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摘要:针对无人直升机干扰下的鲁棒轨迹跟踪问题,设计了一种自适应反步控制方法. 鉴于作用在直升机上的干
扰是产生跟踪误差的主要原因,该方法的主要思想是寻求一种方法来补偿这种干扰. 首先,将未建模动态如外部阵
风干扰、配平误差、机身、垂尾、平尾以及其他可忽略的动态产生的力和力矩看成一种组合干扰,从而建立了一个
方便反步法控制器设计的简化模型. 当设计好反步法控制器后,设计了一个非线性自适应律来估计这种组合干扰,
并通过将干扰估计值整合到反步控制器中,使得闭环跟踪系统的鲁棒稳定性得到了保证,即基于李雅普诺夫稳定性
理论证明了所设的控制器对于干扰主动阻隔,特别是低频干扰的主动阻隔是有效的. 最后,两个仿真研究验证了该
方法是优于常规反步法和积分反步法的.
关键词: 自适应反步法;鲁棒控制;轨迹跟踪;无人直升机;干扰估计
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Adaptive backstepping-based robust tracking control of
unmanned helicopters with disturbances
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Abstract: This paper presents an adaptive backstepping control method to deal with the problem of robust trajectory
tracking for unmanned helicopters with disturbances. The originality of this work relies on the way to compensate the
disturbances acting on the helicopter to cause the path deviation. A simplified model is built to facilitate the backstepping
controller design; while the unmodelled dynamics is treated as the external wind gusts, mismatched trim values, forces and
moments generated by fuselage, fins and other neglected dynamic uncertainties. After designing the backstepping con-
troller, a nonlinear adaptive control law is developed for estimating the disturbance. The estimation results are integrated
with the backstepping controller to ensure the robust stability of the closed-loop tracking system. By using the Lyapunov
theory, we prove that the designed controller is effective for disturbance rejection, especially for the low frequency distur-
bances. Two simulations show that the proposed controller outperforms either the conventional backstepping controller or
the integral backstepping controller.
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1 Introduction
With the capability of hovering, vertical take-off and

landing, high levels of agility and maneuverability, un-
manned helicopters have significant and remarkable ad-
vantages over fixed-wing aircraft in rescue, surveillance,
security operation, agricultural and livestock studies, aerial
mapping, etc. The helicopter systems, however, are char-
acterized by the highly nonlinear coupling effect between
the rotational moments and the translational accelerations
and by disturbances like external wind gusts and unavoid-

ably uncertainty due to the empirical representation of
aerodynamic forces and moments[1–3]. These disadvan-
tages increase the difficulty in flight control design to im-
prove stability performance and disturbance rejection ca-
pability.

Recently the control problems of unmanned heli-
copters have attracted great attention from control re-
searchers and many control methods have been used to de-
sign the flying controller. Based on the identification of the
helicopter simplified linear model[4], linear control meth-

Received 28 May 2012; revised 16 August 2012.
†Corresponding author. E-mail: auhlpei@scut.edu.cn; Tel.: +86 13660182029.
This work was supported by the National Natural Science Foundation of China (Nos. 60736024, 61174053), and the Cultivation Fund of the Key Scien-
tific and Technical Innovation Project, Ministry of Education of China (No. 708069).



No. 7 HE Yue-bang et al: Adaptive backstepping-based robust tracking control of unmanned helicopters with disturbances 835

ods such as traditional PID[5], LQR/LQG[6], H∞[7], µ-
synthesis[8], etc have been used in helicopter’s autonomous
control successfully. However, these linear control meth-
ods can only guarantee the stability and robustness in the
neighborhood of the origin. In order to get a large range of
stability and robustness, many nonlinear control methods
such as gain scheduling[9], MPC[10], adaptive control[11],
dynamic inversion[12], feedback linearization[13], neural
network[14], backstepping control[15–20], etc are developed.
Among these methods, backstepping control aroused many
researches’ interest in recent years due to the intuitive de-
sign process and its guarantee of stability. Robert et al.[15]

used backstepping algorithm for helicopter robust trajec-
tory tracking based on a simplified helicopter model. Bi-
lal et al.[16] developed it in a complete model and Adnan
et al.[17] added an integral action to the backstepping ap-
proach for eliminating the steady state error. Zhou et al.[18]

presented a filtering backstopping algorithm for helicopter
control in order to reduce the calculation of the virtual
control signal derivatives in backstepping design. Lee et
al.[19–20] designed an adaptive backstepping integral con-
troller and a backstepping controller with RBFNN for heli-
copter airdrop missions. However, since the accurate non-
linear model of helicopter could not be obtained due to the
empirical representation of aerodynamic forces and mo-
ments and external disturbances, the above backstepping
algorithms[15–20] would not ensure good tracking perfor-
mance when the uncertainties and disturbances are consid-
ered.

