ = 1,--- ,n) are design constants
and k,, is a positive constant Wthh defined by equations
4).

By Lemma 1, the RBF neural network is constructed to
approximate the continuous function ¢;(\;) for each sub-
system.

ai(Xi) = W Si(Ai) + w, (M), YA € Ca,. (12)
Define the virtual controls
o = —c2s;i — WES;(\), 1 <i<n, (13)
where c; are design parameters,
A=z oy 5T
No= 2] 2 z)Y, 2<i<n—1,
990 99 (14
o0xq O0Tp_1

)\n = [xT Zn Zn 51 gn

fi)T u(t +v)dv]T.

The following theorem is presented.

Theorem 1 Consider the system (1) under Assump-
tions 1-4. The virtual controls «; are defined by equation
(13). If the control law is selected as

u(t) = —g1 ' (2)om, (15)
and the adaptive law is selected as
Wi :Fl‘(si()\i)Si—U?Wi)7 1 <z<n, (16)

then the system tracking error is bounded and ultimately
converges to an adequately small compact set:

ly—wl < V2V, lim |y -y <E7OT, (A7)

where k* is the design parameter and V', §* are constants.
The closed-loop system is SGUUB.
Proof Define variables g; as
0i =7z — 1, 2< 1 < n. (18)
Referring to equations (9) and (13), we have

0i =2 — i1 = —1; ' 0i — for(Niz1), (19)

where ]
fohic1) = =130 = WL Sioa(Nimr) —
05S;
T 1—1
2
W la)\z 1)\1 1- (O)

Each f,,(Ai—1) is a continuous function. Therefore,
|fo:(Ni—1)| has a maximum f,, on a compact set Cy, ,
The explicit definition of C}, is to be illustrated in the fol-
lowing.

Define the Lyapunov function V (t) as

V()= i Vi), 21

1

Vi(t) = §SL + WTF W, + %é“ Q§+17
1<z<n—1, (22)
1 1= ~

Valt) = gsn + Wi I W, (23)

where Wz = I/V;k — VAV,L

Step 1 For the first subsystem, by equations (2)—(3)
and (9), it can be obtained that
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51 :i'l _yr = T2 +¢1(.’E1)9+5f1 +h1 _yr =
Ty + WIS1(\) +ew, — (0 + 1)s1+ep, +hy =

To — C%Sl — WlTSl()\l) — o1 + WlTSl(/\l) +
Cuy (M) — (F +1)s1 +ep, +hy =
—C%Sl + X9 — aq + WlTSl()\l) + Ew, ()\1) +ep +
hi — (i + 1)s1. (24)
Using Young’s Inequality, we get
sigi < Nis? 4 e €2, (25)
= A 1
W, W; < *§||W1||2 + *||W2'H2, 1<i<n, (26)
2, 1 L,
s1(s2 +02) <87+ 282+292, (27

and
1
2,00 f0s (M) < (22,03 + @ﬁzfé(h). (28)

Differentiating the Lyapunov function V; (22) along
the track (24) and substituting virtual control (13), adap-
tive law (16) and Inequalities (25)—(28) into it, it is easy to
have

Vi = s1[—cls1 + 2o — a1 + WTS1 (A1) + €y (M1) +
hi = (nf + D)s1] = W (S1(Ar)s1 — o7 W) +
V2,0002 +Ep =
si[—cis1 + a2 — g +ew, (M) + e + hy —
(nf + D)s1] + of W Wi + 72,0202 <
—c1st + s1(z2 — 1) + [51|(Bwy + &4, + 1) —
(mF +1)°s3 + oW W, +792Q2Q2

1 _
_C%S% + 81(1‘2 - Oél) + W(gwl + éf1 + h1)2 -
1

-1 = 1
3+ A (GHITAIP + ZIWilP) +
Vo, 02(—t5 02 — foa (A1) <
o2 72
_C%S%_71||W1H2 £ Q§—S1+81(82+Q2)+
1 ~ _
R(Ewl + €f + h1)2 + 71||W1H2 - 7§2Q2f92 <
—22——W 2 7@2 2 2
€151 [ [ 92 51+
1 o} 2 9, 1
g Gt e tR) 4 SHIWAE £ st 4+ o
1 2.2 2 1 2
592 +< ’y9202 + 462792 2(>\1)
—kviVi 4+ by1 + A, (29)
where )
2 1 o
kvi = min{2c, (&= — — —2¢%), —L—1,
Pl 92, Amax(I71)
1 _ _ O 2 732 7
by1 = R(‘CJUH +tép + hl) + ?HWln + 4<2f927
1
Avl = 58%
(30)
Step ¢ For the ith (2 < ¢ < n — 1) subsystem, by

equations (2)(3) and (9), it can be obtained that

$i =% — % =Tipy1 +i(Ti)0 +ep, +hi — 2 =
Tiv1 + WESi(\) + ew, — (07 + 1.5)s; +e5, + h; =
Tip1 — s — WESi(N) — i + WES;(\) + w0, =

