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摘要:研究了一类带有不确定控制系数和不可测零动态的高阶非线性系统的自适应实际输出追踪控制问题.与
现有文献相比较,所研究的系统更一般化,并且零动态的约束条件得到进一步放宽. 通过运用增加幂次积分方法和
自适应技术,设计了连续的自适应追踪控制器. 最后,给出一个仿真算例验证控制设计方案的有效性.
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Adaptive practical output tracking for
a general class of higher-order nonlinear systems
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(1. School of Automation, Southeast University, Nanjing Jiangsu 210096, China;
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Abstract: The problem of adaptive practical output tracking has been further investigated for a class of higher-order
nonlinear systems with uncertain control coefficients and unmeasurable zero dynamics. Compared with the existing results,
the restriction on zero dynamics is relaxed and the system to be studied is more general. The design procedures of the
continuous adaptive tracking controller are provided by flexibly incorporating the method of adding a power integrator with
the related adaptive technique. Finally, a numerical example is given to demonstrate the effectiveness of the control scheme.

Key words: practical output tracking; higher-order nonlinear systems; zero dynamics; adding a power integrator

1 Introduction
This paper considers a class of higher-order nonlinear

systems with uncertain control coefficients and zero dy-
namics described by





η̇(t) = f0(x(t), η(t), θ),
ẋi(t) = di(x(t), η(t), θ)xpi

i+1 + fi(x(t), η(t), θ),
ẋn(t) = dn(x(t), η(t), θ)upn + fn(x(t), η(t), θ),
y(t) = x1(t),

(1)
where i = 1, · · · , n − 1; x(t) = (x1(t), · · · , xn(t))T

∈ Rn is the measurable state and η(t) ∈ Rm is the
unmeasurable state; u(t)∈ R and y(t)∈ R are the
input and the output; the system initial condition is
(x(0), η(0))T = (x0, η0)T; system power pi ∈ R>1

odd :=

{p

q
|p and q are odd positive integers, and p > q}; θ ∈

Rs represents parameter uncertainty of the system; f0 :
Rn × Rm × Rs → Rm, di : Rn × Rm × Rs → R
and fi : Rn × Rm × Rs → R are unknown continu-
ous functions satisfying f0(0, 0, θ) ≡ 0, fi(0, 0, θ) ≡ 0,
di(0, 0, θ) 6= 0.

During the last decades, higher-order nonlinear sys-

tems have been received considerable attention and lots
of efforts[1–5] have been acquired based on the method of
adding a power integrator[6–8] which is a new technique of
the control design and can be regarded as the latest devel-
opment of the traditional backstepping approach. Tracking
control is one of the most important problems of higher-
order nonlinear systems which was firstly presented by
Qian and Lin in [9], with the help of the nonlinear output
regulator theory[10–15] and the method of adding a power
integrator, they successfully solved this problem. However
there is no control coefficients and zero dynamics in their
works. Generally speaking, the control design of higher-
order nonlinear systems can be classified into two types,
that is, smooth and continuous control design. It is worth
pointing out that some assumptions imposed on system
nonlinearities are almost same to some extent, however,
uncertain control coefficients and zero dynamics are not
in the situation like system nonlinearities. In the subse-
quent works, restrictions on the assumptions of systems
are relaxed more or less, but the most of existing work just
aimed at control coefficients, and there is no zero dynam-
ics in those literatures, or else, zero dynamics still meet a
strong input-to-state stability-type (ISS-type) property. For
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example, [4, 8, 16] demand that the zero dynamics satis-
fies a very strong ISS-type property. This paper continues
the investigation of the tracking control problem, and re-
striction on the zero dynamics is successfully reduced to
the more general case(see Assumption 1). Based on the
idea of continuous stabilization[4, 17–19], this paper designs
a continuous adaptive tracking controller.