To improve tracking performance and disturbance re-
jection capability, it is necessary to design a disturbance
observer for compensating the disturbances. As the au-
thor’s investigation, few papers have referred about the dis-
turbance observer design for unmanned helicopters espe-
cially for backstepping control design. Francois et al.[21]

presented a disturbance observer named extended state ob-
server and used it with approximate feedback linearization
control for model-scale helicopters with active wind gusts
rejection. Liu et al.[10] designed an explicit nonlinear MPC
augmented with disturbance observers which are designed
to estimate the influence of the external force/torque in-
troduced by wind turbulences, unmodelled dynamics and
variations of the helicopter dynamics. Cheviron[22] used
robust differentiation of the measurements to reconstruct
the disturbances online accurately and then used robust
backstepping techniques for helicopters in presence of
wind gusts. This controller provided robust stability but
did not compensate for the neglected forces that generated
by the main rotor and tail rotor which would result in track-
ing errors.

In this paper, an adaptive backstepping control is de-
signed for unmanned helicopters with disturbances to do
trajectory tracking. For simplifying the helicopter model to
fit the adaptive backstepping control design, external wind
gusts, mismatched trim values, forces and moments gener-
ated by fuselage, fins and other neglected dynamic uncer-
tainties are all treated as lumped disturbances. The adap-
tive backstepping control is composed of a backstepping
control and a nonlinear adaptive control. The backstepping

control is used for trajectory tracking, and the nonlinear
adaptive control is designed to estimate the lumped dis-
turbances. By integrating the estimated disturbances into
backstepping controller, the disturbances can be compen-
sated to reduce the tracking errors. It’s shown according
to Lyapunov theory that the trajectory tracking errors are
robustly stable and the proposed controller is efficient es-
pecially for rejecting the low frequency disturbances.

The paper is organized as follows: In Section 2, a
helicopter mathematically complete model and its simpli-
fied model with disturbances are introduced; Section 3 dis-
cusses the design processes of adaptive backstepping used
in helicopter controller design and robust stability analysis
is carried out to guarantee the feasibility of the proposed
controller; Section 4 provides two simulations to demon-
strate the performance and merits of the proposed control
method; Section 5 concludes the paper.

2 Helicopter modeling
This section is aimed to briefly review the complete

nonlinear dynamic model of unmanned helicopters and in-
troduce a simplified nonlinear dynamic model with the
other trivial factors that affect dynamics being treated as
disturbances. Like the model in [2–3], the unmanned he-
licopter model is considered as a six-degrees-of-freedom
rigid-body model augmented with a simplified rotor dy-
namic model. For detailed mathematical modeling for full-
scale and small-scale helicopters, the reader is referred
to [2–3]. Therefore, the complete dynamics of the heli-
copter can be expressed as





Ṗ = R(Θ)V,

V̇ = −Ω × V + gR(Θ)Te3 +
F

m
,

Θ̇ = S(Θ)Ω,

Ω̇ = −I−1
m Ω × ImΩ + Γ,

(1)

where g is the acceleration due to a gravity, m is the mass
of helicopter, F is the external forces expressed in the
body-fixed frame, Im is the diagonal inertia matrix, and Γ
is the normalized external torques expressed in the body-
fixed frame,

e3 = [0 0 1]T, P = [x y z ]T

represent the helicopter’s inertial position,

V = [u v w]T

is the velocity expressed in three body axes,

Θ = [φ θ ψ]T

are attitude angles and

Ω = [p q r]T

are angular rates. The rotation matrix R and the attitude
kinematic matrix S are defined as

R(Θ)=




cθcψ sφsθcψ−cφsψ cφsθcψ+sφsψ
cθsψ sφsθsψ+cφcψ cφsθsψ−sφcψ
−sθ sφcθ cφcθ


 ,

(2)

S(Θ) =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


 , (3)
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where the compact notation c(·), s(·) and t(·) are the shorts
for cos(·), sin(·) and tan(·).

