
第 30卷第 11期
2013年 11月

控 制 理 论 与 应 用
Control Theory & Applications

Vol. 30 No. 11
Nov. 2013

一一一类类类非非非线线线性性性时时时滞滞滞系系系统统统的的的自自自适适适应应应动动动态态态面面面控控控制制制

DOI: 10.7641/CTA.2013.12108

朱 清1,2,4†, 宋爱国1, 费树岷3, 杨月全2, 盛 朗2,4

(1. 东南大学仪器科学与工程学院,江苏南京 210096; 2. 扬州大学信息工程学院,江苏扬州 225009;

3. 东南大学自动化学院,江苏南京 210096; 4. 江苏中惠医疗科技股份有限公司,江苏扬州 225200)

摘要:本文对于一类含不确定输入时滞和干扰的非线性系统的跟踪控制问题提出了一种自适应动态面控制方案.
利用动态面控制方法避免了传统的后推设计中存在的复杂度爆炸问题.分别构造了一个滤波器和一个虚拟观测器
来产生辅助信号.采用神经网络来逼近未知的连续函数. 跟踪误差被证明最终收敛到一个足够小的紧集. 给出了一
个数字仿真示例验证了理论结果.
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Abstract: Adaptive dynamic surface control is developed for the tracking control problem of a class of nonlinear systems
with uncertain input delay and disturbances. The explosion of complexity in traditional backstepping design is avoided by
utilizing dynamic surface control. A filter and a virtual observer are constructed respectively to produce the auxiliary
signal. Neural networks are employed to approximate the unknown continuous functions. It is proved that the tracking
error ultimately converges to an adequately small compact set. The theoretical result is illustrated through a simulation
example.
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1 Introduction
Time delays are frequently encountered in practical

control systems, such as aircraft, chemical or process con-
trol systems, etc. The existence of the time delays, either in
the input or in the state, may be the source of instability or
serious deterioration in the performance of the closed-loop
systems[1–3]. Due to the inherent controller delay and re-
mote transfer delay, the input delay problem is particularly
serious. Therefore, the stability issue and the performance
of input delayed control systems are of both theoretical and
practical importance.

In the past decade, tremendous strides have been made
in the area of controller design for uncertain nonlinear sys-
tems[1–22]. Intelligent control techniques including neu-
ral network, fuzzy system, often combined with adaptive
control, have been successfully applied in this area, and
there are a lot of research results about them[1–11]. An
adaptive neural controller is presented for a class of strict-

feedback nonlinear systems with unknown time delays.
The unknown time delays are compensated for using ap-
propriate Lyapunov-Krasovskii functionals in the design.
It is proved that the proposed design method is able to
guarantee semi-globally uniformly ultimate boundedness
(SGUUB) of all the signals in the closed-loop system and
the tracking error is proven to converge to a small neigh-
borhood of the origin[1–2]. Several neural control schemes
are proposed for different nonlinear systems, such as multi-
input-multi-output (MIMO) systems, strict-feedback sys-
tems, systems with input saturation, etc.[3–11].

On the other hand, backstepping is evolved as an
effective methodology. It provides a systematic frame-
work for the controller design of a large class of nonlin-
ear systems[12–17]. The main advantages of backstepping
methodology include: a) global stability can be achieved
with ease; b) the transient performance can be guaran-
teed and explicitly analyzed. However, an obvious draw-
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back in the traditional backstepping is the problem of ‘ex-
plosion of complexity’, which is caused by the repeated
differentiations of certain nonlinear functions. To over-
come the ‘explosion of complexity’, dynamic surface con-
trol (DSC) is proposed by introducing first-order filtering
of the synthetic virtual control input at each step of tra-
ditional backstepping approach[18–22]. A robust adaptive
tracking control approach is presented for a class of non-
linear systems. By employing radial-basis-function (RBF)
neural networks to account for system uncertainties, the
proposed scheme is developed by combining DSC and
minimal learning parameter (MLP) techniques[18]. DSC
methodology is also utilized in systems with periodic dis-
turbance, systems with unknown dead zone, magnetic lev-
itation system and servo mechanisms[19–22].

In this note, we deal with the tracking control problem
for a class of uncertain nonlinear systems with uncertain
input delay and time-varying disturbances. The state feed-
back control scheme combined with DSC, neural networks
and adaptive control is proposed. Compared with the pre-
vious works, the main contributions of the paper lie in:
1) The novel definition of the dynamic surface variable in-
cluding the input integral term is presented. By means of
the definition, the input delayed system is converted to a
non-delayed system. 2) DSC technique is introduced to
improve the traditional backstepping method in the con-
trol scheme of input delayed nonlinear systems. 3) A filter
and a virtual observer are constructed to replace the system
state. The theoretic result is illustrated through a simula-
tion example.