—(? 4+ 1.5)si +eyp, +hi — s + w1 — i +

WESi(Ni) + ew, + &5, + hi — (07 + 1.5)s,. 31)
Differentiating the Lyapunov function V; (22) along the
track (31) and substituting (13) into it, it is easy to have
;i + WES;(\) + ew, +

ef, +hi — (1] +1.5)si] + ’7@i+19i+léi+1 -
WL (S;(\s)si — a2W;) <

Vi = si[—cZsi + xip1 —

—kvi Vi + by + Ay, (32)
where
kyi = min{2¢? (z— L —2¢%) 73}
Y Li gi+l ’ /\maX(Fiil) ’
1 o2
bei = g (Ew + &5+ 1) + 5 WP+
4n 2
1 72
C2’YQH~1 Qi4+1?
1 1
Ay = *551 +5 5 S7i1-
(33)

Step n  For the nth subsystem, by Assumption 2,
d 0
==t (o) [
kn ( — &) +gi(@)u(t —7) — gr(x)u(t — 7) +
0

(
n—1
5 ggl. f u(t +v)dv + gy (2)u(t) — 2,.  (34)
J=1 -

u(t +v)dv) =

By equation (2), we have

a91 .0 B
Sn Z B, I_T u(t +v)dv =

n—1 891
> Ba, I_T uw(t +v)dv - [zj11 + ¢j(x)0 +

ef; (@) + hj(2,1)] <

Sn

0
n 2 875:1 jfT u(t +v)dv - [zj41 + ¢j(x)8] +
J
n—1 391 0

2.2 991 2
vz 321(5333' j_T u(t+v)dv)” +

1
o7 z (&5, + )2, (35)

where 7 is the design parameter in equation (11). Differen-
tiating V,, (22) along the track (34) and substituting equa-
tions (15)—(16), and (35) into it, we can have

—e)+ Z 891 . jo ult o)y —

Vn: Sn[ n (21

— WnT(Sn()\n)sn —2W,) <

2
O‘ -~
—0.5s —7"||Wn\|2+sn(—an+glu)+
52 1 n—1 0'2
Wn W, 112 <
[477 22( )+2H %]
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— \/2V,
where , 2V; + L4, 1<i<n, (49)
a, i
kyn = min{2c2, ﬁn—l)}’ where ‘
max n _ /2V 1
g2 1 n-t B o2 @ = 2\ 2V, + (————+ |[Wi|)m?. (50)
bun = 75 + 5 2 (&g, + Ry)? + W%, GT) N -1 Z
a2 4y ©fy T 2 iy Amin (177)
A — 1, Step n+1 For the overall system, differentiating the
R o9 Sn: Lyapunov function V, we have

Therefore, 0 < V;,(t) < (Vo — dyn)e ¥t + 60, by =

by =
k—L, Vo = Vi (0). Define V,, = max{V,,0,dyn }.
V, < Vn, tlim Vi = Oyn- (38)
Therefore,
— V2V,
|5n| < V2V, HWTL” L —F/—,
)\min(Fn_l)
Noa (39)
A 2V,
[Wal € ——=+Wal.
)\min(l—’n_l)

By the property of Gaussian basis function, we have that

By Assumption 4, virtual control definition (13) and con-
troller definition (15), we get

1 .
[u(®)] = | (=chsn = Wy Su(An))] <

g1()
1 _ V2V, _
—[c2 V2V + (——=——— + W) V] < 4,

go )\min([‘vfl)
41)
where _
_ 0 /o5 2V,
u=—[c, V2Vn + ( + [[Wall)v/mn].
g0 /\min([‘v:l)
(42)

Repeating the backstepping procedure, we can prove
that for ith subsystem (1 < ¢ < n — 1) the following result
holds

—00
_ V2V,
|si] < V2Vi, o] < :
Yeoi
V2V

Wil « ————, (44)
)‘min(Ffl)
R 2V,
Wil € ——=+ IWil, (45)
\ )‘min(Ffl)
= V2V, 1
loi| < EV2V; + (——e— + [|[Wi|)m7, (46)
\V )‘min([‘fl>
V2V,
|zs| < oi| + |1 < + ®i—1, 47)
[
. _ 2V;
il == ail < , (48)