The external forces F and moments Γ exerting on the
helicopter are primarily generated by main and tail rotors
thrusts, fins and fuselage drags

F =




Xmr + Xfus

Ymr + Yfus + Ytr + Yvf

Zmr + Zfus + Zht


 , (4)

Γ=




Lmr+Lvf + Ltr

Mmr + Mht

−Qe + Ntr + Nvf


 , (5)

where the set of forces and moments acting on the heli-
copter are organized by components: ( )mr for the main
rotor; ( )tr for the tail rotor; ( )fus for the fuselage(includes
fuselage aerodynamic effects); ( )vf for the vertical fin and
( )ht for the horizontal stabilizer, Qe is the torque produced
by the engine to counteract the aerodynamic torque on the
main rotor blades.

Due to the high complexity and deep couplings of
these complete forces (4) and moments (5) which are de-
tailed in [2–3], it is difficult to use them to design con-
trollers directly. This paper only considers the dominating
forces and moments which are generated by thrusts of the
main and tail rotors and treats others as disturbances, such
as

F =
[
0 0 T

]T + m
[
du dv dw

]T
, (6)

Γ =




Laa + Lbb + dp

Maa + Mbb + dq

Nrr + Ncolδcol + Npedδped + dr


 , (7)

where T is the main rotor thrust controlled by collective
pitch δcol, as

T = m(−g + Zww + Zcolδcol),

δped is the input of the tail rotor, a and b are flapping
angles to depict the flapping of the main rotor along the
longitudinal and lateral axis, respectively, (du, dv, dw) and
(dp, dq, dr) are normalized force disturbances and moment
disturbances that generated by unmodelled dynamics and
external wind gusts. The other parameters can be obtained
by system identification in hovering condition. The rotor
flapping states a and b cannot be directly measured, but
their relationship with lateral and longitudinal cyclic δlat

and δlon can be approximated by the steady state dynamics
of the main rotor [10]

{
a = −τq + Alatδlat + Alonδlon,
b = −τp + Blatδlat + Blonδlon.

(8)

Combining (7) and (8), a modified torque input can be
expressed as

Γ =

−τ(Laq+Lbp)
−τ(Maq+Mbp)
Nrr+Ncolδcol


+




Llatδlat+Llonδlon+dp

Mlatδlat+Mlonδlon+dq

Npedδped+dr


 =

AΩ + Bu +
[
dp dq dr

]T
, (9)

where

Llat = LaAlat + LbBlat, Llon = LaAlon + LbBlon,

Mlat = MaAlat + MbBlat,

Mlon = MaAlon + MbBlon,

A =



−τLb −τLa 0
−τMb −τMa 0

0 0 Nr


 ,

B =




0 Llon Llat 0
0 Mlon Mlat 0

Ncol 0 0 Nped


 ,

u =
[
δcol δlon δlat δped

]T
is the control input.

Note that for avoiding the trimming process in real life
operations, the trimming values can be considerd as distur-
bances that are contained in (dw, dp, dq, dr).

Combining (1) (6) and (9), the simplified helicopter
model can be expressed in a general affine form

ẋ = f(x) + g1u + g2d, (10)

where

x = [PT V T ΘT ΩT ]T

is the helicopter state, and

d =
[
du dv dw dp dq dr

]T

is the lumped disturbance acting on the helicopter,

f(x)=




R(Θ)V
−Ω×V +gR(Θ)Te3 + (−g+Zww)e3

S(Θ)Ω
−I−1

m Ω × ImΩ + AΩ


 ,

g1 = [04×3 [Zcole3 03×3 ]T 04×3 BT ]T,

g2 =
[
03×3 I3 03×3 03×3

03×3 03×3 03×3 I3

]T

.

Since all the states can be measured and all the pa-
rameters in f(x), g1 can be measured or obtained by sys-
tem identification in hovering condition, the only unknown
variable in (10) is the disturbance d. In the next section,
this paper will design an nonlinear adaptive law to esti-
mate this unknown disturbance d for improving the robust
performance and trajectory tracking performance.

