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Abstract: This paper presents an adaptive backstepping control method to deal with the problem of robust trajectory
tracking for unmanned helicopters with disturbances. The originality of this work relies on the way to compensate the
disturbances acting on the helicopter to cause the path deviation. A simplified model is built to facilitate the backstepping
controller design; while the unmodelled dynamics is treated as the external wind gusts, mismatched trim values, forces and
moments generated by fuselage, fins and other neglected dynamic uncertainties. After designing the backstepping con-
troller, a nonlinear adaptive control law is developed for estimating the disturbance. The estimation results are integrated
with the backstepping controller to ensure the robust stability of the closed-loop tracking system. By using the Lyapunov
theory, we prove that the designed controller is effective for disturbance rejection, especially for the low frequency distur-
bances. Two simulations show that the proposed controller outperforms either the conventional backstepping controller or
the integral backstepping controller.
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1 Introduction

With the capability of hovering, vertical take-off and
landing, high levels of agility and maneuverability, un-
manned helicopters have significant and remarkable ad-
vantages over fixed-wing aircraft in rescue, surveillance,
security operation, agricultural and livestock studies, aerial
mapping, etc. The helicopter systems, however, are char-
acterized by the highly nonlinear coupling effect between
the rotational moments and the translational accelerations
and by disturbances like external wind gusts and unavoid-
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ably uncertainty due to the empirical representation of
aerodynamic forces and moments!'=!. These disadvan-
tages increase the difficulty in flight control design to im-
prove stability performance and disturbance rejection ca-
pability.

Recently the control problems of unmanned heli-
copters have attracted great attention from control re-
searchers and many control methods have been used to de-
sign the flying controller. Based on the identification of the
helicopter simplified linear model®, linear control meth-
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ods such as traditional PIDP®!, LQR/LQG®!, H. [, -
synthesis/®!, etc have been used in helicopter’s autonomous
control successfully. However, these linear control meth-
ods can only guarantee the stability and robustness in the
neighborhood of the origin. In order to get a large range of
stability and robustness, many nonlinear control methods
such as gain scheduling!’, MPC!'% adaptive control!!!!,
dynamic inversion!!2! feedback linearization!!3!, neural
network!!'*), backstepping control>-2%!_ etc are developed.
Among these methods, backstepping control aroused many
researches’ interest in recent years due to the intuitive de-
sign process and its guarantee of stability. Robert et al.l'>]
used backstepping algorithm for helicopter robust trajec-
tory tracking based on a simplified helicopter model. Bi-
lal et al.l'® developed it in a complete model and Adnan
et al.l'”! added an integral action to the backstepping ap-
proach for eliminating the steady state error. Zhou et al.!'8]
presented a filtering backstopping algorithm for helicopter
control in order to reduce the calculation of the virtual
control signal derivatives in backstepping design. Lee et
al.l"2% designed an adaptive backstepping integral con-
troller and a backstepping controller with RBFNN for heli-
copter airdrop missions. However, since the accurate non-
linear model of helicopter could not be obtained due to the
empirical representation of aerodynamic forces and mo-
ments and external disturbances, the above backstepping
algorithms!3-2%1 would not ensure good tracking perfor-
mance when the uncertainties and disturbances are consid-
ered.

To improve tracking performance and disturbance re-
jection capability, it is necessary to design a disturbance
observer for compensating the disturbances. As the au-
thor’s investigation, few papers have referred about the dis-
turbance observer design for unmanned helicopters espe-
cially for backstepping control design. Francois et al.l>!]
presented a disturbance observer named extended state ob-
server and used it with approximate feedback linearization
control for model-scale helicopters with active wind gusts
rejection. Liu et al.!% designed an explicit nonlinear MPC
augmented with disturbance observers which are designed
to estimate the influence of the external force/torque in-
troduced by wind turbulences, unmodelled dynamics and
variations of the helicopter dynamics. Cheviron!??! used
robust differentiation of the measurements to reconstruct
the disturbances online accurately and then used robust
backstepping techniques for helicopters in presence of
wind gusts. This controller provided robust stability but
did not compensate for the neglected forces that generated
by the main rotor and tail rotor which would result in track-
ing errors.

