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Adaptive practical output tracking for
a general class of higher-order nonlinear systems

SUN Wei'f, SUN Zong-yao?, WU Yu-giang?
(1. School of Automation, Southeast University, Nanjing Jiangsu 210096, China;
2. Institute of Automation, Qufu Normal University, Qufu Shandong 273165, China)

Abstract: The problem of adaptive practical output tracking has been further investigated for a class of higher-order
nonlinear systems with uncertain control coefficients and unmeasurable zero dynamics. Compared with the existing results,
the restriction on zero dynamics is relaxed and the system to be studied is more general. The design procedures of the
continuous adaptive tracking controller are provided by flexibly incorporating the method of adding a power integrator with
the related adaptive technique. Finally, a numerical example is given to demonstrate the effectiveness of the control scheme.
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1 Introduction

This paper considers a class of higher-order nonlinear
systems with uncertain control coefficients and zero dy-
namics described by

n(t) = fo( (t),
#(t) = ( (t),n
By (1) = dn(z(t),

y(t) = x1(t),

n(t),0),
( )79) H—l +f1(x(t)777(t)50)7
n(t), O)ul + fu(z(t), n(t),0),

ey
where i = 1,---,n — 1; z(t) = (21(t), - ,z,(t)T
€ R™ is the measurable state and n(t) € R™ is the
unmeasurable state; u(f)e R and y(t)e R are the
input and the output; the system initial condition is
(2(0), n(0))T = (z0,70)T; system power p; € RZ} i—

{§|p and ¢ are odd positive integers, and p > ¢}; 0 €

R? represents parameter uncertainty of the system; f; :
R*" x R™ x R® — R™, d; : R" x R x R® — R
and f; : R® x R™ x R® — R are unknown continu-
ous functions satisfying f(0, 0, 8) = 0, f;(0, 0, 8) = 0,
d;(0, 0, 8) #0.

During the last decades, higher-order nonlinear sys-

Received 15 July 2012; revised 29 November 2012.
TCorresponding author. E-mail: tellsunwei@sina.com.

tems have been received considerable attention and lots
of efforts!'! have been acquired based on the method of
adding a power integrator!®8! which is a new technique of
the control design and can be regarded as the latest devel-
opment of the traditional backstepping approach. Tracking
control is one of the most important problems of higher-
order nonlinear systems which was firstly presented by
Qian and Lin in [9], with the help of the nonlinear output
regulator theory!!%1>1 and the method of adding a power
integrator, they successfully solved this problem. However
there is no control coefficients and zero dynamics in their
works. Generally speaking, the control design of higher-
order nonlinear systems can be classified into two types,
that is, smooth and continuous control design. It is worth
pointing out that some assumptions imposed on system
nonlinearities are almost same to some extent, however,
uncertain control coefficients and zero dynamics are not
in the situation like system nonlinearities. In the subse-
quent works, restrictions on the assumptions of systems
are relaxed more or less, but the most of existing work just
aimed at control coefficients, and there is no zero dynam-
ics in those literatures, or else, zero dynamics still meet a
strong input-to-state stability-type (ISS-type) property. For
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example, [4, 8, 16] demand that the zero dynamics satis-
fies a very strong ISS-type property. This paper continues
the investigation of the tracking control problem, and re-
striction on the zero dynamics is successfully reduced to
the more general case(see Assumption 1). Based on the
idea of continuous stabilization* 17191, this paper designs
a continuous adaptive tracking controller.

Differential equations (1) can be seen as the broad-
est possible form of the higher-order nonlinear systems,
and some technical difficulties will be encountered in the
control design mainly due to the presence of the unknown
system nonlinearities and the unknown control coefficients
together with zero dynamics. The main contributions of
the paper are briefly characterized by the following spe-
cific features:

i) The system studied in this paper is more general
than those existing systems, such as [9, 20-21] have not
zero dynamics, zero dynamics satisfy a special ISS-type
property in [16, 18] requires the lower bound of unknown
control coefficients is known, and so on.

ii) From some existing results of higher-order non-
linear systems, it is not hard to see that the management
of the nonlinearities will bring many difficulties and com-
plexities. Undoubtedly, the appearance of unmeasurable
zero dynamics will produce much more nonlinear terms,
and how to deal with these terms is the main difficulty of
the paper.