2 Problem statement
Consider the nonlinear input delay system described

by 



ẋi = fi(x̄i) + xi+1 + hi(x, t), 1 6 i 6 n− 1,
ẋn = fn(x) + g(x)u(t− τ(t)) + hn(x, t),
y(t) = x1(t),

(1)

where x = [x1 · · · xn]T ∈ Rn is the measurable system
state and x̄i = [x1 · · · xi]T, y(t) is the system output,
u(t − τ(t)) ∈ R is the control input, u(t) = 0, t < 0,
g(x) is the uncertain control gain function, fi(x̄i) are un-
known continuous functions, hi(x, t) are time-varying dis-
turbances. System state x(t) is bounded when t = 0. The
control objective is that the output y(t) follows the refer-
ence signal yr(t).

The following assumptions and lemma are made
throughout the paper.

Assumption 1 The input delay meets the following
restrictions:

τ(t) = τ + ∆τ (t), |∆τ (t)| < δτ , τ(t) > 0, τ > 0,
where τ is a known constant and δτ is an unknown small
constant.

Assumption 2 The control gain function meets the
following restrictions:

g(x) = g1(x̄n−1) + ∆g(x), |∆g(x)| < δg ,
g(x) > g0, g1(x̄n−1) > g0,

where g1(x̄n−1) is a known differentiable function and
δg, g0 are unknown small positive constants. Substitute
g1(x) for g1(x̄n−1) throughout the paper.

Assumption 3 The unknown disturbances hi(·)
(1 6 i 6 n) satisfy |hi(·)| 6 h̄i, where h̄i are unknown
constants, respectively.

Assumption 4 The reference signal yr(t) is differ-
entiable. yr(t) 6 ȳr, ẏr(t) 6 ȳr, where ȳr is an unknown
constant.

Lemma 1 For the continuous function qi(λi) and the
bounded closed set Cλi

, there is a neural network satisfy-
ing[25]

qi(λi) = WT
i Si(λi) + εwi(λi), ∀λi ∈ Cλi ,

where Si(λi) = [Si,1(λi) · · · Si,mi
(λi)]T. The Gaus-

sian basis function is selected as Si,j(λi) = e
(
−‖λi−µi,j‖2

2σ2
i,j

)
.

Wi ∈ Rmi is the weight vector of the neural network.
|εwi

(λi)| 6 ε̄wi
is the estimation error. Denote the best

weight vector as

W ∗
i := arg min

Wi∈Rmi
{ sup

λi∈Cλi

|WT
i Si(λi)− hi(λi)|}.

Define Ŵi as the estimation of W ∗
i .

The conclusion can be easily promoted to the vector
functions. For the continuous vector function f(x) and the
bounded closed set Cx, by the estimate ability of RBF neu-
ral networks, there is a perfect RBF neural network which
satisfies

f(x) = φ(x)θ + εf (x), ∀x ∈ Cx,

where φ(x) = [φT
1 (x) · · · φT

n (x)]T, φi(x) =
[φi,1(x) · · · φi,q(x)]. The Gaussian basis function is se-

lected as φi,j(x) = e
−‖x−µi,j‖2

2σ2
i,j . θ ∈ Rq is the weight

vector of the neural network. ‖εf (x)‖ 6 ε̄f is the estima-
tion error. Denote the best weight vector as

θ∗ := arg min
θ∈Rq

{ sup
x∈Cx

‖φ(x)θ − f(x)‖}.

For convenience, θ is used to denote θ∗ in some equations
below without confusion, and W is used to denote W ∗ in
some equations below too.

Notation ‖ · ‖ denotes the 2-norm of a vector or the
Frobenius norm of a matrix.

3 Main result
By Lemma 1, system (1) can be denoted as




ẋ = Ax + Bg(x)u(t− τ(t)) + φ(x)θ+
εf (x) + h(x, t),

y = Cx,
(2)

where

A =




0 1
...