3 Adaptive backstepping control with dis-
turbances
In this section an adaptive backstepping control is pro-

posed based on the simplified dynamic model of unmanned
helicopter with unmodeled dynamics and external distur-
bances being treated as a lumped disturbances. The con-
trol strategy is to find an adaptive control law for distur-
bance observing and integrate the estimated disturbances
into backstepping control design to improve the trajec-
tory tracking performance. For the purpose of trajectory
tracking, the outputs of interest are chosen to be the po-
sition vector Pr and heading angle φr. Since the back-
stepping control is a recursive procedure for systemati-
cally selecting the control Lyapunov functions, the posi-
tion vector Pr, the heading angle φr and the time deriva-
tives (Ṗr, P̈r,

...
P r, P

(4)
r , φ̇r, φ̈r) are needed for the desired

trajectories. The detailed design procedures are presented
as the following steps.
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Step 1 Define the position tracking error as the
item δ1 ∈ R3 by

δ1 = P − Pr. (11)

Using (1) and differentiating (11) yields

δ̇1 = R(Θ)V − Ṗr + R(Θ)Vr −R(Θ)Vr =
−k1δ1 + R(Θ)δ2, (12)

where k1 is the tuning gain with positive value, Vr is the
desired velocity and is chosen as follows:

Vr = R(Θ)T(−k1δ1 + Ṗr). (13)

Define the Lyapunov function candidate for δ1 to be

V1 =
1
2
δT
1 δ1. (14)

From (12), the time derivative of V1 is

V̇1 = −k1δ
T
1 δ1 + δT

1 R(Θ)δ2. (15)

Step 2 The velocity tracking error item δ2 ∈ R3 is
chosen in Step 1 as

δ2 = V − Vr. (16)

Taking the time derivative of δ2 and using (1)(6)(12)–
(13) yields

δ̇2 = −Ω × V + gR(Θ)Te3 +
F

m
− V̇r =

−Ω × δ2 + (−g + Zww + Zcolδcol)e3 + H1d +
R(Θ)T(ge3 − k2

1δ1 − P̈r) + k1δ2, (17)

where H1 = [I3 03×3 ].
Since the disturbance d is unknown, the estimated dis-

turbance d̂ is used to replace d in the following equations.
Therefore, (17) can be

δ̇2=−Ω × δ2 + (−g + Zww + Zcolδcol)e3 + H1d̂ +
R(Θ)T(ge3−k2

1δ1−P̈r)+k1δ2+H1d̃, (18)

where d̃ = d− d̂ is the estimation error of the disturbance.
Define a new error

δ̃3 = (−g + Zww + Zcolδcol)e3 + H1d̂ +
R(Θ)TMδ + k̃δ2, (19)

where Mδ = ge3 + (1− k2
1)δ1 − P̈r, k̃ = k1 + k2 and k2

is the tuning gain with positive value.
Then the time derivative of δ2 is rewritten as

δ̇2 = −Ω×δ2−k2δ2−RT(Θ)δ1+δ̃3+H1d̃. (20)

Define the Lyapunov function candidate containing δ2

by

V2 = V1 +
1
2
δT
2 δ2. (21)

From (15) and (20), the time derivative of V2 is repre-
sented by

V̇2 = −δT
2 (Ω × δ2)−

2∑
i=1

kiδ
T
i δi + δT

2 δ̃3 + δT
2 H1d̃.

(22)

The cross property makes the first term zero, so

V̇2 = −
2∑

i=1

kiδ
T
i δi + δT

2 δ̃3 + δT
2 H1d̃. (23)

At this stage the collective control input δcol appears
in the equation (19). We can choose it to satisfy

eT
3 δ̃3 = 0. (24)

Inserting (19) to (24), the desired collective control
δcol is

δcol=
1

Zcol
(g−Zww−eT

3(R(Θ)TMδ+k̃δ2+H1d̂)).

(25)

Along the condition of (24), the error δ̃3 can be re-
expressed as

δ̃3 = (E + e3e
T
3 )δ̃3 = Eδ̃3 =

E(R(Θ)TMδ + k̃δ2 + H1d̂), (26)

where E = diag{1, 1, 0}.