2 Adaptive continuous control

2.1 Problem statement

Let y,(t) be a continuously differentiable reference
signal. For any given positive real number &, the purpose
of this paper is to design a continuous partial-state adaptive
controller for system (1),

{U_(t) = u(z(t), % (1), K(1)), @
K(t) = £2(x(t), y: (1)), K(0) =1,
such that

i) The state of the closed-loop systems (1)—(2) is well-
defined on [0, +00) and globally bounded;

ii) For every (zg,m0)T € R"™™, there exists a finite
time 7' > 0, such that the output of the closed-loop system
satisfies |y(t) — y, (t)| < e, VE = T.

In the remainder of the paper, the arguments of the
functions will be omitted or simplified. For instance, we
sometimes denote a function f(x(¢)) by simply f(z), f(-)
or f. In order to solve the previous problem, we make the
following assumptions:

Assumption 1  There exists a continuously differ-
entiable function Uy : R™ — R, such that

a(llnll) < Uo(n) < a(llnl)),

8U0( )fo( ,0) < —M(n) + &(x1,0),

where « : R+ — RT and @ : Rt — R* are K func-
tions, M : R™ — RT is a continuous positive definite
function and £ : R x R® — R is a smooth function.

Assumption 2  Foreachi = 1,--- ,n, there exist
continuously differentiable functions b;; : R*xR™xR* —

R* satisfying b;;(0,7(t),0 ) = 0, such that

l;

|fi(xa777 >| Z 70)|$i+1|q”’
where [; is a finite positive integer, g;;’s are real numbers
satisfying 0 < ¢i1 < -+ < qu, < pi, and x4 (t) =
u(t).

Assumption 3  Foreachi = 1,--- | n, there exist
an unknown positive constant a, known smooth functions
Xi t RP — R,y : R x R™ x RS — R, such that

aki(zp) < |di(z,n,0)|

where 7, 1) = (2T, u)T.

< ,u’i(x[i+1]a m 0)7

Assumption4  For any continuous differential ref-
erence signal y, (t), there exists an unknown positive num-
ber M, such that |y, ()| < M, |y:(t)| < M forall t > 0.

Remark 1  Assumption 1 shows that zero dynamics
meet a more weaker ISS-type property than those in [8,21]. In
fact, by taking M (n(t)) = ||n(¢)||>, Assumption 1 reduces to
Assumption 2 in [21] and Assumption 1.1 in [18]. By Lemma 1
given in the next section, it is not hard to find that Assumption
2 includes Assumption 1 in [16] as a special case even if there
are no zero dynamics. Assumption 3 implies that all the sign
of d; remain invariable, thereby without loss of generality, we
suppose d; > 0 in the later control design procedure.

2.2 Preliminary results

Now, we introduce four technical lemmas which will
play a key role in the control design and the theoretical
analysis.

Lemma 18! For any continuous function f(x,%)
where © € R™, y € R"™, there are smooth scalar-value
functions a(z) > 0, b(y) > 0, c(z) > 1, d(y) > 1 such
that| f(z, y)| < a(x) + b(y). |f (2, y)| < c(x)d(y).