. . .
0 1
0 0 · · · 0


 , B =




0
...
0
1


 , C = [1 0 · · · 0],

φ(x)=




φ1(x1)
φ2(x̄2)

...
φn(x)


 , εf (x)=




εf1(x1)
εf2(x̄2)

...
εfn(x)


 , θ=




θ1

...
θq


 ,

φi(x̄i) ∈ R1×q, h(x, t) = [h1(x, t) · · · hn(x, t)]T,

‖εf (x)‖ 6 ε̄f .
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Substitute hi, εf for hi(x, t), εf (x) respectively through-
out the paper.

Construct a filter as[23]
{

ξ̇ = A0ξ + Ky + Bg1(x)u(t− τ),

Ω̇ = A0Ω + φ(x),
(3)

and a virtual observer as[24]

x̂ = ξ + Ωθ, (4)
where



K =




k1

...
kn


 , ξ =




ξ1

...
ξn


 , x̂ =




x̂1

...
x̂n


 , Ω =




Ω1

...
Ωn


 ,

Ωi(t) ∈ R1×q,

(5)

and ki > 0(i = 1, · · · , n) is a design constant which sat-
isfies that A0 = A − KC is Hurwitz. The observer x̂ is
called ‘virtual’, because it is unimplementable when the
optimal value θ is unknown. The purpose of introducing
a filter and an observer here is to be discussed later as a
remark.

Define
e = x− x̂, (6)

where e = [e1 · · · en]T. Therefore, we get

ė = A0e + (B∆u + εf (x) + h(x, t)), (7)
where

∆u = g(x)u(t− τ(t))− g1(x)u(t− τ). (8)

In equation (7), if we take the whole item B∆u +
εf (x) + h(x, t) as the system control input, and let an
identity matrix to be the control gain matrix, the error sys-
tem is a linear time invariant (LTI) system. Because A0 is
Hurwitz, according to the linear system theory, the system
is input state stable (ISS). It is assumed that ‖e(t)‖ 6 ē.
Similarly by equations (3), Ω is ISS with respect to φ(x).
Therefore, ‖Ωi(t)‖ 6 Ω̄i.

Define one-order filters as

ιiżi = −zi + αi−1, 2 6 i 6 n, (9)

where ιi are positive design parameters. The virtual con-
trols αi are defined in the following.

Define dynamic surfaces as



s1 = x1 − yr,
si = xi − zi, 2 6 i 6 n− 1,

sn = ξn − zn + g1(x)
w 0

−τ
u(t + v)dv.

(10)

Define assistant functions



q1(λ1) = φ1(x1)θ − ẏr + (η2
1 + 1)s1,

qi(λi) = φi(x̄i)θ − żi + (η2
i + 1.5)si,

2 6 i 6 n− 1,

qn(λn) = kn(x1 − ξ1)− żn +
n−1∑
j=1

∂g1

∂xj
·

w 0

−τ
u(t + v)dv[xj+1 + φj(x)θ]+

γ2
n−1∑
j=1

(
∂g1

∂xj

w 0

−τ
u(t + v)dv)2sn+

(η2
n + 0.5)sn,

(11)

where γ > 0, ηi > 0(i = 1, · · · , n) are design constants
and kn is a positive constant which defined by equations
(5).

By Lemma 1, the RBF neural network is constructed to
approximate the continuous function qi(λi) for each sub-
system.

qi(λi) = WT
i Si(λi) + εwi

(λi), ∀λi ∈ Cλi
. (12)

Define the virtual controls

αi = −c2
i si − ŴT

i Si(λi), 1 6 i 6 n, (13)

where ci are design parameters,



λ1 = [x1 yr ẏr]T,

λi = [x̄T
i zi żi]T, 2 6 i 6 n− 1,

λn = [xT zn żn ξ1 ξn
∂g1

∂x1
· · · ∂g1

∂xn−1w 0

−τ
u(t + v)dv]T.

(14)

The following theorem is presented.
Theorem 1 Consider the system (1) under Assump-

tions 1–4. The virtual controls αi are defined by equation
(13). If the control law is selected as

u(t) = −g−1
1 (x)αn, (15)

and the adaptive law is selected as
˙̂

Wi = Γi(Si(λi)si − σ2
i Ŵi), 1 6 i 6 n, (16)

then the system tracking error is bounded and ultimately
converges to an adequately small compact set:

|y − yr| 6
√

2V̄ , lim
t→∞

|y − yr| 6 k∗δ∗, (17)

where k∗ is the design parameter and V̄ , δ∗ are constants.
The closed-loop system is SGUUB.