In this paper, an adaptive backstepping control is de-
signed for unmanned helicopters with disturbances to do
trajectory tracking. For simplifying the helicopter model to
fit the adaptive backstepping control design, external wind
gusts, mismatched trim values, forces and moments gener-
ated by fuselage, fins and other neglected dynamic uncer-
tainties are all treated as lumped disturbances. The adap-
tive backstepping control is composed of a backstepping
control and a nonlinear adaptive control. The backstepping

control is used for trajectory tracking, and the nonlinear
adaptive control is designed to estimate the lumped dis-
turbances. By integrating the estimated disturbances into
backstepping controller, the disturbances can be compen-
sated to reduce the tracking errors. It’s shown according
to Lyapunov theory that the trajectory tracking errors are
robustly stable and the proposed controller is efficient es-
pecially for rejecting the low frequency disturbances.

The paper is organized as follows: In Section 2, a
helicopter mathematically complete model and its simpli-
fied model with disturbances are introduced; Section 3 dis-
cusses the design processes of adaptive backstepping used
in helicopter controller design and robust stability analysis
is carried out to guarantee the feasibility of the proposed
controller; Section 4 provides two simulations to demon-
strate the performance and merits of the proposed control
method; Section 5 concludes the paper.

2 Helicopter modeling

This section is aimed to briefly review the complete
nonlinear dynamic model of unmanned helicopters and in-
troduce a simplified nonlinear dynamic model with the
other trivial factors that affect dynamics being treated as
disturbances. Like the model in [2-3], the unmanned he-
licopter model is considered as a six-degrees-of-freedom
rigid-body model augmented with a simplified rotor dy-
namic model. For detailed mathematical modeling for full-
scale and small-scale helicopters, the reader is referred
to [2-3]. Therefore, the complete dynamics of the heli-
copter can be expressed as

P =R(O)V,

V=-0xV+gR(O)Tes + E,

) m (D
6 =S(0)n,

Q=—I'0xI,02+T,

where g is the acceleration due to a gravity, m is the mass
of helicopter, F' is the external forces expressed in the
body-fixed frame, I, is the diagonal inertia matrix, and I"
is the normalized external torques expressed in the body-
fixed frame,

e3=[00 11", P=[z y 2"
represent the helicopter’s inertial position,
V=[uvw®
is the velocity expressed in three body axes,
O=1[p 0 ¢"
are attitude angles and
N=1Ipqr*

are angular rates. The rotation matrix R and the attitude
kinematic matrix .S are defined as

ey spsbc)—copsy cosbep+spsy

R(O)= | s spsOsip+chpcyy copssp—spcyp |
—s6 spch coch
(2)
1 sotd  cotl
S@) =0 ct —so|, 3)

0 so/cl co/ch
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where the compact notation ¢(+), s(-) and ¢(-) are the shorts
for cos(+), sin(-) and tan(-).

The external forces F' and moments I exerting on the
helicopter are primarily generated by main and tail rotors
thrusts, fins and fuselage drags

er + Xfus
F= )/mr + }/fus + }/tr + va 5 (4)
Zmr + qus + th

Lmr+LVf + Ltr
I'= Mmr + Mht ) (5)
7Qc + Ntr + Nvf

where the set of forces and moments acting on the heli-
copter are organized by components: ( ), for the main
rotor; ( ), for the tail rotor; ( ), for the fuselage(includes
fuselage aerodynamic effects); ( )¢ for the vertical fin and
( )ns for the horizontal stabilizer, Q). is the torque produced
by the engine to counteract the acrodynamic torque on the
main rotor blades.