Lemma 2" For a given p € RZ}, and V2 € R,
Vy € R, there hold

o yl> <lal? +1yl7, o -yl <27 fo? — g7

Lemma 3??!  For given positive integers m, n and
any real valued function v(z,y) > 0, the following in-
equality holds:

m

m n
4 - m+n
m—i—n’y m—i—n’y |

=™ |y[" <

Lemma 42! Let ¢(¢) be an uniformly continuous

function on [0, 00). If I0w¢(s)ds exists and is finite, then

g, o) =

To proceed the control design, according to the prop-
erties of K functions!?¥, it is easy to find an appropri-
ate IC function ¥ (||n(t)||) defined on [0, 00) and satisfies
I(|ln@®)]) < M(n(t)), where M(n(t)) is defined in As-
sumption 1. Then, using Assumptions 2 and 3, we can get
the following proposition, which more clearly character-
izes the increasing properties of the nonlinearities f;’s and
implements the separation between the partial state x; 11 (¢)
and the other partial states x;(t)’s together with 7(¢), and
whose similar proof can be found in work [19].
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Proposition 1  For each ¢ = 1,--- ,n, there exist
smooth functions 7; : R® — RT, &; : RT — [1,00) and
an unknown constant © > 1, such that

Ifil < |$ W)+ iz 3)

For any contlnuous functlon ul( ) deﬁned in Assump-
tion 3, there exists the following proposition:

Proposition 2  For each ¢ = 1,--- ,n, there exist
smooth function v; : Rt — [1,00), &5 : Rt — [1,00)
and an unknown constant N, such that

pi (@411, 1, 0) < N(vi(zpgn) + P2() V().

Proof By the well-known mean value theorem of
multivariate function, for each ¢ = 1,--- , n, there exists
anumber o € [0, 1] such that

pi(s) = Hi(x[i+1];070) + UTa*nM(fU[iH]a on,0). (4)

By Lemma 1, there exist smooth functions m; : R* —
[1,00), n; : R® — [1,00), p; : Rt — [1,00), m; :
R+ — [1,00), 71; : R — [1, 00) such that

i (g 0, 9) m;(0) - mi(2ig1),

o, _
77 an Mz( Lli+1]> on,0) < i(e)'Pi(HnH)'ni(x[iJrl])'

Since ¥(||n||) is a K function, we have
Z(linll) |1
i + max
pilllnll) < ( 7 () Vipi(lnll) mmax pi[lml),
by which and using Lemma 3, we can further get
pi(-) S N (i) + P20l v (nl)),

where N = max{m;(0),n;(0)(¥(1))"2,n;(0)
mmax pi(lni}. - @2(nl) = pi (Il v(zpra)=
mi(z(iy1)) + 72 (@41]) + ni(2zpg1)).  This completes
the proof.
Then, the following transformation is presented:
21 =21 = Yrs
i 5
{21_1};1 i afllpl l(w[i—l]vyrvK)v ( )

where i = 2,3, ,n, a;(z), Y, K) is called a virtual
controller and v = «, (x, y;, K) is an actual controller, all
of them will be specified later.

1
Now, we introduce W1 (x1,y,) = 52%’ Wi: RF x R x

R—-R k=23, ---,nas follows:

1
P1 - Pr—1 dS,

Wy = Izk (5111 CPk—1 _ allii'l'l)kfl )2—
Qf—1
whose properties are characterized by the following propo-
sition.
Proposition 3" W, k=23, .-
ously differentiable and satisfy

1
oW 2= e

,n are continu-

=z
axk k ’ I
oWy, 1 axkzill Pr=t
v, —(2- ) Oy
Xi - P11 Pk—1 Xi .
J\f (8101'“1%71_azli"l'pkfl)l_m---pkfl dS,
Tr—1

where x; = z; fori = 1,---
K. Furthermore, there holds

Q—P1"Pk—1 9
(xk—ozk 1)p1 Pe=1 LW < 2Zk

7k_ 1’ Xk = Yrs Xk+1 =

P11 Pr—1

Next, we address the following proposition, whose
proof can be completed by taking the same manipulations
as Proposition A.1 in [4].

Proposition 4 Foreach! = 1,--- ,k — 1 with

k = 2,3,---,n, one can find a smooth positive function
7:1@71,1 : RF1 x R x R — Rt and an unknown constant
O, such that

aazi'l'pk71

T(dlxﬁ-l + fl) <

OTs—1.(®s(IInll) - VZ(Inll) + Fr—1(zp—11))-

At the end of this subsection, to deal with zero dynam-
ics effectively, we need the next proposition which can be
shown straightforwardly by the idea of changing supply
functions.