Step 3 The third error item δ3 ∈ R3 is defined as

δ3 = δ̃3 + e3(ψ − ψr). (27)

By multiplying E in both sides of (27) and using (26),
δ̃3 can be rewritten as

δ̃3 = Eδ3. (28)

Taking the time derivative of δ3 and recalling (1)
(12)(19)–(20)(28) yields

δ̇3 = ˙̃
δ3 + e3(ψ̇ − ψ̇r) =

E(sk(R(Θ)TMδ)Ω + R(Θ)TṀδ + k̃δ̇2) +

e3(eT
3 S(Θ)Ω − ψ̇r) + EH1

˙̂
d =

N1Ω + N2 + Ek̃H1d̃, (29)

where

N1 = Esk(R(Θ)TMδ + k̃δ2) + e3e
T
3 S(Θ),

N2 = E(R(Θ)T((k3
1 − k1 − k̃)δ1 −

...
P r) +

(1− k2
1 − k̃k2)δ2 + k̃δ3 + H1

˙̂
d)− e3ψ̇r,

and sk(·) denotes the skew-symmetric matrix.
Define a new variable

α =
[
α1 α2 α3

]T =

R(Θ)T((1− k2
1)δ1 − P̈r) + k̃δ2, (30)

By using the fact R(Θ)TR(Θ) = I , the following in-
equality is obtained:

‖α‖ =
√

α2
1 + α2

2 + α2
3 6

‖(1− k2
1)δ1‖+ k̃‖δ2‖+ ‖P̈r‖, (31)

where ‖ ¦ ‖ denotes for the Euclidean norm.
With substitution of the definition of Mδ and (30), N1

can be rewritten as

N1 = Esk(R(Θ)Tge3 + α) + e3e
T
3 S(Θ) =


0 −gcφcθ − α3 gsφcθ + α2

gcφcθ + α3 0 gsθ − α1

0
sφ

cθ

cφ

cθ


 , (32)

then the determinant of N1 can be calculated as

det(N1) = (gcφcθ + α3)(g +
α2sφ + α3cφ

cθ
). (33)
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Comparing (33) and (31), a sufficient condition for
det(N1) 6= 0 (N1 non-singular) is

‖(1− k2
1)δ1‖+ k̃‖δ2‖+ ‖P̈r‖ < gcφcθ. (34)

Since φ, θ ∈ (−π

4
,
π

4
) for most helicopter flight tra-

jectory, the above inequation is almost true. If the above
inequation is not tenable at some time for aggressive flight,
one can reduce ‖P̈r‖ or ‖δ1‖, ‖δ2‖ by modifying Pr and Ṗr

(see the definition of δ1, δ2) to guarantee it tenable. The ex-
plication can be thinked that the flight trajectory is too ag-
gressive for the proposed controller to be tracked and must
be modified. It is noted that this modification only results
in more tracking errors. Thus, we can always assume N1

is non-singular.
Take

Ωr = −N−1
1 (k3δ3 + Eδ2 + N2)

as a virtual control, then the time derivative of δ3 is

δ̇3 = −k3δ3 − Eδ2 + N1(Ω −Ωr) + Ek̃H1d̃ =
−k3δ3 − Eδ2 + N1δ4 + Ek̃H1d̃, (35)

where k3 is the tuning gain with positive value.
Define the Lyapunov function candidate including δ3

by

V3 = V2 +
1
2
δT
3 δ3 (36)

From (23) (28) and (35), the time derivative of V3 is
represented by

V̇3 =−
3∑

i=1

kiδ
T
i δi+δT

3N1δ4+(δT
2 +δT

3 Ek̃)H1d̃. (37)

Step 4 The angular velocity error item δ4 ∈ R3

selected in Step 3 is

δ4 = Ω −Ωr. (38)

Taking the time derivative of δ4 and recalling (7) yields

δ̇4 =Ω̇ − Ω̇r =H(f(x) + g1u + g2d)− Ω̇r, (39)

where H = [03×9 I3 ].
After sophisticated computations, Ω̇r can be calcu-

lated.

Ω̇r = −N−1
1 (k3(−k3δ3 − Eδ2 + N1δ4) + Ṅ2−no +

Ṅ1−noΩr+E(δ3−Ωδ2−k2δ2−R(Θ)Tδ1) +
E(2 + k1k2 + k3k̃ − sk(Ωr)k̃)H1d̃),

(40)

where

Ṅ1−no = Esk(sk(R(Θ)TMδ + k̃δ2)Ω +
R(Θ)T((k3

1 − k1 − k̃)δ1 −
...
P r) +

(1− k2
1 − k̃k2)δ2 + Ek̃δ3) + e3e

T
3 Ṡ(Θ),

Ṅ2−no = E(−sk(Ω)R(Θ)T((k3
1−k1−k̃)δ1−

...
P r) +

R(Θ)T((k3
1−k1−k̃)(−k1δ1+R(Θ)δ2)−

P (4)
r ) + (1− k2

1 − k̃k2)(−sk(Ω)δ2 −
k2δ2 −R(Θ)Tδ1 + Eδ3) +
k̃(−k3δ3 − Eδ2 + N1δ4) + H1d̈)− e3ψ̈r.