Differential equations (1) can be seen as the broad-
est possible form of the higher-order nonlinear systems,
and some technical difficulties will be encountered in the
control design mainly due to the presence of the unknown
system nonlinearities and the unknown control coefficients
together with zero dynamics. The main contributions of
the paper are briefly characterized by the following spe-
cific features:

i) The system studied in this paper is more general
than those existing systems, such as [9, 20–21] have not
zero dynamics, zero dynamics satisfy a special ISS-type
property in [16, 18] requires the lower bound of unknown
control coefficients is known, and so on.

ii) From some existing results of higher-order non-
linear systems, it is not hard to see that the management
of the nonlinearities will bring many difficulties and com-
plexities. Undoubtedly, the appearance of unmeasurable
zero dynamics will produce much more nonlinear terms,
and how to deal with these terms is the main difficulty of
the paper.

2 Adaptive continuous control
2.1 Problem statement

Let yr(t) be a continuously differentiable reference
signal. For any given positive real number ε, the purpose
of this paper is to design a continuous partial-state adaptive
controller for system (1),{

u(t) = u(x(t), yr(t),K(t)),
K̇(t) = Ω(x(t), yr(t)), K(0) > 1,

(2)

such that
i) The state of the closed-loop systems (1)–(2) is well-

defined on [0,+∞) and globally bounded;
ii) For every (x0, η0)T ∈ Rn+m, there exists a finite

time T > 0, such that the output of the closed-loop system
satisfies |y(t)− yr(t)| 6 ε, ∀t > T .

In the remainder of the paper, the arguments of the
functions will be omitted or simplified. For instance, we
sometimes denote a function f(x(t)) by simply f(x), f(·)
or f . In order to solve the previous problem, we make the
following assumptions:

Assumption 1 There exists a continuously differ-
entiable function U0 : Rm → R+, such that

α−(‖η‖) 6 U0(η) 6 ᾱ(‖η‖),
∂U0(η)

∂η
f0(x, η, θ) 6 −M(η) + ξ(x1, θ),

where α− : R+ → R+ and ᾱ : R+ → R+ are K∞ func-
tions, M : Rm → R+ is a continuous positive definite
function and ξ : R× Rs → R+ is a smooth function.

Assumption 2 For each i = 1, · · · , n, there exist
continuously differentiable functions bij : Ri×Rm×Rs →

R+ satisfying bij(0, η(t), θ ) ≡ 0, such that

|fi(x, η, θ)| 6
li∑

j=1

bij(x[i], η, θ)|xi+1|qij ,

where li is a finite positive integer, qij’s are real numbers
satisfying 0 6 qi1 < · · · < qili < pi, and xn+1(t) :=
u(t).

Assumption 3 For each i = 1, · · · , n, there exist
an unknown positive constant a, known smooth functions
λi : Ri → R+, µi : Ri+1 × Rm × Rs → R+, such that

aλi(x[i]) 6 |di(x, η, θ)| 6 µi(x[i+1], η, θ),

where x[n+1] = (xT, u)T.

Assumption 4 For any continuous differential ref-
erence signal yr(t), there exists an unknown positive num-
ber M , such that |yr(t)| 6 M , |ẏr(t)| 6 M for all t > 0.

Remark 1 Assumption 1 shows that zero dynamics
meet a more weaker ISS-type property than those in [8, 21]. In
fact, by taking M(η(t)) = ‖η(t)‖2, Assumption 1 reduces to
Assumption 2 in [21] and Assumption 1.1 in [18]. By Lemma 1
given in the next section, it is not hard to find that Assumption
2 includes Assumption 1 in [16] as a special case even if there
are no zero dynamics. Assumption 3 implies that all the sign
of di remain invariable, thereby without loss of generality, we
suppose di > 0 in the later control design procedure.

2.2 Preliminary results
Now, we introduce four technical lemmas which will

play a key role in the control design and the theoretical
analysis.

Lemma 1[8] For any continuous function f(x, y)
where x ∈ Rm, y ∈ Rn, there are smooth scalar-value
functions a(x) > 0, b(y) > 0, c(x) > 1, d(y) > 1 such
that|f(x, y)| 6 a(x) + b(y), |f(x, y)| 6 c(x)d(y).

Lemma 2[7] For a given p ∈ R>1
odd , and ∀x ∈ R,

∀y ∈ R, there hold

|x + y| 1p 6 |x| 1p + |y| 1p , |x− y| 6 2
p−1

p |xp − yp| 1p .

Lemma 3[22] For given positive integers m, n and
any real valued function γ(x, y) > 0, the following in-
equality holds:

|x|m|y|n 6 m

m + n
γ|x|m+n +

n

m + n
γ−

m
n |y|m+n.