Proposition 51 Let Vo(n) = [ " 4L(s)ds,
where Up(n) is defined in Assumption 1 and L : Rt —
[1,00) is continuous and monotone nondecreasing, then
the following properties hold:

i) Vo(n) is continuous differentiable, positive definite
and radially unbounded.

ii) There exists a smooth function 7(x1,6) >
that

0, such

8V°fo<> < 2LU )T (ll) + 7(z1.0).  (©)

Remark 2  To proceed the control design, we should
find an appropriate function L(-) satisfying L(Up(n)) >
n®?(||n]|), where &(||n||) is an appropriate smooth upper func-

tion of ®;(||n||), ¢ = 1,2,3. For instance, we can select
L() = nP(a™'()) with P(ln]) = max #%(s) being a
ni=z{s

continuous monotone nondecreasing function.

2.3 Design procedure

In this subsection, we shall construct a continuous
partial-state adaptive controller for the system (1), which
is addressed in a step-by-step manner.

Before the control design, it is necessary to define an
unknown positive constant A as

200  a? I@(W’l(%)))

A=1 —
Tz g2 22

4L(s)ds,

where €1 = —E, and @ will be specified later.

%
Step1 Choose Vi (21,7, y,) = TO—I—WL Obviously,

V1 is continuous differentiable, positive definite and radi-
ally unbounded. Taking the time derivative of V; along

the solution of Egs.(1), using Assumption 4, Propositions
1 and 5, noticing L(+) > n®?(-), &(-) = @1 (-), we have

) v() n-1 3 )
‘/i < —% — TQQ(ﬂp() + §d121.%‘12) +
.0 ~ ~
% + 200222 + |21]|(110 + M). (7

To attain the first virtual controller o1, we have to find the
appropriate upper bound estimates of the last three terms
on the right-hand side of inequality (7).
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Firstly, Lemma 1, Assumption 4 and the transfor-

mation (5) show that there exist a smooth function
0
7(z1) > 1 and a constant (M, 6) such that % <
1
XT(M, 0)(7(z1)21 + #(0)). With this in hand and using
Lemma 3, we can further get
m(x1,0) <
A

2 A
o, o THM,0)  r(M,0)7(0)
aK7*()z1 + oY + 3 =:
) e
2 11 ~
apll(xlath)zl + K + A7 (8)

where p11 : R x R x R — R is positive and smooth.
Secondly, according to Lemma 3, we can obtain

@_2/\2'% +21(71(21)@ + M) <

0N\ + M? + 62
K (2442 +1) 22 =
aK (27 +77 +1) 25 + K
)
apr2(z1, yr, K)27 + %7 €))

where p1s : RxRxR — RT is a positive smooth function.
Now, in view of the transformation (5), and substituting in-
equalities (8)—(9) into inequality (7), we can deduce

. 1 n—1 3 C)
<—Zw()— PN ()+Z =
V1 )\ () )\ () ()+2d12’122+)\+
3 e
§d1210/f1 + apy(z1,yr, K)27 + ?1 (10)

where p1 = p11 + p12 is a positive smooth function and
61 = O11 + O14 is an unknown positive constant. Clearly,
for the stabilization objective, it is necessary to choose
such that d; z; 04117 ! < 0. By this and Assumption 3, one can
choose the first virtual controller o as

ot = —wzl = —g()a, (D)
1

with the gain-update law

o1l = 2, Jaal >

21l — 5y 1”1 Z 5

K= 2 2 (12)
0, ‘2«'1| < 5,

where the initial value K (0) > 1. Substituting Eq.(11) into

inequality (10), we finally get

. 1 n—1 3
Vi< —Xg’(') Y P*()() + JHz122 +
91 9 2

This completes Step 1. The first step can be viewed as
the initialization of the whole recursive design procedure.
From Step 2, we turn to the recursive steps.