Yoili

V=3 Vi(t) < —kV(t) + by, (51)
1=1
where

n
ky :min{kvla"' akvn}7 b, = vaz (52)
=1

by
Therefore, 0 < V() < (Vo — 0y )e ™t 4+ 6, 0, = = v

= V(0). Define V.= max{Vy,d,}. Therefore, ||s|| <
_ V2V .
V2V, Vi + [|[W;]]. Thus s, W, «; are
1

\/ Amin(F P )
bounded, respectively. It can be proved that x, (2, £, e are
all bounded. The closed-loop system is SGUUB. Because

WzH <

V() <V, lim V(t) = oy, (53)
we get
ly — | < V2V, (54)
Jim [y — gl < /260 = \/ZJE: k16", (55)
where
b = ki 5 = /b, (56)

It means that the tracking error is bounded and ultimately
converges to an adequately small compact set which can
be adjusted by the design parameter k£*. The proof of The-
orem 1 is completed.

Remark 1 In this remark, we demonstrate that the sys-
tem state is in a compact set in detail. By Inequality (54), we
have

lyl < V2V + 3 2 4. (57)
Because Z,,—1 is proved to be bounded, according to the prop-
erty of continuous functions, it is held that

l91(Zn—1)| < 71, (58)
where g; is an unknown constant. By Assumption 2 and ex-
pression (8), it gives

g9(z) < g1+ 6y, (59)
[Aull < (201 + d9)u = Ay (60)
By equations (4)(7), we have
t ;
§(t) = eMg(0) + [ M (Ky(s) +
By (x(s))u(s — 7))ds, (61)
t
2(t) = ™' 2(0) + [ e o(y(s))ds,  (62)

e(t) = eAOte(O) + fot eAo(t=s) [BAu(s) +

ef(z(s)) + h(z(s),s)]ds. (63)
Therefore,

€@ <

n t _
e M@+ @y X 45 + g f et as| <
(=
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ValPIIPTHIEO)] + (7 ,/é

ga)Val Ag PP+ 1) £ €, (64)
12 < e 1120)] +yag] [ et ds| <
VallPIIPH1200)]+nyvallAg PP +1) £
0, (65)
eIl < lle™*[lle(O)] + (Au +

no_ t
Vngp+ | > Bl J et s <
J:

Vall PP [le(0)]] +

(Au+f6f+,/2h2)f||/1 [BS

J=
(PP~ +1) 2 ¢, (66)
where the following results are used:
P 1AgP = A, A = diag{—A4, -
et < vall PP,
jot oAo(t=9) gg — 7140716140(7&73) b=

b Ao(t— —1,_ Aot
I f, e sl <145 ™" - Dl <

,*An}, A; >0,

Agt(et 1),

45 VR PP + 1). (67)
Finally, by equations (4)(6), we get
r=¢4 020+ e. (68)

By the above results, it shows that the system state z(t)(¢
> 0) stays in a compact set Cy; as

Co={z||lz| <&+ 2|0 +¢&}. (69)

According to the property of continuous functions, we

have
on

Epg,st| |\g,1<i<n,1<j<n. (70)
By equation (41) we get
|f t+v)do| < 1)

The neural network input parameter \;(1
equations (14) stays in the compact set C'y, as

< i< n)in

Cx, = N | yel < Gy (9] < B,
\/2V 2V
‘Zil g +a’b 1 |ZZ‘ _Zv
Yoi Yoili
]| < max{[lz(0)[|, &+ £2(|0]| + &},
- 8
€l < &, | 91 < Dg, |j u(t +v)dv| < 74,
I<j< i}. (72)

Remark 2 By equation (1), x and \; are in the com-
pact set, respectively, at the initial time (¢ = 0). By Theorem
1 and Remark 1, = and \; are always in the compact set, re-
spectively. Because x is in a compact set, the neural network
approximation for unknown function f;(Z;) is valid with ap-
proximation error €y, bounded. Because A; is in a compact set,
the neural network approximation for unknown function g; (\;)
is valid with approximation error £, (\;) bounded. Similar
discussions can be found in the reference [25].

Remark 3  Although there are many items in the resid-
ual by, it can be arbitrarily small, if we choose proper design

parameters, such as 7;, o;, etc. According to expressions (64)—
(66) and (69), it is shown that the range of the compact set C';, is
related to the design parameters such as k*. Proper parameters
lead to a small range of the compact set.

Remark 4 The introduction of filter and virtual ob-
server has two advantages: 1) Combined with the novel vari-
able definition, it converts the input delayed system to the non-
delayed system. 2) It makes the controller design simple, with-
out regarding the unknown items of the delay and the control
gain function.