Lemma 4[23] Let φ(t) be an uniformly continuous
function on [0, ∞). If

w∞
0

φ(s)ds exists and is finite, then
lim

t→∞
φ(t) = 0.

To proceed the control design, according to the prop-
erties of K functions[23], it is easy to find an appropri-
ate K function Ψ(‖η(t)‖) defined on [0,∞) and satisfies
Ψ(‖η(t)‖) 6 M(η(t)), where M(η(t)) is defined in As-
sumption 1. Then, using Assumptions 2 and 3, we can get
the following proposition, which more clearly character-
izes the increasing properties of the nonlinearities fi’s and
implements the separation between the partial state xi+1(t)
and the other partial states xj(t)’s together with η(t), and
whose similar proof can be found in work [19].
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Proposition 1 For each i = 1, · · · , n, there exist
smooth functions γi : Ri → R+, Φ1 : R+ → [1,∞) and
an unknown constant Θ̄ > 1, such that

|fi| 6 di

2
|xpi

i+1|+ Θ̄(Φ1(·)
√

Ψ(·) + γi(x[i])). (3)
For any continuous function µi(·) defined in Assump-

tion 3, there exists the following proposition:

Proposition 2 For each i = 1, · · · , n, there exist
smooth function νi : Ri+1 → [1,∞), Φ2 : R+ → [1,∞)
and an unknown constant N , such that

µi(x[i+1], η, θ) 6 N(νi(x[i+1]) + Φ2(·)
√

Ψ(·)).
Proof By the well-known mean value theorem of

multivariate function, for each i = 1, · · · , n, there exists
a number σ ∈ [0, 1] such that

µi(·) = µi(x[i+1], 0, θ) + ηT ∂

∂η
µi(x[i+1], ση, θ). (4)

By Lemma 1, there exist smooth functions mi : Rs →
[1,∞), ni : Rs → [1,∞), ρi : R+ → [1,∞), m̄i :
Ri+1 → [1,∞), n̄i : Ri+1 → [1,∞) such that

µi(x[i+1], 0, θ) 6 mi(θ) · m̄i(x[i+1]),

ηT ∂

∂η
µi(x[i+1], ση, θ) 6 ni(θ) · ρi(‖η‖) · n̄i(x[i+1]).

Since Ψ(‖η‖) is a K function, we have

ρi(‖η‖) 6 (
Ψ(‖η‖)
Ψ(1)

)
1
4 ρi(‖η‖) + max

‖η‖61
ρi(‖η‖),

by which and using Lemma 3, we can further get
µi(·) 6 N(νi(x[i+1]) + Φ2(‖η‖)

√
Ψ(‖η‖)),

where N = max{mi(θ), ni(θ)(Ψ(1))−
1
2 , ni(θ) ·

max
‖η‖61

ρi(‖η‖)}, Φ2(‖η‖) = ρ2
i (‖η‖), ν(x[i+1])=

m̄i(x[i+1]) + n̄2
i (x[i+1]) + n̄i(x[i+1]). This completes

the proof.
Then, the following transformation is presented:{

z1 = x1 − yr,

zi = x
p1···pi−1
i − α

p1···pi−1
i−1 (x[i−1], yr,K),

(5)

where i = 2, 3, · · · , n, αi(x[i], yr,K) is called a virtual
controller and u = αn(x, yr,K) is an actual controller, all
of them will be specified later.

Now, we introduce W1(x1, yr) =
1
2
z2
1 , Wk: Rk×R×

R→ R, k = 2, 3, · · · , n as follows:

Wk =
w xk

αk−1
(sp1···pk−1 − α

p1···pk−1
k−1 )2−

1
p1···pk−1 ds,

whose properties are characterized by the following propo-
sition.

Proposition 3[7] Wk, k = 2, 3, · · · , n are continu-
ously differentiable and satisfy




∂Wk

∂xk
= z

2− 1
p1···pk−1

k ,

∂Wk

∂χi
= −(2− 1

p1 · · · pk−1
) · ∂x

∗p1···pk−1
k−1

∂χi
·

w xk

x∗k−1

(sp1···pk−1− α
p1···pk−1
k−1 )1−

1
p1···pk−1 ds,

where χi = xi for i = 1, · · · , k − 1, χk = yr, χk+1 =
K. Furthermore, there holds

2−p1···pk−1

p1 · · · pk−1
(xk − αk−1)2p1···pk−1 6 Wk 6 2z2

k.