Proof Define variables %i as
%i = zi − αi−1, 2 6 i 6 n. (18)

Referring to equations (9) and (13), we have

%̇i = żi − α̇i−1 = −ι−1
i %i − f%i

(λi−1), (19)
where

f%i
(λi−1) = −c2

i−1ṡi−1 − ˙̂
WT

i−1Si−1(λi−1)−
ŴT

i−1

∂Si−1

∂λi−1
λ̇i−1. (20)

Each f%i(λi−1) is a continuous function. Therefore,
|f%i

(λi−1)| has a maximum f̄%i
on a compact set Cλi−1 .

The explicit definition of Cλi
is to be illustrated in the fol-

lowing.
Define the Lyapunov function V (t) as

V (t) =
n∑

i=1

Vi(t), (21)

Vi(t) =
1
2
s2

i +
1
2
W̃T

i Γ−1
i W̃i +

γ2
%i+1

2
%2

i+1,

1 6 i 6 n− 1, (22)

Vn(t) =
1
2
s2

n +
1
2
W̃T

n Γ−1
n W̃n, (23)

where W̃i = W ∗
i − Ŵi.

Step 1 For the first subsystem, by equations (2)–(3)
and (9), it can be obtained that
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ṡ1 = ẋ1 − ẏr = x2 + φ1(x1)θ + εf1 + h1 − ẏr =
x2 + WT

1 S1(λ1) + εw1 − (η2
1 + 1)s1 + εf1 + h1 =

x2 − c2
1s1 − ŴT

1 S1(λ1)− α1 + WT
1 S1(λ1) +

εw1(λ1)− (η2
1 + 1)s1 + εf1 + h1 =

−c2
1s1 + x2 − α1 + W̃T

1 S1(λ1) + εw1(λ1) + εf1 +
h1 − (η2

1 + 1)s1. (24)
Using Young’s Inequality, we get

siεi 6 η2
i s2

i +
1

4η2
i

ε2
i , (25)

W̃iŴi 6 −1
2
‖W̃i‖2 +

1
2
‖Wi‖2, 1 6 i 6 n, (26)

s1(s2 + %2) 6 s2
1 +

1
2
s2
2 +

1
2
%2
2, (27)

and
−γ2

%2
%2f%2(λ1) 6 ζ2γ2

%2
%2
2 +

1
4ζ2

γ2
%2

f2
%2

(λ1). (28)

Differentiating the Lyapunov function V1 (22) along
the track (24) and substituting virtual control (13), adap-
tive law (16) and Inequalities (25)–(28) into it, it is easy to
have

V̇1 = s1[−c2
1s1 + x2 − α1 + W̃T

1 S1(λ1) + εw1(λ1) +
h1 − (η2

1 + 1)s1]− W̃T
1 (S1(λ1)s1 − σ2

1Ŵ1) +
γ2

%2
%2%̇2 + εf1 =

s1[−c2
1s1 + x2 − α1 + εw1(λ1) + εf1 + h1 −

(η2
1 + 1)s1] + σ2

1W̃T
1 Ŵ1 + γ2

%2
%2%̇2 6

−c2
1s

2
1 + s1(x2 − α1) + |s1|(ε̄w1 + ε̄f1 + h̄1)−

(η2
1 + 1)2s2

1 + σ2
1W̃T

1 Ŵ1 + γ2
%2

%2%̇2 6

−c2
1s

2
1 + s1(x2 − α1) +

1
4η2

1

(ε̄w1 + ε̄f1 + h̄1)2 −

s2
1 + σ2

1(
−1
2
‖W̃1‖2 +

1
2
‖W1‖2) +

γ2
%2

%2(−ι−1
2 %2 − f%2(λ1)) 6

−c2
1s

2
1−

σ2
1

2
‖W̃1‖2−

γ2
%2

ι2
%2
2−s2

1 + s1(s2 + %2) +

1
4η2

1

(ε̄w1 + ε̄f1 + h̄1)2 +
σ2

1

2
‖W1‖2 − γ2

%2
%2f%2 6

−c2
1s

2
1 −

σ2
1

2
‖W̃1‖2 −

γ2
%2

ι2
%2
2 − s2

1 +

1
4η2

1

(ε̄w1 +ε̄f1 +h̄1)2 +
σ2

1

2
‖W1‖2 + s2

1 +
1
2
s2
2 +

1
2
%2
2 + ζ2γ2

%2
%2
2 +

1
4ζ2

γ2
%2

f2
%2

(λ1) 6

−kv1V1 + bv1 + ∆v1, (29)
where



kv1 = min{2c2
1, (

2
ι2
− 1

γ2
%2

− 2ζ2),
σ2

1

λmax(Γ−1
1 )

},

bv1 =
1

4η2
1

(ε̄w1 + ε̄f1 + h̄1)2 +
σ2

1

2
‖W1‖2 +

γ2
%2

4ζ2
f̄2

%2
,

∆v1 =
1
2
s2
2.