Due to the high complexity and deep couplings of
these complete forces (4) and moments (5) which are de-
tailed in [2-3], it is difficult to use them to design con-
trollers directly. This paper only considers the dominating
forces and moments which are generated by thrusts of the
main and tail rotors and treats others as disturbances, such
as

F=1[00T]"+m[dy d dy]", ©6)
Laa+Lbb+dP
r= Maa + Myb + dg )

Nrr + Ncol(scol + Npedéped + dr

where 7' is the main rotor thrust controlled by collective
pitch 6o, as

T = m(_g + Zww + ZC()I(SCOI)’

dped is the input of the tail rotor, a and b are flapping
angles to depict the flapping of the main rotor along the
longitudinal and lateral axis, respectively, (dy, dy, dy) and
(dp, dq, dr) are normalized force disturbances and moment
disturbances that generated by unmodelled dynamics and
external wind gusts. The other parameters can be obtained
by system identification in hovering condition. The rotor
flapping states a and b cannot be directly measured, but
their relationship with lateral and longitudinal cyclic d)at
and dy,,, can be approximated by the steady state dynamics
of the main rotor 1!

a=—-7q+ Alatalat + A10n510n7 (8)
b= —Tp+ Blat(slat + Blonélon-

Combining (7) and (8), a modified torque input can be
expressed as
F =
*T(Lanrpr) Llat(slat +Llon510n +dp
_T(Maq+Mbp) + Mlatalat +Mlon610n +dq =
NrT+Ncol(Scol Nped(sped+dr
AR+ Bu+ [dy dy 4], 9)
where

Llat = LaAlat + LbBlat7 Llon = LaAlon + LbBIOIn

Mlat = MaAlat + MbBlah
Mlon = MaAlon + MbBlon7

I —TLb —TLa 0

A= |—-1M, —TM, 0 |,
Lo 0 N
i 0 Llon Llat 0

B = 0 Mlon Mlat 0 ’
_Ncol 0 0 Nped

u= [5001 Olon Olat Jped]T is the control input.

Note that for avoiding the trimming process in real life
operations, the trimming values can be considerd as distur-
bances that are contained in (d,, dp,, dq, d;).

Combining (1) (6) and (9), the simplified helicopter
model can be expressed in a general affine form

& = f(x) + g1u + g2d, (10)

where

z=[PT VT T QTT
is the helicopter state, and

d=[dy d, dy dy dy do]"

is the lumped disturbance acting on the helicopter,

R(O)V
—2xV+gR(O)Tes + (—g+Zyw)es

S(0)0 ’
710 % [, 02 + AR

04><3 BT}Ta

T
o 03><3 I3 03><3 03><3

| 03x3 O3x3 Osx3 I3

f(®)=

g1 = [0ax3 [Zcotes O3x3]"
g2

Since all the states can be measured and all the pa-
rameters in f(x), g1 can be measured or obtained by sys-
tem identification in hovering condition, the only unknown
variable in (10) is the disturbance d. In the next section,
this paper will design an nonlinear adaptive law to esti-
mate this unknown disturbance d for improving the robust
performance and trajectory tracking performance.

3 Adaptive backstepping control with dis-
turbances

In this section an adaptive backstepping control is pro-
posed based on the simplified dynamic model of unmanned
helicopter with unmodeled dynamics and external distur-
bances being treated as a lumped disturbances. The con-
trol strategy is to find an adaptive control law for distur-
bance observing and integrate the estimated disturbances
into backstepping control design to improve the trajec-
tory tracking performance. For the purpose of trajectory
tracking, the outputs of interest are chosen to be the po-
sition vector P, and heading angle ¢,. Since the back-
stepping control is a recursive procedure for systemati-
cally selecting the control Lyapunov functions, the posi-
tion vector P, the heading angle ¢, and the time deriva-
tives (Pr, P. P, Pr(4), (;.Sr, gbr) are needed for the desired
trajectories. The detailed design procedures are presented
as the following steps.
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Step 1  Define the position tracking error as the
item 0; € R3 by

0 =P—-P,. an
Using (1) and differentiating (11) yields
61 = R(O)V — P, + R(O)V, — R(O)V, =
—k101 + R(O)0da, (12)

where k; is the tuning gain with positive value, V; is the
desired velocity and is chosen as follows:

Vi = R(©)T(=k10, + P,). 13)

Define the Lyapunov function candidate for d; to be
1

From (12), the time derivative of V; is
Vi = k1056, + 6T R(©)ds. (15)
Step 2 The velocity tracking error item &5 € R3 is
chosen in Step 1 as
02 =V — V. (16)

Taking the time derivative of d and using (1)(6)(12)—
(13) yields

F .
by = —12 V+gR(9)T63+E—Vr:
—02 X 02+ (—g+ Zww + Zeoideol)es + Hid +

R(©)T (ges — k61 — Py) + k102, (17)

where H; = [I5 03x3].
Since the disturbance d is unknown, the estimated dis-

turbance d is used to replace d in the following equations.