Next, we address the following proposition, whose
proof can be completed by taking the same manipulations
as Proposition A.1 in [4].

Proposition 4 For each l = 1, · · · , k − 1 with
k = 2, 3, · · · , n, one can find a smooth positive function
Υk−1,l : Rk−1 × R × R → R+ and an unknown constant
Θ̃, such that

∂α
p1···pk−1
k−1

∂xl
(dlx

pl

l+1 + fl) 6

Θ̃Υk−1,l(Φ3(‖η‖) ·
√

Ψ(‖η‖) + γ̄k−1(x[k−1])).

At the end of this subsection, to deal with zero dynam-
ics effectively, we need the next proposition which can be
shown straightforwardly by the idea of changing supply
functions.

Proposition 5[19] Let V0(η) =
w U0(η)

0
4L(s)ds,

where U0(η) is defined in Assumption 1 and L : R+ →
[1,∞) is continuous and monotone nondecreasing, then
the following properties hold:

i) V0(η) is continuous differentiable, positive definite
and radially unbounded.

ii) There exists a smooth function π(x1, θ) > 0, such
that

∂V0

∂η
f0(·) 6 −2L(U0(η))Ψ(‖η‖) + π(x1, θ). (6)

Remark 2 To proceed the control design, we should
find an appropriate function L(·) satisfying L(U0(η)) >
nΦ2(‖η‖), where Φ(‖η‖) is an appropriate smooth upper func-
tion of Φi(‖η‖), i = 1, 2, 3. For instance, we can select
L(·) = nP (α−

−1(·)) with P (‖η‖) = max
‖η‖>|s|

Φ2(s) being a

continuous monotone nondecreasing function.

2.3 Design procedure
In this subsection, we shall construct a continuous

partial-state adaptive controller for the system (1), which
is addressed in a step-by-step manner.

Before the control design, it is necessary to define an
unknown positive constant λ as

λ = 1 +
2aΘ

ε2
1

+
a2

2ε2
1

w ᾱ(Ψ−1(2Θ))

0
4L(s)ds,

where ε1 =
aε

4
, and Θ will be specified later.

Step 1 Choose V1(x1, η, yr) =
V0

λ
+W1. Obviously,

V1 is continuous differentiable, positive definite and radi-
ally unbounded. Taking the time derivative of V1 along
the solution of Eqs.(1), using Assumption 4, Propositions
1 and 5, noticing L(·) > nΦ2(·), Φ(·) > Φ1(·), we have

V̇1 6 −Ψ(·)
λ

− n− 1
λ

Φ2(·)Ψ(·) +
3
2
d1z1x

p1
2 +

π(x1, θ)
λ

+ λΘ̄2z2
1 + |z1|(γ1Θ̄ + M). (7)

To attain the first virtual controller α1, we have to find the
appropriate upper bound estimates of the last three terms
on the right-hand side of inequality (7).
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Firstly, Lemma 1, Assumption 4 and the transfor-
mation (5) show that there exist a smooth function

π̂(z1) > 1 and a constant r(M, θ) such that
π(x1, θ)

λ
6

1
λ

r(M, θ)(π̂(z1)z1 + π̂(0)). With this in hand and using
Lemma 3, we can further get

π(x1, θ)
λ

6

aKπ̂2(·)z2
1 +

r2(M, θ)
aKλ2

+
r(M, θ)π̂(0)

λ
=:

aρ11(x1, yr,K)z2
1 +

Θ11

K
+

Θ

λ
, (8)

where ρ11 : R× R× R→ R+ is positive and smooth.
Secondly, according to Lemma 3, we can obtain

Θ̄2λz2
1 + z1(γ1(x1)Θ̄ + M) 6

aK
(
z2
1 + γ2

1 + 1
)
z2
1 +

Θ̄4λ2 + M2 + Θ̄2

aK
=:

aρ12(x1, yr,K)z2
1 +

Θ12

K
, (9)

where ρ12 : R×R×R→ R+ is a positive smooth function.
Now, in view of the transformation (5), and substituting in-
equalities (8)–(9) into inequality (7), we can deduce