Step k(k =2,3,--- ,n) Suppose V;_; forstep k—1
satisfies

Vi1 <
1 n—k+1 2 O_1 k=1
B/ N/ 2
y X T e At

9 2— 1 1
— F Cho1fh—1|zp—1| PUTPE=2 |z |PrPR=2 0 (14)

A

1 -1
where c,_1 = 3 ) TR T

In the following, we need prove that inequality
(14) still holds for Step k.  For this aim, choose
Vi (@), 15 Yes K) = Viee1 + Wi(2 (), yr, K). Taking the
time derivative of Vj along solutions to Eqgs.(1), using
Proposition 3 and substituting inequality (14) into it, we
get

Vi <
4 —k+1 Qb PRt
_X - %éQW_wkkai;{'K_
Dol PR k=1 9ot PRt
G e X o (dafly i) +
r =
. 112 271’1"‘;%—2 z P1"‘17k_2 Qk—l
Ch—1fk—1|2k—1] E + =+
9 Q_W Pk k-1 2
By + 2 (dkxk+1 + fx) —a Zl Zi, (15)
i=
1 T,
where wi(r) = 2 - ——M— P PE—1
() 1 ( pl"'pkfl)J‘ak—l(
S R Ea T P

Firstly, using Lemma 3, Proposition 2, and noting
&(-) = Do(+), we deduce

2— 1 1
Ck—lﬂk-_l‘zk_ﬂ P1Pk—2 ‘Zk|p1'“1”<—2 <

— 1 1 —
aK (G yvp_ (1427 )) s (14 22) e 4

1 2
Gy (L4 2t ) 7o (14 )7 a2 4

1 N2+ A2N*
7@2 . W . _——
4 ()F() + aK
1 e
24 p2(p(.) - kL

where pr1 : RF x R x R — R™ is positive.
Secondly, by Lemma 2, we know
‘xk _ akil‘pl“'pk—l <

OP1*Ph—1 -1 ‘xil.“pk,l P1Pr—1 | — 2p1.~pk—1—l|zk|.

—Og
With this in hand, we have

1—— 1 1 1
wp < 2 P1PR-1 (2 — 7)|2k|171"‘17k—1 .
b1 Pk-1
|mZ1'“Pk71 _ aiilp’%l o _ ekl 2l
S B 1
where ¢, = 2 71 i (2 — ). In view of
. . . PrePR-1
above inequality, the following estimate is obtained:
8@21“14%71 . O[Zl“l'}?kfl
- ~ K ~ 'r <
wi( 0K + En Yr)
60{?1"'?1@71 806101'“]%71
2 k—1 2 k-1 2
K(2
a2+ () ()
(304231”” )20:2) 22 2M? +1 _.
0K Lk aK
Ok
apra(Tpe—1), ve, K)2f + == a7

K )
where pio : RF71 x R x R — R is positive.
Then, according to Lemma 3 and Proposition 4, mean-
while noting &(-) > P3(-), we get

k—1 axzi"m«fl

>, o (dixfl, + fi) <

—Wg
=1 al'l
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k—1 k—1
aK (G (Y Y1) 27 + (X Tro10)? -
=1 =1

5 1 62 + \26*

Vee)%k + P OT() + = =
1 e

aprs (@), ye, K)2p + 5@2(.)w(.) I %’

(18)
where pj3 : RF x R x R — RT is positive and smooth.
Finally, in view of Proposition 1, it is not hard to get

91
Zk P1 " Pk—1 fk <
3p1"'pk71_2
(1 +Z£)W
4

1 1 1
aK 2} + 3 (W) + gdplal T
NI

aK o

Pl Pr—1-1

(R(L+2D) T +

1
(lzpa | P71 4 g [P) +
o iy g P
apra(@x), Yo, K)2j + - lal™ 7o (ol +

N N 1 Opa
Pl Pr—1 7¢2 Y (- _
| ) @R O() + L,
where prs : R¥ x R x R — R is a positive smooth func-
tion. In addition

(19)

1

91
P PEk—1 Pk
drz), Ty S

1——1 91
2" P1PR-1 dk‘zkl PL o PR—1 X

1

1 2—
T P1Pk—
|Zk»+1|p1 Pk—1 +dkzk ke 1a£k.