Therefore, (17) can be
52:_9 X 0o + (—g + Zyw + Zcol5col)e3 + Hld +

R(©) (ges— k26, — B.) 4+ k624 H. d, (18)

where d = d — d is the estimation error of the disturbance.
Define a new error

53 = (_g + wa + Zc015c01)€3 + Hld +
R(©)T M; + kds, (19)

where M5 =ges + (1 — k3)0; — Py, k=k1 + ko and ko
is the tuning gain with positive value.
Then the time derivative of d, is rewritten as

52 = —.QX(SQ—kQ(SQ—RT(@)(Sl—f—Sg—f—HlCZ. (20)

Define the Lyapunov function candidate containing do
by

1
Vo=V + 55562. (1)

From (15) and (20), the time derivative of V5 is repre-
sented by

. 2 ~ -
Vo = —(SQT(Q X 52) — Z klé,Tél + 52T(53 + (Sngd
i=1
(22)
The cross property makes the first term zero, so

. 2 - -

=1

At this stage the collective control input d.o appears
in the equation (19). We can choose it to satisfy

exds = 0. (24)
Inserting (19) to (24), the desired collective control

5col is

1 - R
5c01:7(g— Zww—e3(R(0) Ms+kdzy+ Hid)).
col

(25)
Along the condition of (24), the error b3 can be re-
expressed as
53 = (E + 6365)53 = ES3 =
E(R(©)T Ms + kéy + Hyd), (26)
where E = diag{1, 1, 0}.
Step 3 The third error item d3 € R? is defined as
§y = 03 + ea(v) — ). 27)
_ By multiplying E in both sides of (27) and using (26),
03 can be rewritten as
o3 = Ed3. (28)
Taking the time derivative of d3 and recalling (1)
(12)(19)—(20)(28) yields
b3 = b3 + 63@ - 7/%) =
E(sk(R(©)"Ms)2 + R(©)T M5 + kdy) +
e3(ex S(0)2 —4,) + EHyd =
N1 + Ny + EkHqd, (29)
where
Ny = Esk(R(©)TM;s + kdy) + esel S(6),
Ny = E(R(O)((k3 — k1 — k)31 — Py) +
(1—k? - %k2)52 + ko3 + H1£i) — eatr,
and sk(-) denotes the skew-symmetric matrix.
Define a new variable

o = [al (6] 0[3]T =

R(O)"((1 = k})d1 — By) + koo, (30)

By using the fact R(©)T R(6) = I, the following in-
equality is obtained:

lall = /a2 + a3 + a3 <
(1 = k3)du || + Kkl|o2 ]| + | 2], G1)

where || + || denotes for the Euclidean norm.
With substitution of the definition of M and (30), Ny
can be rewritten as

N = Esk(R(0)Tges + a) + eze3 S(O) =

0 —gcpcld — az gsoch + a
geocel + as 0 gsl — oy
. 56 oo , (32)
ch ch
then the determinant of /N7 can be calculated as
Qo8¢ + azco

det(Ny) = (gehcd + az)(g + (33)

cf )
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Comparing (33) and (31), a sufficient condition for
det(N71) # 0 (N7 non-singular) is

I(1 = k)00l + Kkl|o2]| + | Pl < geded.  (34)

Since ¢,0 € (—%,
jectory, the above inequation is almost true. If the above
inequation is not tenable at some time for aggressive ﬂlght
one can reduce || ;|| or |61, [|02]| by modifying P, and P,
(see the definition of §1, d2) to guarantee it tenable. The ex-
plication can be thinked that the flight trajectory is too ag-
gressive for the proposed controller to be tracked and must
be modified. It is noted that this modification only results
in more tracking errors. Thus, we can always assume Ny
is non-singular.

Take

il for most helicopter flight tra-
1 p g

2, = =Ny (k303 + Edy + Ny)

as a virtual control, then the time derivative of J3 is
by = —k3ds — Edy + N1 (2 — 2,) + EkH,d =
—k3d3 — Edy + N164 + EkH,d, (35)

where k3 is the tuning gain with positive value.