V̇1 6− 1
λ

Ψ(·)−n− 1
λ

Φ2(·)Ψ(·)+ 3
2
d1z1z2+

Θ

λ
+

3
2
d1z1α

p1
1 + aρ1(x1, yr,K)z2

1 +
Θ1

K
, (10)

where ρ1 = ρ11 + ρ12 is a positive smooth function and
Θ1 = Θ11 +Θ12 is an unknown positive constant. Clearly,
for the stabilization objective, it is necessary to choose α1

such that d1z1α
p1
1 6 0. By this and Assumption 3, one can

choose the first virtual controller α1 as

αp1
1 = −ρ1(x1, yr,K) + 1

λ1
z1 =: −g1(·)z1, (11)

with the gain-update law

K̇ =




|z1| − ε

2
, |z1| > ε

2
,

0, |z1| < ε

2
,

(12)

where the initial value K(0) > 1. Substituting Eq.(11) into
inequality (10), we finally get

V̇1 6− 1
λ

Ψ(·)− n− 1
λ

Φ2(·)Ψ(·) +
3
2
µ1z1z2 +

Θ1

K
+

Θ

λ
− az2

1 . (13)

This completes Step 1. The first step can be viewed as
the initialization of the whole recursive design procedure.
From Step 2, we turn to the recursive steps.

Step k(k = 2, 3, · · · , n) Suppose Vk−1 for step k−1
satisfies

V̇k−1 6

− 1
λ

Ψ − n− k + 1
λ

Φ2Ψ +
Θk−1

K
− a

k−1∑
i=1

z2
i +

Θ

λ
+ ck−1µk−1|zk−1|2−

1
p1···pk−2 |zk|

1
p1···pk−2 , (14)

where ck−1 =
1
2

+ 21− 1
p1···pk−2 .

In the following, we need prove that inequality
(14) still holds for Step k. For this aim, choose
Vk(x[k], η, yr,K) = Vk−1 + Wk(x[k], yr,K). Taking the
time derivative of Vk along solutions to Eqs.(1), using
Proposition 3 and substituting inequality (14) into it, we
get

V̇k 6

−Ψ

λ
− n− k + 1

λ
Φ2Ψ − ωk

∂α
p1···pk−1
k−1

∂K
K̇ −

ωk

∂α
p1···pk−1
k−1

∂yr
ẏr−ωk

k−1∑
l=1

∂α
p1···pk−1
k−1

∂xl
(dlx

pl

l+1+fl) +

ck−1µk−1|zk−1|2−
1

p1···pk−2 |zk|
1

p1···pk−2 +
Θk−1

K
+

Θ

λ
+ z

2− 1
(p1···pk−1)

k (dkxpk

k+1 + fk)− a
k−1∑
i=1

z2
i , (15)

where ωk(·) = (2 − 1
p1 · · · pk−1

)
w xk

αk−1
(sp1···pk−1 −

α
p1···pk−1
k−1 )1−

1
p1···pk−1 ds.

Firstly, using Lemma 3, Proposition 2, and noting
Φ(·) > Φ2(·), we deduce

ck−1µk−1|zk−1|2−
1

p1···pk−2 |zk|
1

p1···pk−2 6

aK(c2
k−1ν

2
k−1(1+z2

k−1)
2− 1

p1···pk−2 (1+z2
k)

1
p1···pk−2

−1+

c4
k−1(1 + z4

k−1)
2− 1

p1···pk−2 (1 + z2
k)

2
p1···pk−2

−1)z2
k +

1
4λ

Φ2(·)Ψ(·) +
N2 + λ2N4

aK
=:

aρk1(x[k], yr,K)z2
k +

1
4λ

Φ2(·)Ψ(·) +
Θk1

K
, (16)

where ρk1 : Rk × R× R→ R+ is positive.
Secondly, by Lemma 2, we know

|xk − αk−1|p1···pk−1 6
2p1···pk−1−1|xp1···pk−1

k −α
p1···pk−1
k−1 | = 2p1···pk−1−1|zk|.