Remark 5 Although the states are measurable, but the
derivation @y, is not available, since the function fp (x) and con-
trol gain g(z) are all unknown (1). Therefore, we introduce a
filter (3) and a virtual observer (4) in order to simplify the proof.
From the definition of the filter (3), it implies that both £ and
én are available. From the definition of s;, in equation (10), we
can get that by replacing x,, with &, both sy, and derivation s,
are available. In equation (34), this leads to the elimination of
the item g1 (x)u(t — 7) in the proof. The result makes a great
contribution to the solution of the problem.

4 Simulation example
Consider the nonlinear system with uncertain input de-
lay as follows:
T = O.lx? + 29+ 0.1 sin? T,
To = 0.3x129 + 0.2 sin(O.Qt) + (2+
sinx; + 0.05sinzg)u(t — 7(t)),
Yy =,
7(t) = 0.3+ 0.1sint, 7 = 0.3, fi(z1) = 0.123, fo(z) =
0.3z129, g(z) = 2 + sinz; + 0.05sinzs, g1(x1) =
2+sinzy, hi(z,t) = 0.1sin? 21, ho(z,t) = 0.2sin(0.2t),

ye(£) = sin(0.2¢) sin(0.5¢), A = [0 1]’ 5o m_

(73)

00 1
Choose parameters:
-31
-20
b1 =0.1, 00 =01, 11 =12, 7o = 1.2,
o1 = 0.05, o9 = 0.05.

k=132, Aoz{ ],a1:1.2, as = 1.3,

Construct a virtual observer & for system (73) as
€ = Apf + Ky + By (x1)u(t — 0.3),

2= A2+ ¢(x),
T =&+ 120,
where
K02 1
2= [92] , 12, eRVO, ¢ = EJ :
Define a one-order filter as
loZo = —29 + Qu, (74)

where ¢ is a positive design parameter. The virtual con-
trols o is defined in the following. Define dynamic sur-
faces as

$1 =21 — Yr, 0 75
so =8 — 2+ g1(x) Ifo 3u(t + v)dw. (75)

Define the virtual controls
WESi(N), 1<i<2, (76)
where c; are design parameters,

a; = —c S; —
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)\1 = [371 Yr yr]T7 3 T T T T T T T
. a91 0 T
Ae=[x1 T2 22 22 &1 & e Lo 3u(t—|—v)dv] . oL i
(77) L |
Define assistant functions <
a1(M) =¢1(21)0 — g + (1 + 1)s1, 5 0 V\/\MM
@2(An) =ka (1 — &) — 22 + (03 + 0.5)s2+ 1k .
9g1 (° (78)
pr j—o.?, u(t +v)dv[ze + ¢1(x)0]+ St i
agl 0 1 1 1 1 1 1 I
2 2 _
" (G LOB u(t +v)dv)~s,. 30 20 40 60 80 100 120 140 160
Select control law as u(t) = —g; ' (x) s and adaptive law t/s
as ) Fig. 3 Tracking error e(t)
Wi = I(Si(\)si — o2W;), 1<i <2, (79
where
S, € RIX27 g, ¢ RIX6501 3.0 L L L
3 9 2.5
=22 (A = pig)
Sl,i =e J=1 s 1< < 27, =, 2.0
8 £
-2 (Mo —vig)? =
Syi=e I=1 , 1< <6561, 3
- 10
wi; € {-1,0,1}, v; ; € {—1,0,1}.
Select initial values 05
W 0 = 0 W O = 0 O = 0 1 1 1 1 1 1 1
1(0) =0, W(0) = 0, £(0) =0, 090720 20 60 80 100 120 140 160

x(t) = [2cost —cos®t]T, t € [~0.3,0].

The results of the control scheme is shown in Figs.1-4.

2.0 ' ' ' ' ' ' '
1.5
1.0
0.5 ..
0.0

yayr

-0.5
-1.0
-1.5

,20 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

t/s

Fig. 1 Output y(t) and reference signal yr(t)

1.0 ' ' ' ' ' ' '
0.8[

0.6

0.4

0.2

S 00
-0.2 {1
-0.4
0.6 7
-0.8 7

_1. L
00 20

1 1 1
40 60 80
t/s

1 1 1
100 120 140 160

Fig. 2 Control input u(t)

t/s

Fig. 4 Norm of the neural network weight

5 Conclusion

In this paper, an adaptive dynamic surface control
scheme is proposed for the tracking control problem in or-
der to improve the traditional backstepping approach. Un-
known continuous functions are approximated by neural
networks online. By introducing a novel dynamic surface
variable including a integral term of control input, the input
delay is eliminated in the last subsystem. The SGUUB of
closed-loop system is guaranteed by Lyapunov approach.
Finally, the simulation results demonstrate the effective-
ness of the scheme.
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