(30)

Step i For the ith (2 6 i 6 n − 1) subsystem, by
equations (2)(3) and (9), it can be obtained that

ṡi = ẋi − żi = xi+1 + φi(x̄i)θ + εfi
+ hi − żi =

xi+1 + WT
i Si(λi) + εwi

− (η2
i + 1.5)si + εfi

+ hi =

xi+1 − c2
i si − ŴT

i Si(λi)− αi + WT
i Si(λi) + εwi =

−(η2
i + 1.5)si + εfi

+ hi − c2
i si + xi+1 − αi +

W̃T
i Si(λi) + εwi + εfi + hi − (η2

i + 1.5)si. (31)

Differentiating the Lyapunov function Vi (22) along the
track (31) and substituting (13) into it, it is easy to have

V̇i = si[−c2
i si + xi+1 − αi + W̃T

i Si(λi) + εwi
+

εfi
+ hi − (η2

i + 1.5)si] + γ2
%i+1

%i+1%̇i+1 −
W̃T

i (Si(λi)si − σ2
i Ŵi) 6

−kviVi + bvi + ∆vi, (32)
where



kvi = min{2c2
i , (

2
ιi
− 1

γ2
%i+1

− 2ζ2),
σ2

i

λmax(Γ−1
i )

},

bvi =
1

4η2
i

(ε̄wi + ε̄fi + h̄i)2 +
σ2

i

2
‖Wi‖2+

1
4ζ2

γ2
%i+1

f̄2
%i+1

,

∆vi = −1
2
s2

i +
1
2
s2

i+1.

(33)

Step n For the nth subsystem, by Assumption 2,

ṡn = ξ̇n − żn +
d
dt

(g1(x)
w 0

−τ
u(t + v)dv) =

kn(x1 − ξ1) + g1(x)u(t− τ)− g1(x)u(t− τ) +
n−1∑
j=1

∂g1

∂xj
ẋj

w 0

−τ
u(t + v)dv + g1(x)u(t)− żn. (34)

By equation (2), we have

sn

n−1∑
j=1

∂g1

∂xj
ẋj

w 0

−τ
u(t + v)dv =

sn

n−1∑
j=1

∂g1

∂xj

w 0

−τ
u(t + v)dv · [xj+1 + φj(x)θ +

εfj
(x) + hj(x, t)] 6

sn

n−1∑
j=1

∂g1

∂xj

w 0

−τ
u(t + v)dv · [xj+1 + φj(x)θ] +

γ2s2
n

n−1∑
j=1

(
∂g1

∂xj

w 0

−τ
u(t + v)dv)2 +

1
4γ2

n−1∑
j=1

(ε̄fj
+ h̄j)2, (35)

where γ is the design parameter in equation (11). Differen-
tiating Vn (22) along the track (34) and substituting equa-
tions (15)–(16), and (35) into it, we can have

V̇n = sn[kn(x1 − ξ1) +
n−1∑
j=1

∂g1

∂xj
ẋj

w 0

−τ
u(t + v)dv −

żn + g1(x)u(t)]− W̃T
n (Sn(λn)sn − σ2

nŴn) 6

−c2
ns2

n − 0.5s2
n −

σ2
n

2
‖W̃n‖2 + sn(−αn + g1u) +

[
ε̄2

wn

4η2
n

+
1

4γ2

n−1∑
j=1

(ε̄fj
+ h̄j)2 +

σ2
n

2
‖Wn‖2] 6
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−kvnVn + bvn + ∆vn, (36)

where



kvn = min{2c2
n,

σ2
n

λmax(Γ−1
n )

},

bvn =
ε̄2
wn

4η2
n

+
1

4γ2

n−1∑
j=1

(ε̄fj
+ h̄j)2 +

σ2
n

2
‖Wn‖2,

∆vn = −1
2
s2

n.

(37)

Therefore, 0 6 Vn(t) 6 (Vn0 − δvn)e−kvnt + δvn, δvn =
bvn

kvn
, Vn0 = Vn(0). Define V̄n = max{Vn0, δvn}.