With this in hand, we have

ωk 6 21− 1
p1···pk−1 (2− 1

p1 · · · pk−1
)|zk|

1
p1···pk−1 ·

|xp1···pk−1
k − α

p1···pk−1
k−1 |1−

1
p1···pk−1 = c̄k|zk|,

where c̄k = 21− 1
p1···pk−1 (2 − 1

p1 · · · pk−1
). In view of

above inequality, the following estimate is obtained:

−ωk(
∂α

p1···pk−1
k−1

∂K
K̇ +

∂α
p1···pk−1
k−1

∂yr
ẏr) 6

ac̄2
kK(2 + (

∂α
p1···pk−1
k−1

∂yr
)2 + (

∂α
p1···pk−1
k−1

∂K
)2 +

(
∂α

p1···pk−1
k−1

∂K
)2x2

1)z
2
k +

2M2 + 1
aK

=:

aρk2(x[k−1], yr,K)z2
k +

Θk2

K
, (17)

where ρk2 : Rk−1 × R× R→ R+ is positive.
Then, according to Lemma 3 and Proposition 4, mean-

while noting Φ(·) > Φ3(·), we get

−ωk

k−1∑
l=1

∂x
p1···pk−1
k−1

∂xl
(dlx

pl

l+1 + fl) 6
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aK(c̄4
k(

k−1∑
l=1

Υk−1,l)4z2
k + c̄2

k(
k−1∑
l=1

Υk−1,l)2 ·

γ̄i
k−1)z

2
k +

1
4λ

Φ2(·)Ψ(·) +
Θ̃2 + λ2Θ̃4

aK
=:

aρk3(x[k], yr,K)z2
k +

1
4λ

Φ2(·)Ψ(·) +
Θk3

K
,

(18)

where ρk3 : Rk × R× R→ R+ is positive and smooth.
Finally, in view of Proposition 1, it is not hard to get

z
2− 1

p1···pk−1
k fk 6

(γ2
k(1 + z2

k)
p1···pk−1−1

p1···pk−1 +
(1 + z2

k)
3p1···pk−1−2

p1···pk−1

4
) ·

aKz2
k +

1
2λ

Φ2(·)Ψ(·) +
1
2
dk|zk|2−

1
p1···pk−1 ·

(|zk+1|
1

p1···pk−1 + |αk|pk) +
λ2Θ̄4 + Θ̄2

aK
=:

aρk4(x[k], yr,K)z2
k +

dk

2
|zk|2−

1
p1···pk−1 (|αk|pk +

|zk+1|
1

p1···pk−1 ) +
1
2λ

Φ2(·)Ψ(·) +
Θk4

K
, (19)

where ρk4 : Rk ×R×R→ R+ is a positive smooth func-
tion. In addition

dkz
2− 1

p1···pk−1
k xpk

k+1 6

21− 1
p1···pk−1 dk|zk|2−

1
p1···pk−1 ×

|zk+1|
1

p1···pk−1 + dkz
2− 1

p1···pk−1
k αpk

k .

By which and in view of inequality (19), we can further get

z
2− 1

p1···pk−1
k (dkxp2

k+1 + fk) 6

ckµk|zk|2−
1

p1···pk−1 |zk+1|
1

p1···pk−1 + aλkz
2− 1

p1···pk−1
k ·

αpk

k +
1
2λ

Φ2Ψ + aρk4(x[k], yr,K)z2
k +

Θk4

K
, (20)

where ck = 2
p1···pk−1−1

p1···pk−1 +
1
2

. Substituting inequalities

(16)–(20) into inequality (15), the following inequality can
be obtained:

V̇k 6 −Ψ(·)
λ

− n− k

λ
Φ2(·)Ψ(·)− a

k−1∑
i=1

z2
i +

Θ

λ
+

ckµk|zk|2−
1

p1···pk−1 |zk+1|
1

p1···pk−1 +
Θk

K
+

a

2
λkz

2− 1
p1···pk−1

k αpk

k + aρk(x[k], yr,K)z2
k,

(21)

where ρk =
4∑

i=1

ρki is a positive smooth function, Θk =

4∑
i=1

Θki is an unknown positive constant.