Define the Lyapunov function candidate including d3
by

1
Vi=V,+ 55;53 (36)

From (23) (28) and (35), the time derivative of V3 is
represented by

3 ~ ~
— > ki610;+ 63N 164+ (65 +01 Ek)H d.  (37)
i=1

Step 4  The angular velocity error item §; € R3
selected in Step 3 is

04 = 82— (2. (38)

Taking the time derivative of §, and recalling (7) yields

04=02 — h=H(f(®) + gru+ g2d) — 2, (39)
where H = [O3x9 I3].

After sophisticated computations, 2, can be calcu-
lated.

2 = =Ny '(ks(—ksds — Edy + N164) + Na—no +
Ni-no$2e+E (85— 0205 —kody— R(©)T6,) +
E(2 + kiks + ksk — sk(2:)k)H.d),
(40)
where
Ni_no = Esk(sk(R (Q)TM5 + 12:52)9 +
R(O)T((k} — k1 — k)61 — Pr) +
(1-k?— kk2)62 + Ekd3) 4 ezes 5(0),
Nono = E(=sk(2)R(O)" (K} —k1—k)6 —Pr) +
R(O)" ((k} —ky—k)(—k161+R()62) —
PWY (1 — k2 — kko)(—sk(2)d5 —

kody — R(©)T6; + Ed3) +
( kig(Sg — E(SQ + N1(54) + H1 ) — eg’l/}r

From (40), one can simplify the description of w, into
two parts with and without estimation errors d as below:

Q= O no+ NTYE(2 + kiks + ksk —
sk(£2,)k)H:d. 41)
Using (41) and assigning H g;u as
Hgiu=—H(f(x)+g2d)+ 2 —no—kads — N 05, (42)
then
04 =2 — Oy = —kads — N3+ C(2,)d, (43)
where k4 is the tuning gain with positive value,
C(2,) = Hgo — Ny YE(2 + kyka + kak — sk(2,)k)Hy.
Let all terms on the right hand side of (25) be ex-
pressed by a number s; and all terms on the right hand

side of (42) be expressed by a vector so. Then, combining
(25) and (42), one can easily obtain the control law

-1
[1 00 0] 51
= . 44
R B | B
Define the Lyapunov function candidate containing d4
by

1 1 o
Vi=Vs+ 3000+ 5yd"d, (45)

where + is a designed positive constant.
From (37) and (43), the time derivative of V can be

4 ~ - IS
Vi=— S ki6Ts; + C(6)Td +rdTd =
=1

4 ~ ~ -~ . X
— 3 ki6T6 + C(8)Td +vd T (d — d) <

i=1
— ikiafai +A\d"d —
1d"(d~771C(0) - 75 d). (46)
where
o=[6T o6F 6T oF]"
C(0)=H{(62+Ekd3)+C(£2,) %4,
A is a designed positive constant.

The last term in (46) can be eliminated by updating the
estimated disturbances in the following way

A~ o 71 ~ l ~
d=7""0(0)+ 5 d. (47)

Since d can be rewritten as

d=d-d=gj(&— f(&)—qiu)—d, (48)

where g = (g5 ggA)’1 g3 . The updating law of the esti-

mated disturbance d in (47) can be reachieved as

5 Y
d'— d. + flAgQ
do =7 1C10) = L(d+ g (@) +g1u).
(49)
Inserting (47) to (46) results in
4 .
-3 kiéiTéi +d'd, (50)

i=1
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then V} decreases when
4 o
3 koL, > AdTd,
i=1
which indicates that the tracking errors are uniformly ulti-
mately bounded by

4 o
S kTS, < AdTd
=1

if d is considered as external disturbance and bounded.

Since the model used for control design is a simplified
model mentioned in Section 2, d may contain the informa-
tion of states. We should analyze the robust stability of the
closed system. Let us define

z = diag{\/aa \/g7 \/ga \/H}é

and only consider the disturbance d as model uncertainty
which can be expressed as

d= Az, (51)
where A denotes the uncertain matrix.
Substituting (51) to (50) yields
Vi < =21 (I — AATA)z. (52)
If uncertain matrix A satisfies
ATA < X7, (53)

then V4 < 0 when z # 0, which indicates that the closed-
loop system is robustly stable. It can be seen from (53)
that the robust performance of the closed-loop system can
be improved by selecting a sufficiently small A.