Vn 6 V̄n, lim
t→∞

Vn = δvn. (38)

Therefore,



|sn| 6
√

2V̄n, ‖W̃n‖ 6
√

2V̄n√
λmin(Γ−1

n )
,

‖Ŵn‖ 6
√

2V̄n√
λmin(Γ−1

n )
+ ‖Wn‖.

(39)

By the property of Gaussian basis function, we have that

Sij(λi) 6 1, ‖Si(λi)‖ 6 √
mi, 1 6 i 6 n. (40)

By Assumption 4, virtual control definition (13) and con-
troller definition (15), we get

|u(t)| = | 1
g1(x)

(−c2
nsn − ŴT

n Sn(λn))| 6

1
g0

[c2
n

√
2V̄n + (

√
2V̄n√

λmin(Γ−1
n )

+ ‖Wn‖)√mn] 6 ū,

(41)
where

ū =
1
g0

[c2
n

√
2V̄n + (

√
2V̄n√

λmin(Γ−1
n )

+ ‖Wn‖)√mn].

(42)
Repeating the backstepping procedure, we can prove

that for ith subsystem (1 6 i 6 n−1) the following result
holds

Vi 6 V̄i, lim
t→∞

Vi = δvi, (43)

|si| 6
√

2V̄i, |%i| 6
√

2V̄i

γ%i

,

‖W̃i‖ 6
√

2V̄i√
λmin(Γ−1

i )
, (44)

‖Ŵi‖ 6
√

2V̄i√
λmin(Γ−1

i )
+ ‖Wi‖, (45)

|αi| 6 c2
i

√
2V̄i + (

√
2V̄i√

λmin(Γ−1
i )

+ ‖Wi‖)m
1
2
i , (46)

|zi| 6 |%i|+ |αi−1| 6
√

2V̄i

γ%i

+ ᾱi−1, (47)

|żi| = | − ι−1
i %i| 6

√
2V̄i

γ%iιi
, (48)

|xi| 6 |si|+ |zi| 6
√

2V̄i +

√
2V̄i

γ%i

+ ᾱi−1, 1 6 i 6 n, (49)

where

ᾱi = c2
i

√
2V̄i + (

√
2V̄i√

λmin(Γ−1
i )

+ ‖Wi‖)m
1
2
i . (50)

Step n+1 For the overall system, differentiating the
Lyapunov function V , we have

V̇ =
n∑

i=1

V̇i(t) 6 −kvV (t) + bv, (51)

where
kv = min {kv1, · · · , kvn} , bv =

n∑
i=1

bvi. (52)

Therefore, 0 6 V (t) 6 (V0 − δv)e−kvt + δv, δv =
bv

kv
, V0

= V (0). Define V̄ = max{V0, δv}. Therefore, ‖s‖ 6
√

2V̄ , ‖Ŵi‖ 6
√

2V̄i√
λmin(Γ−1

i )
+ ‖Wi‖. Thus s, Ŵi, αi are

bounded, respectively. It can be proved that x, Ω, ξ, e are
all bounded. The closed-loop system is SGUUB. Because

V (t) 6 V̄ , lim
t→∞

V (t) = δv, (53)

we get
|y − yr| 6

√
2V̄ , (54)

lim
t→∞

|y − yr| 6
√

2δv =
√

2
kv

√
bv = k∗δ∗, (55)

where

k∗ =
√

2
kv

, δ∗ =
√

bv. (56)

It means that the tracking error is bounded and ultimately
converges to an adequately small compact set which can
be adjusted by the design parameter k∗. The proof of The-
orem 1 is completed.

Remark 1 In this remark, we demonstrate that the sys-
tem state is in a compact set in detail. By Inequality (54), we
have

|y| 6
p

2V̄ + ȳr , ȳ. (57)
Because x̄n−1 is proved to be bounded, according to the prop-
erty of continuous functions, it is held that

|g1(x̄n−1)| 6 ḡ1, (58)
where ḡ1 is an unknown constant. By Assumption 2 and ex-
pression (8), it gives

g(x) 6 ḡ1 + δg, (59)

‖∆u‖ 6 (2ḡ1 + δg)ū , ∆̄u. (60)
By equations (4)(7), we have

ξ(t) = eA0tξ(0) +
w t

0
eA0(t−s)(Ky(s) +

Bg1(x(s))u(s− τ))ds, (61)