Now, we choose the virtual controller αk satisfying

αp1···pk

k = −(
ρk(x[k], yr,K) + 1

λk
)p1···pk−1zk =:

−gk(x[k], yr,K)zk. (22)

Substituting Eq.(22) into inequality (21), we finally obtain

V̇k 6 −Ψ(·)
λ

−
k∑

i=1

aiz
2
i −

n− k

λ
Φ2(·)Ψ(·) +

Θk

K
+

Θ

λ
+ ckµk|zk|2−

1
p1···pk−1 |zk+1|

1
p1···pk−1 . (23)

This completes Step k. When k = n, we choose the Lya-
punov function as

Vn(x, η, yr,K) =
V0

λ
+

n∑
k=1

Wk.

Under the actual adaptive control

u = αn(x, yr,K), (24)

its time derivative satisfies

V̇n 6 −Ψ(·)
λ

− a
n∑

i=1

z2
i +

Θn

K
+

Θ

λ
. (25)

Up to now, the recursive design procedure is finished.

3 Main results
Proposition 6 For any initial value K(0) > 1,

K(t) defined by inequality (13) is bounded on [0,∞).

Proof If the monotone nondecreasing, continuous
function K(t) given by Eq.(12) is unbounded, there must

exists a finite time T1, such that K(t) > λΘn

Θ
, ∀t > T1.

Therefore, from inequality (25), we can get

V̇n 6 −Ψ(‖η‖)
λ

− a
n∑

i=1

z2
i (t) +

2Θ

λ
, ∀t > T1.

Now we define two compact sets:

N1 = {(z, η) :
Ψ(‖η‖)

λ
+ a

n∑
1

z2
i 6 ε2

1

a
},

N2 = {(z, η) : Vn 6 4ε2
1

a2
},

where z(t)= (z1(t), · · · , zn(t))T ∈ Rn. Then, for all
(z(t), η(t))T ∈ N1, we have

a(z2
1(t) + · · ·+ z2

n(t)) 6 ε2
1

a
.

Since Ψ(‖η‖) is aK function, using the monotone property
of Ψ(‖η‖), we can further get

‖η‖ 6 Ψ−1(2Θ).
By above two inequalities, Assumption 1, Proposition 3
and the definition of λ, we know

Vn 6 1
λ

w ᾱ(Ψ−1(2Θ))

0
4L(s)ds +

2ε2
1

a2
=

4ε2
1

a2
.

This shows that N1 ⊆ N2. Therefore, from inequality
(25), we know V̇n < 0 for all (z(t), η(t))T ∈ Rn+m−N2.
In other words, the state (z(t), η(t))T enters N2 in a finite
time. Consequently, there exits a finite T2, such that

z2
1(t) 6 Vn 6 4ε2

1

a2
.

We can immediately get |z1(t)| 6 2ε1

a
=

ε

2
. According

to the definition of K(t), we can finally get K̇(t) = 0,
∀t > T , T = max{T1, T2}. This implies that K(t) is
bounded, which is a contradiction. Therefore, the mono-
tone nondecreasing function K is bounded.

Now, we address the main results of this paper, which
are summarized by the following theorem.



1038 Control Theory & Applications Vol. 30

Theorem 1 For the higher-order nonlinear system
(1) under Assumptions 1–4, the continuous partial-state
adaptive controller (24) guarantees that

i) The closed-loop system state (x(t), η(t),K(t))T is
well-defined on [0,+∞) and globally bounded.

ii) ∀ε > 0, there exits a finite time T > 0, such that
|y(t)− yr(t)| 6 ε, ∀ t > T .

Proof We define two compact sets:

Ω1 = {(z, η) :
Ψ(‖η‖)

λ
+ a

n∑
1

z2
i 6 Θn + Θ},

Ω2 = {(z, η) : Vn 6
w ᾱ(Ψ−1(λ(Θn+Θ)))

0
4L(s)ds +

2(Θn + Θ)
a

},
where ᾱ(·) is defined in Assumption 1. Then, for all
(z(t), η(t))T ∈ Ω1, we have

a(z2
1(t) + · · ·+ z2

n(t)) 6 Θn + Θ.

Using the monotone property of Ψ(‖η‖), we deduce

‖η(t)‖ 6 Ψ−1(λ(Θn + Θ)).