Note that the robust control problem of (51) is a stan-
dard H,, control problem'®". By using small-gain theo-
rem!?3], the closed-loop system is robustly stable if

(s)
d(s)
From (53) and (54), we have

sup|| A= |oo < 1. (54)
A

1 . 1
mc?xa(j;Tzd(Jw)) = HgTzd(S)”oo =

IIZE‘:))loo <V, (55)

where & (-) denotes the maximal singular value, and

Tzd (S) = —

denotes the transfer function from d to z.
From (55), we also have

1
(T ) = [wlo(--T.a)) <
ol max (= Ta(ie) < VAL 66

which implies the transfer function T,4(s) has a zero in
the origin. So, under the adaptive backstepping controller,
the closed-loop system has zero steady-state error. A can
be considered as a specification of rejecting disturbances

which means that smaller )\, better disturbance attenuation.
Thus, the presented adaptive backstepping controller is ca-
pable of achieving the robust trajectory tracking and dis-
turbance attenuation, especially low frequency rejection.
The following theorem summarizes the above-mentioned
result.

Theorem 1 Consider the unmanned helicopter
with the system model described by (10). If the heli-
copter’s adaptive backstepping control law is designed as
(44) with the disturbance estimation updating law (49),
then the closed-loop tracking system is robustly stable
and the trajectory tracking error is uniformly ultimately
bounded if the time derivative of the external disturbances
is bounded.

4 Simulation

In this section, two numerical simulations are pre-
sented to investigate the performance of the proposed
adaptive backstepping controller. The first simulation con-
siders the stabilization in hovering flight with initial posi-
tion errors, heading angle error and input errors. The sec-
ond simulation aims at dealing with robust trajectory track-
ing problem for unmanned helicopter. The two numerical
simulations were conducted in the MATLAB environment,
where the time steps were set by 0.01s for realizing the
controller and simulating the helicopter dynamic model.
The controller parameters should be selected to achieve the
desired performance defined in ADS-33D-PRF ! in prac-
tical application and this simulation selects them as same
as [18] (Table 1). The simplified helicopter’s parameters
are shown in Table 2. The first and second derivatives of
the estimated disturbances d are approximately computed
by a low pass filter, i.e.

d~d=w(d—d)
for simplifying calculations and filtering the disturbance
with high frequency, and the parameter ws chosen to be 10
is appropriate for unmanned helicopter. The time deriva-
tive of the reference trajectory with respect to time and
their higher derivatives are dealt with in an ad hoc way
by numerical differentiation, i.e.
P.(n) — P(n—-1)

AT ’

where AT = 0.01 s is the sample time.