From (40), one can simplify the description of ω̇r into
two parts with and without estimation errors d̃ as below:

Ω̇r = Ω̇r−no + N−1
1 E(2 + k1k2 + k3k̃ −

sk(Ωr)k̃)H1d̃. (41)

Using (41) and assigning Hg1u as

Hg1u=−H(f(x)+g2d̂)+Ω̇r−no−k4δ4−NT
1 δ3, (42)

then

δ̇4 = Ω̇ − Ω̇r = −k4δ4 −NT
1 δ3 + C(Ωr)d̃, (43)

where k4 is the tuning gain with positive value,

C(Ωr) = Hg2 −N−1
1 E(2 + k1k2 + k3k̃ − sk(Ωr)k̃)H1.

Let all terms on the right hand side of (25) be ex-
pressed by a number s1 and all terms on the right hand
side of (42) be expressed by a vector s2. Then, combining
(25) and (42), one can easily obtain the control law

u =
[[

1 0 0 0
]

Hg1

]−1 [
s1

s2

]
. (44)

Define the Lyapunov function candidate containing δ4

by

V4 = V3 +
1
2
δT
4 δ4 +

1
2
γd̃Td̃, (45)

where γ is a designed positive constant.
From (37) and (43), the time derivative of V4 can be

V̇4 = −
4∑

i=1

kiδ
T
i δi + C̃(δ)Td̃ + γd̃T ˙̃

d =

−
4∑

i=1

kiδ
T
i δi + C̃(δ)Td̃ + γd̃T(ḋ− ˙̂

d) 6

−
4∑

i=1

kiδ
T
i δi + λḋTḋ−

γd̃T( ˙̂
d− γ−1C̃(δ)− γ

4λ
d̃), (46)

where

δ=
[
δT
1 δT

2 δT
3 δT

4

]T
,

C̃(δ)=HT
1 (δ2+Ek̃δ3)+C(Ωr)Tδ4,

λ is a designed positive constant.
The last term in (46) can be eliminated by updating the

estimated disturbances in the following way
˙̂
d = γ−1C̃(δ)+

γ

4λ
d̃. (47)

Since d̃ can be rewritten as

d̃ = d− d̂ = g+
2 (ẋ− f(x)− g1u)− d̂, (48)

where g+
2 = (gT

2 g2)−1gT
2 . The updating law of the esti-

mated disturbance d̂ in (47) can be reachieved as



d̂ = dc +
γ

4λ
g+
2 x,

ḋc = γ−1C̃(δ)− γ

4λ
(d̂+g+

2 (f(x)+g1u)).

(49)

Inserting (47) to (46) results in

V̇4 6 −
4∑

i=1

kiδ
T
i δi + λḋTḋ, (50)
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then V4 decreases when
4∑

i=1

kiδ
T
i δi > λḋTḋ,

which indicates that the tracking errors are uniformly ulti-
mately bounded by

4∑
i=1

kiδ
T
i δi 6 λḋTḋ

if ḋ is considered as external disturbance and bounded.
Since the model used for control design is a simplified

model mentioned in Section 2, ḋ may contain the informa-
tion of states. We should analyze the robust stability of the
closed system. Let us define

z = diag{
√

k1,
√

k2,
√

k3,
√

k4}δ
and only consider the disturbance ḋ as model uncertainty
which can be expressed as

ḋ = ∆z, (51)

where ∆ denotes the uncertain matrix.
Substituting (51) to (50) yields

V̇4 6 −zT(I12 − λ∆T∆)z. (52)

If uncertain matrix ∆ satisfies

∆T∆ < λ−1I12, (53)

then V̇4 < 0 when z 6= 0, which indicates that the closed-
loop system is robustly stable. It can be seen from (53)
that the robust performance of the closed-loop system can
be improved by selecting a sufficiently small λ.