Ω(t) = eA0tΩ(0) +
w t

0
eA0(t−s)φ(y(s))ds, (62)

e(t) = eA0te(0) +
w t

0
eA0(t−s)[B∆u(s) +

εf (x(s)) + h(x(s), s)]ds. (63)
Therefore,
‖ξ(t)‖ 6

‖eA0t‖‖ξ(0)‖+ (ȳ

s
nP

j=1
k2

j + ḡ1ū)‖
w t

0
eA0(t−s)ds‖ 6
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√
n‖P‖‖P−1‖‖ξ(0)‖+ (ȳ

s
nP

j=1
k2

j +

ḡ1ū)
√

n‖A−1
0 ‖(‖P‖‖P−1‖+ 1) , ξ̄, (64)

‖Ω(t)‖ 6 ‖eA0t‖‖Ω(0)‖+
√

nq‖
w t

0
eA0(t−s)ds‖ 6

√
n‖P‖‖P−1‖‖Ω(0)‖+n

√
q‖A−1

0 ‖(‖P‖‖P−1‖+ 1) ,
Ω̄, (65)

‖e(t)‖ 6 ‖eA0t‖‖e(0)‖+ (∆̄u +

√
nε̄f +

s
nP

j=1
h̄2

j )‖
w t

0
eA0(t−s)ds‖ 6

√
n‖P‖‖P−1‖‖e(0)‖+

(∆̄u +
√

nε̄f +

s
nP

j=1
h̄2

j )
√

n‖A−1
0 ‖ ×

(‖P‖‖P−1‖+ 1) , ē, (66)

where the following results are used:

P−1A0P = Λ, Λ = diag{−Λ1, · · · ,−Λn}, Λi > 0,

‖eA0t‖ 6
√

n‖P‖‖P−1‖,
w t

0
eA0(t−s)ds = −A−1

0 eA0(t−s) |t0= A−1
0 (eA0t − I),

‖
w t

0
eA0(t−s)ds‖ 6 ‖A−1

0 (eA0t − I)‖ 6

‖A−1
0 ‖√n(‖P‖‖P−1‖+ 1). (67)

Finally, by equations (4)(6), we get

x = ξ + Ωθ + e. (68)

By the above results, it shows that the system state x(t)(t

> 0) stays in a compact set Cx as

Cx =
˘
x | ‖x‖ 6 ξ̄ + Ω̄‖θ‖+ ē

¯
. (69)

According to the property of continuous functions, we
have

∃p̄g, s.t. |∂g1

∂xi
| 6 p̄g, 1 6 i 6 n, 1 6 j 6 n. (70)

By equation (41), we get

|
w 0

−τ
u(t + v)dv| 6 τ ū. (71)

The neural network input parameter λi(1 6 i 6 n) in
equations (14) stays in the compact set Cλi

as

Cλi
= {λi | |yr| 6 ȳr, |ẏr| 6 ȳr,

|zi| 6
p

2V̄i

γ%i

+ ᾱi−1, |żi| 6
p

2V̄i

γ%i ιi
,

‖x‖ 6 max{‖x(0)‖, ξ̄ + Ω̄‖θ‖+ ē},
‖ξ‖ 6 ξ̄, | ∂g1

∂xj
| 6 p̄g, |

w 0

−τ
u(t + v)dv| 6 τ ū,

1 6 j 6 i}. (72)

Remark 2 By equation (1), x and λi are in the com-
pact set, respectively, at the initial time (t = 0). By Theorem
1 and Remark 1, x and λi are always in the compact set, re-
spectively. Because x is in a compact set, the neural network
approximation for unknown function fi(x̄i) is valid with ap-
proximation error εfi

bounded. Because λi is in a compact set,
the neural network approximation for unknown function qi(λi)

is valid with approximation error εwi(λi) bounded. Similar
discussions can be found in the reference [25].

Remark 3 Although there are many items in the resid-
ual bv, it can be arbitrarily small, if we choose proper design

parameters, such as ηi, σi, etc. According to expressions (64)–
(66) and (69), it is shown that the range of the compact set Cx is
related to the design parameters such as k∗. Proper parameters
lead to a small range of the compact set.

Remark 4 The introduction of filter and virtual ob-
server has two advantages: 1) Combined with the novel vari-
able definition, it converts the input delayed system to the non-
delayed system. 2) It makes the controller design simple, with-
out regarding the unknown items of the delay and the control
gain function.

Remark 5 Although the states are measurable, but the
derivation ẋn is not available, since the function fn(x) and con-
trol gain g(x) are all unknown (1). Therefore, we introduce a
filter (3) and a virtual observer (4) in order to simplify the proof.
From the definition of the filter (3), it implies that both ξ and
ξ̇n are available. From the definition of sn in equation (10), we
can get that by replacing xn with ξn, both sn and derivation ṡn

are available. In equation (34), this leads to the elimination of
the item g1(x)u(t − τ) in the proof. The result makes a great
contribution to the solution of the problem.