Pr(n) ~

Table 1 Parameters of the proposed controller

Symbol Description Value

Ky The tuning gain for the desired 0.5
velocity control

kg The tu~ning gain for the desired 1
error 03

ks The tuning gain for the desired 9
angular rate control

k4 The tuning gain for the desired 5

input
{7, A} The adaptation gains for th.e updating {10,0.5}
rule of disturbance estimation
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Table 2 Parameters of the unmanned helicopter
Symbol Description Value
m/kg The mass of helicopter 8.2
Im/ (kg - m?) The moment of inertia diag{0.18,0.34,0.28}
g/ (m-s72) The acceleration of gravity 9.8
Zw/s ! Linkage gain ratio of 7" to w —0.7615
Zeor/ (m/(rad - s?))  Linkage gain ratio of 7" to 8 —131.4125
A/s™H Coefficient matrix of 2in (9)  diag{—48.1757, —25.5048, —0.9808}
0 1.6895 0
B/ s 2 Coefficient matrix of u in (9) 0.8945 0 0 x 103
0 0 0.1358
In order to demonstrate the merits of the proposed o }(5) [ T T T ]
adaptive backstepping controller, two controllers using the h AR 4
. . . . < RENTI
normal backstepping design and integral backstepping de- 0 VL -
sign are also used in these simulation cases for compari- = 0 1 2 3 4 5 6 7 8 9 10
son. The normal backstepping controller has the same con- t/s
troller parameters as the proposed controller and the inte- 10
gral backstepping controller adds an integral tuning gains —~ ~ '_-', e,
o OR! o™ B e -
k1 = 0.5 and others are also chosen as the same as the O |
proposed controller. ® 20 T
4.1 Hovering simulation bz 3 4 s 67 8 910
The hovering simulation considers the initial posi- Lis
tion offset 5 = [-1 —1 1]Tm, heading angle offset - T T T T Tt
0y = —90° and inputs mismatched offset = 0= PEtppal pipfappap e pippup i ieppappprap g
50/ 1
6y = [0.01 —0.02 —0.01 —0.025]" rad. = 100 »/ S T S S S
. . . . . . 1 2 3 4 5 6 7 8 9 10
The aim of hovering simulation is to stabilize the un-
manned helicopter to the trimmed position P = [0 0 Lis ) )
O]T m and heading angle 1) = 0°. —Reference. ---Adaptive backsteppmg
. : L s Backstepping =~ - Integral backstepping
Figures 1-4 illustrate the results of the first simula- i . i )
tion. It can be seen that the normal backstepping approach Fig. 2 Attitude angle results in hovering
is able to deal with the stabilization, but it cannot compen- o 002
B e T T T T T T T T T
sate for the steady-state error. In contrast, the backstepping g 0.00 P |
with integral action cancels the steady state error, but it has e _0'02 ~ ’I"‘”-I—-- = T e e e e — ——
side-effects like overshoot. Obviously, the proposed adap- 001 2 3 4 5 6 7 8 9 10
tive backstepping control approach outperforms the other i/s
two control strategies to a large extent. < 004
2 T T T T T T T T T = -/ \} 'f\.,__‘,~
g 1f T . \g 0.02 Fiyg SETE
Z 0 ..-"— —— e 29 0.00 1 1 1 | 1 1 1 1 1
M 4 0 1 2 3 4 5 6 7 8 9 10
_2 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 t/s
t/s "g 88‘21 —’ T T T T T T T T T ]
1 T T T T T T T T T \E 0:00 i I‘;.,.‘ haginal A
£ O e e < -0.02 ~y 1 1 1 1 1 1 1 1
ks P 0 1 2 3 4 5 § 7 38 9 10
e Y T e e e e e e v ——— 3 t / S
_2 1 Il 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 g 0.5 T T T T T T T T T
g :
t/s ~ 0.0 [ /. rr o e o i s e e e e e
z,gg‘ -0.5 1 1 1 1 1 1 1 1 1
ST_I o] 0 1 2 3 4 5 6 7 8 9 10
N 0 t/s
e -—-Adaptive backstepping =~ --—- Backstepping
0o 1 2 3 4 5 6 7 8 9 10 e Integral backstepping
t/s Fig. 3 Control inputs in hovering
—Reference -—-Adaptive backstepping
----- Backstepping - Integral backstepping Figure 4 shows that the disturbance estimation updat-

Fig. 1 Position results in hovering

ing law (49) is efficient for mismatched trimming offsets.
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& 00— & 010~
T 005 - 4 7 o005t .
E 000 = £ 00055
I 005+ 4 T -005F .
= _010 1 1 1 1 2z 7010 1 1 1 1
S 0 2 4 6 8 10 ° 0 2 4 6 8 10
t/s t/s
‘\G;; l T T T T “\.w 0 T T T T
. OF 4 o -10F .
g
= -t 4 £ 20F 1
Z -2 by 1 1 1 Il \,__ -30 1 1 1 1
T % 2 4 6 810 0 2 4 6 8 10
t/s t/s
r‘\:n O T T T T (‘\Im 0 T T T T
< -10F g 5 2F g
£ 20F 7 & 4fFT :
\B. -30 T 1 1 1 ~ -6 L L 1 1
= 0 2 4 6 810 = 0 2 4 6 8 10

t/s t/s
—Disturbance =~ e Estimated disturbance

Fig. 4 Estimated disturbances in hovering

4.2 Trajectory tracking with disturbances

In this tracking case, a fast-moving trajectory is de-
signed to be followed, and its position vector is given by