By the definition of V0 and noting λ > 1, one can get

V0

λ
6
w ᾱ(Ψ−1(λ(Θn+Θ)))

0
4L(s)ds.

From Proposition 3, we can conclude
n∑

k=1

Wk 6 2
n∑

k=1

z2
k(t).

Using above inequalities, the following inequality can be
obtained

Vn 6
w ᾱ(Ψ−1(λ(Θn+Θ)))

0
4L(s)ds +

2(Θn + Θ)
a

,

which implies Ω1 ⊆ Ω2. As a result, it is immediate
to deduce from inequality (25) that V̇n < 0 for all
(z(t), η(t))T ∈ Rn+m − Ω2. Therefore, the state
trajectories (z(t), η(t))T of the closed-loop system en-
ter Ω2 in a finite time and stay in Ω2 thereafter, in
other words, the state (z(t), η(t))T is globally bounded.
Then by the transforming relationship between x(t) and
z(t), we can immediately deduce all the state (x(t), η(t),
K(t))T is globally bounded.

Finally, it is not difficult to prove that K̇(t) is uni-
formly continuous with respect to t, since z1(t) is uni-
formly continuous. Moreover,

lim
t→∞

w t

0
K̇(τ)dτ = K(∞)−K(0) < +∞.

By Lemma 4, we can finally get lim
t→∞

K̇(t) = 0. This and
Eq.(12) imply the existence of a finite T > 0, such that
|y(t)− yr(t)| 6 ε, ∀t > T .

Remark 3 It is necessary to emphasize that λ greater
than 1 is mainly used to dominate unknown zero dynamics and
all unknown parameters coming from the system to be inves-
tigated. Specifically, compared with the reference [20], a re-
markable feature of this paper is the existence of zero dynam-
ics η(t). To effectively deal with them, we first separate η(t)

from x(t) by the idea of changing supply functions. Then,

in light of the delicate choice of L(·), and including the term

‘
a2

2ε2
1

w ᾱ(Ψ−1(2Θ))

0
4L(s)ds’ in the expression of λ, one can

implement the domination of Ψ(‖η‖). On the other hand, the
actual control u(t) can’t stabilize some positive terms com-
posed of unknown parameters, and one can see Step k for de-

tails. To overcome this obstacle, we introduce the term ‘
2aΘ

ε2
1

’

into λ.

4 Simulation
Consider the following higher-order uncertain nonlin-

ear system:



η̇ = −η3 + θ1η sin(1 + x1x2),
ẋ1 = θ2(2− 0.7 sin t)x3

2 + x1,
ẋ2 = θ3u + θ4x1x2,

where θi, i = 1, · · · , 4 are unknown positive constants. It
is easy to verify that the system satisfies Assumptions 1–3
with 1.3θ2 6 d1 = θ2(2 − 0.7 sin t) 6 2.7θ2, d2 = θ3,
λ1 = µ1 = λ2 = µ2 = 1. Choose a = min{1.3θ1, θ3},
yr = sin t. Based on the above design procedure, we get
the actual controller

u = −K((1 + z4
2)

1
3 x1x2 + 2.72z2

1 +
25
9

4
1
3 (z2

1(1 +

4z2
1) +4K2+ (1+4K2)(z2

2+4K2z2
1)) + 2)z2,

where z1 = x1 − sin t, z2 = x3
2 + 2Kz1.

In simulation, choose θ1 = 0.3, θ2 = 1, θ3 =
0.2, θ4 = 1, ε = 0.2 and set the initial conditions as
η(0) = 1, x1(0) = 0.4, x2(0) = 0.7, K(0) = 1. Figs.1
and 2 demonstrate the effectiveness of the adaptive prac-
tical tracking controller, i.e., the tracking error satisfies
|y(t) − yr(t)| 6 0.2, and the gain K(t) is monotone non-
decreasing and bounded on [0,∞).

Fig. 1 The trajectories of y(t) and yr(t)

Fig. 2 The trajectory of K(t)

5 Conclusions
In this paper, a systematic approach has been devel-

oped to design a continuous partial-state adaptive con-
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troller for a class of higher-order nonlinear system with
uncertain control coefficients and zero dynamics.
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