4 Simulation example
Consider the nonlinear system with uncertain input de-

lay as follows:



ẋ1 = 0.1x3
1 + x2 + 0.1 sin2 x2,

ẋ2 = 0.3x1x2 + 0.2 sin(0.2t) + (2+
sinx1 + 0.05 sin x2)u(t− τ(t)),

y = x1,

(73)

τ(t) = 0.3 + 0.1 sin t, τ = 0.3, f1(x1) = 0.1x3
2, f2(x) =

0.3x1x2, g(x) = 2 + sinx1 + 0.05 sin x2, g1(x1) =
2+sinx1, h1(x, t) = 0.1 sin2 x1, h2(x, t) = 0.2 sin(0.2t),

yr(t) = sin(0.2t) sin(0.5t), A =
[
0 1
0 0

]
, B =

[
0
1

]
.

Choose parameters:

k = [3 2]T, A0 =
[−3 1
−2 0

]
, a1 = 1.2, a2 = 1.3,

b1 = 0.1, b2 = 0.1, γ1 = 1.2, γ2 = 1.2,

σ1 = 0.05, σ2 = 0.05.

Construct a virtual observer x̂ for system (73) as



ξ̇ = A0ξ + Ky + Bg1(x1)u(t− 0.3),
Ω̇ = A0Ω + φ(x),
x̂ = ξ + Ωθ,

where

Ω =
[
Ω1

Ω2

]
, Ωi ∈ R1×5, ξ =

[
ξ1

ξ2

]
.

Define a one-order filter as
ι2ż2 = −z2 + α1, (74)

where ι2 is a positive design parameter. The virtual con-
trols α1 is defined in the following. Define dynamic sur-
faces as{

s1 = x1 − yr,

s2 = ξ2 − z2 + g1(x)
w 0

−0.3
u(t + v)dv.

(75)

Define the virtual controls
αi = −c2

i si − ŴT
i Si(λi), 1 6 i 6 2, (76)

where ci are design parameters,



No. 11 ZHU Qing et al: Adaptive dynamic surface control for a class of nonlinear time-delay systems 1443



λ1 = [x1 yr ẏr]T,

λ2 =[x1 x2 z2 ż2 ξ1 ξ2
∂g1

∂x1

w 0

−0.3
u(t+v)dv]T.

(77)
Define assistant functions




q1(λ1) =φ1(x1)θ − ẏr + (η2
1 + 1)s1,

q2(λn) =k2(x1 − ξ1)− ż2 + (η2
2 + 0.5)s2+

∂g1

∂x1

w 0

−0.3
u(t + v)dv[x2 + φ1(x)θ]+

γ2(
∂g1

∂x1

w 0

−0.3
u(t + v)dv)2s2.

(78)

Select control law as u(t) = −g−1
1 (x)α2 and adaptive law

as
˙̂

Wi = Γi(Si(λi)si − σ2
i Ŵi), 1 6 i 6 2, (79)

where
S1 ∈ R1×27, S2 ∈ R1×6561,

S1,i = e
−

3∑
j=1

(λ1,j − µi,j)2

, 1 6 i 6 27,

S2,i = e
−

8∑
j=1

(λ2,j − νi,j)2

, 1 6 i 6 6561,

µi,j ∈ {−1, 0, 1}, νi,j ∈ {−1, 0, 1}.
Select initial values

Ŵ1(0) = 0, Ŵ2(0) = 0, ξ(0) = 0,

x(t) = [2 cos t − cos3 t]T, t ∈ [−0.3, 0].

The results of the control scheme is shown in Figs.1–4.

Fig. 1 Output y(t) and reference signal yr(t)

Fig. 2 Control input u(t)

Fig. 3 Tracking error e(t)

Fig. 4 Norm of the neural network weight

5 Conclusion
In this paper, an adaptive dynamic surface control

scheme is proposed for the tracking control problem in or-
der to improve the traditional backstepping approach. Un-
known continuous functions are approximated by neural
networks online. By introducing a novel dynamic surface
variable including a integral term of control input, the input
delay is eliminated in the last subsystem. The SGUUB of
closed-loop system is guaranteed by Lyapunov approach.
Finally, the simulation results demonstrate the effective-
ness of the scheme.
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