P =X, Y, 0T,

and heading angle v, = 0°, where

2, t<5s,
¥ _ 25 4+ 10(t — 5), Bs <t < Ts,
T4+ (1T =) (t—T), Ts<t<12s,
70, t>12s,
80 T T T T T
g 60 s - B
~ 40r 2 g
<20t ]
0 1 1 1 1 1
0 5 10 15 20 25 30
t/s
100 T T T T T
g 50 uﬂd’)/”,,,»*’“*ﬂ““““j
D~ 0 .
_50 1 1 1 1 1
0 5 10 15 20 25 30
t/s
6 T . — T T T T
E 4 /’/ N, 7
~ 2k /._‘_.--. N, -
D P —
-2 1 LA 1 e A 1
0 5 10 15 20 25 30
t/s
— Reference ---Adaptive backstepping
----- Backstepping  ------Integral backstepping

Fig. 5 Position trajectory

Moreover, From Figs.5-6 and their corresponding ob-
vious tracking errors under the normal backstepping con-
trol and integral backstepping scheme, it can be found that
the tracking error performance under the proposed con-
trol approach is substantially improved, which implies that
the proposed control approach is efficient for robust trajec-
tory tracking control of unmanned helicopters with distur-
bances.

(t —12)2, 12s < t < 17s,
25+ 10(t — 17), 17s <t < 19s,
45+ (29 — t)(t — 19), 19s <t < 24s,
70, t > 24s.

}/r:

In order to verify the robustness of the proposed con-
troller against the model uncertainties and the external dis-
turbances, a disturbance

d=AVT 0T 07T + dyina
is added in this simulation, where
A e R6%9

represents the model uncertainty and all of its elements are
pseudorandom values on the open interval (—0.5,0.5),

Vﬂé Vﬁj ]T

dying = [7Uwind 5 Vwind 01x4

represents the external disturbance such as wind gust and
Uwind 1S governed by a random distribution with a zero
mean and processed through a low pass filter which is de-
tailed in [24]. The maximal gain of vy,nq is designed to be
near 2.

The simulation results are shown in Figs.5-9. Fig.5
depicts the results of position tracking affected by the dis-
turbance d. Fig. 6 shows its position tracking errors.

Obviously, from Figs.5-6, we can find that the precise
trajectory tracking can be achieved by using the proposed
control approach.

ex/m

ey/ m

-,/ m

t/s

---Adaptive backstepping ~ --- Backstepping
------ Integral backstepping

Fig. 6 Position tracking errors

The heading angle tracking results in Fig.7 also il-
lustrates its more excellent tracking performance than the
other two methods. From the large variation range of the
time responses of roll angle ¢ and pitch angle 8 in Fig.7,
it indicates that the tracking trajectory is very aggressive.
Fig.8 shows the control inputs and Fig.9 illustrates the ef-
fectiveness of the designed disturbance estimation updat-
ing law (49).
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Fig. 7 Attitude angles
01 T T T T T
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o (T Ao -
0.00 = *"1\7\__.\.5}!!@\-;.&#”’\'\’" "'\lft"\kff\."w-a\ Yot
70.05 | - 1 1 1
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t/s
0.2 T T T T T
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Fig. 8 Control inputs
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Fig. 9 Estimated disturbances

5

Conclusions
This paper addresses the robust trajectory tracking

problem for unmanned helicopters with disturbances.
First, a simplified model is established for fitting the back-
stepping controller design easily with treating the unmod-
elled dynamics as lumped disturbances which contain ex-
ternal wind gusts, mismatched trim values, the forces and
moments generated by fuselage, fins and other neglected
dynamic uncertainties. Then a adaptive backstepping con-
troller is designed to ensure desired trajectory tracking,
which is a combination of backstepping technique, adap-
tive control technique. It is shown according to Lyapunov
theory that the trajectory tracking errors are robustly stable
and the proposed controller is efficient especially for re-
jecting the low frequency disturbances. Finally, two sim-
ulations are used to show that the tracking performance
of the closed-loop system used by adaptive ackstepping is
more outstanding than used by normal backstepping or in-
tegral backstepping.
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