Note that the robust control problem of (51) is a stan-
dard H∞ control problem[23]. By using small-gain theo-
rem[23], the closed-loop system is robustly stable if

sup
∆
‖∆ z(s)

ḋ(s)
‖∞ < 1. (54)

From (53) and (54), we have

max
ω

σ̄(
1
jω

Tzd(jω)) = ‖1
s
Tzd(s)‖∞ =

‖ z(s)
ḋ(s)

‖∞ 6
√

λ, (55)

where σ̄(·) denotes the maximal singular value, and

Tzd(s) =
z(s)
d(s)

denotes the transfer function from d to z.
From (55), we also have

σ̄(Tzd(jω)) = |ω|σ̄(
1
jω

Tzd(jω)) 6

|ω|max
ω

σ̄(
1
jω

Tzd(jω)) 6
√

λ|ω|, (56)

which implies the transfer function Tzd(s) has a zero in
the origin. So, under the adaptive backstepping controller,
the closed-loop system has zero steady-state error. λ can
be considered as a specification of rejecting disturbances

which means that smaller λ, better disturbance attenuation.
Thus, the presented adaptive backstepping controller is ca-
pable of achieving the robust trajectory tracking and dis-
turbance attenuation, especially low frequency rejection.
The following theorem summarizes the above-mentioned
result.

Theorem 1 Consider the unmanned helicopter
with the system model described by (10). If the heli-
copter’s adaptive backstepping control law is designed as
(44) with the disturbance estimation updating law (49),
then the closed-loop tracking system is robustly stable
and the trajectory tracking error is uniformly ultimately
bounded if the time derivative of the external disturbances
is bounded.

4 Simulation
In this section, two numerical simulations are pre-

sented to investigate the performance of the proposed
adaptive backstepping controller. The first simulation con-
siders the stabilization in hovering flight with initial posi-
tion errors, heading angle error and input errors. The sec-
ond simulation aims at dealing with robust trajectory track-
ing problem for unmanned helicopter. The two numerical
simulations were conducted in the MATLAB environment,
where the time steps were set by 0.01s for realizing the
controller and simulating the helicopter dynamic model.
The controller parameters should be selected to achieve the
desired performance defined in ADS-33D-PRF [7] in prac-
tical application and this simulation selects them as same
as [18] (Table 1). The simplified helicopter’s parameters
are shown in Table 2. The first and second derivatives of
the estimated disturbances d̂ are approximately computed
by a low pass filter, i.e.

˙̂
d ≈ ˙̄d = ωs(d̂− d̄)

for simplifying calculations and filtering the disturbance
with high frequency, and the parameter ωs chosen to be 10
is appropriate for unmanned helicopter. The time deriva-
tive of the reference trajectory with respect to time and
their higher derivatives are dealt with in an ad hoc way
by numerical differentiation, i.e.

Ṗr(n) ≈ Pr(n)− Pr(n− 1)
∆T

,

where ∆T = 0.01 s is the sample time.

Table 1 Parameters of the proposed controller

Symbol Description Value

The tuning gain for the desiredk1
velocity control

0.5

The tuning gain for the desiredk2
error δ̃3

1

The tuning gain for the desiredk3
angular rate control

2

The tuning gain for the desiredk4
input

5

The adaptation gains for the updating{γ, λ}
rule of disturbance estimation

{10, 0.5}
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Table 2 Parameters of the unmanned helicopter

Symbol Description Value

m/ kg The mass of helicopter 8.2

Im/ (kg ·m2) The moment of inertia diag{0.18, 0.34, 0.28}
g/ (m · s−2) The acceleration of gravity 9.8

Zw/ s−1 Linkage gain ratio of T to w −0.7615

Zcol/ (m/(rad · s2)) Linkage gain ratio of T to δcol −131.4125

A/ s−1 Coefficient matrix of Ω in (9) diag{−48.1757,−25.5048,−0.9808}

B/ s−2 Coefficient matrix of u in (9)

2
4

0 1.6895 0

0.8945 0 0

0 0 0.1358

3
5× 103

In order to demonstrate the merits of the proposed
adaptive backstepping controller, two controllers using the
normal backstepping design and integral backstepping de-
sign are also used in these simulation cases for compari-
son. The normal backstepping controller has the same con-
troller parameters as the proposed controller and the inte-
gral backstepping controller adds an integral tuning gains
kI = 0.5 and others are also chosen as the same as the
proposed controller.

4.1 Hovering simulation
The hovering simulation considers the initial posi-

tion offset δ1 = [−1 −1 1]T m, heading angle offset
δψ = −90◦ and inputs mismatched offset

δu = [0.01 −0.02 −0.01 −0.025]T rad.

The aim of hovering simulation is to stabilize the un-
manned helicopter to the trimmed position P = [0 0
0]T m and heading angle ψ = 0◦.

Figures 1–4 illustrate the results of the first simula-
tion. It can be seen that the normal backstepping approach
is able to deal with the stabilization, but it cannot compen-
sate for the steady-state error. In contrast, the backstepping
with integral action cancels the steady state error, but it has
side-effects like overshoot. Obviously, the proposed adap-
tive backstepping control approach outperforms the other
two control strategies to a large extent.

Fig. 1 Position results in hovering

Fig. 2 Attitude angle results in hovering

Fig. 3 Control inputs in hovering

Figure 4 shows that the disturbance estimation updat-
ing law (49) is efficient for mismatched trimming offsets.
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Fig. 4 Estimated disturbances in hovering

4.2 Trajectory tracking with disturbances
In this tracking case, a fast-moving trajectory is de-

signed to be followed, and its position vector is given by

Pr = [Xr Yr 0]T,

and heading angle ψr = 0◦, where

Xr =





t2, t 6 5 s,
25 + 10(t− 5), 5 s < t 6 7 s,
45 + (17− t)(t− 7), 7 s < t 6 12 s,
70, t > 12 s,

Yr =





(t− 12)2, 12 s < t 6 17 s,
25 + 10(t− 17), 17 s < t 6 19 s,
45 + (29− t)(t− 19), 19 s < t 6 24 s,
70, t > 24 s.

In order to verify the robustness of the proposed con-
troller against the model uncertainties and the external dis-
turbances, a disturbance

d = ∆[V T ΘT ΩT ]T + dwind

is added in this simulation, where

∆ ∈ R6×9

represents the model uncertainty and all of its elements are
pseudorandom values on the open interval (−0.5, 0.5),

dwind = [
√

2
2

vwind

√
2

2
vwind 01×4 ]T

represents the external disturbance such as wind gust and
vwind is governed by a random distribution with a zero
mean and processed through a low pass filter which is de-
tailed in [24]. The maximal gain of vwind is designed to be
near 2.

The simulation results are shown in Figs.5–9. Fig.5
depicts the results of position tracking affected by the dis-
turbance d. Fig. 6 shows its position tracking errors.

Obviously, from Figs.5–6, we can find that the precise
trajectory tracking can be achieved by using the proposed
control approach.

Fig. 5 Position trajectory Fig. 6 Position tracking errors

Moreover, From Figs.5–6 and their corresponding ob-
vious tracking errors under the normal backstepping con-
trol and integral backstepping scheme, it can be found that
the tracking error performance under the proposed con-
trol approach is substantially improved, which implies that
the proposed control approach is efficient for robust trajec-
tory tracking control of unmanned helicopters with distur-
bances.

The heading angle tracking results in Fig.7 also il-
lustrates its more excellent tracking performance than the
other two methods. From the large variation range of the
time responses of roll angle φ and pitch angle θ in Fig.7,
it indicates that the tracking trajectory is very aggressive.
Fig.8 shows the control inputs and Fig.9 illustrates the ef-
fectiveness of the designed disturbance estimation updat-
ing law (49).
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Fig. 7 Attitude angles

Fig. 8 Control inputs

Fig. 9 Estimated disturbances

5 Conclusions
This paper addresses the robust trajectory tracking

problem for unmanned helicopters with disturbances.
First, a simplified model is established for fitting the back-
stepping controller design easily with treating the unmod-
elled dynamics as lumped disturbances which contain ex-
ternal wind gusts, mismatched trim values, the forces and
moments generated by fuselage, fins and other neglected
dynamic uncertainties. Then a adaptive backstepping con-
troller is designed to ensure desired trajectory tracking,
which is a combination of backstepping technique, adap-
tive control technique. It is shown according to Lyapunov
theory that the trajectory tracking errors are robustly stable
and the proposed controller is efficient especially for re-
jecting the low frequency disturbances. Finally, two sim-
ulations are used to show that the tracking performance
of the closed-loop system used by adaptive ackstepping is
more outstanding than used by normal backstepping or in-
tegral backstepping.
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