By which and in view of inequality (19), we can further get

2— 1
zy, PrPh—1 (dkai1 + fr) <
1

ckuk|zk|2_m|zk+1‘m + aAk-Zkiplulpkil A
1 C]
ol + ﬁ452;[/ + apk4(x[k],yr,K)z,3 + %, (20)

Pl Pp—1—1 1
where ¢, = 2 P1Pk-1 4 3 Substituting inequalities
(16)—(20) into inequality (15), the following inequality can

be obtained:

: () n—k , L, 6
Vi < —— T POP) a2 T

2— L 1 O
Croptiela|” T [ [P 22

1

a 2= o 2
§>‘ka TRl apr (2, e, K) 2R
(21)
4
where p, = > pg; is a positive smooth function, O}, =
i=1
4
> Of; is an unknown positive constant.
i=1

Now, we choose the virtual controller oy, satisfying
PLDE pk(x[k]vyraK)—'_]-
ak - _( A
k
— k([ Yrs K) 23 (22)
Substituting Eq.(22) into inequality (21), we finally obtain

)pl"‘pk—lzk =

. @() k 9 n—~k o Oy,
< ——2 2By + 2k
Vi 3 z;aZZ 3 ) ()+K+
&) _ 1 1
O b cupnlan I [T 23)

This completes Step k. When k = n, we choose the Lya-
punov function as

V n
Vn(x7n7yraK):70+ Z Wk-
k=1
Under the actual adaptive control
Uzan(%ynK), (24)

its time derivative satisfies

. () n 6, 6

Va 3 GZ;ZZJFKJF)\ (25)

Up to now, the recursive design procedure is finished.

3 Main results

Proposition 6  For any initial value K(0) > 1,
K (t) defined by inequality (13) is bounded on [0, co).

Proof If the monotone nondecreasing, continuous
function K (t) given by Eq.(12) is unbounded, there must

O,
exists a finite time 77, such that K (¢) > 5 Vvt > T.
Therefore, from inequality (25), we can get
: v n 20
PR 11| BRSPS
A = A

Now we define two compact sets:

V> Ty

2

4 n €
R COREE RS oF R}

4e?
Ny = {(Z777) Vo < 71}7

2
where z(t)= (z1(t), -+ ,2,(t))T € R™ Then, for all
(2(t),n(t))T € Ny, we have

2
€
a(2 () -+ 2(8) < —-

Since ¥ (||n]|) is a K function, using the monotone property
of Z(||Inll), we can further get

Il < ¥~1(20).
By above two inequalities, Assumption 1, Proposition 3
and the definition of )\, we know

2 2
2e7 _ 4e7
2 a2

a(w~1(20
v, <%f0 YO Lie)ds + .
This shows that Ny C N,. Therefore, from inequality
(25), we know V,, < 0 for all (2(t),n(t))T € R**™ — N,
In other words, the state (z(t),7(t))T enters Ny in a finite
time. Consequently, there exits a finite 75, such that

4e?
2 1
. . 2e, € .
We can immediately get |21 (t)] < — = 5 According
a

to the definition of K (t), we can finally get K (t) = 0,
V¢ > T, T = max{T1,Tz}. This implies that K (¢) is
bounded, which is a contradiction. Therefore, the mono-
tone nondecreasing function K is bounded.

Now, we address the main results of this paper, which
are summarized by the following theorem.
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Theorem 1  For the higher-order nonlinear system
(1) under Assumptions 1-4, the continuous partial-state
adaptive controller (24) guarantees that

i) The closed-loop system state (z(t),n(t), K (t))" is
well-defined on [0, +00) and globally bounded.

i) Ve > 0, there exits a finite time 7" > 0, such that
ly(t) —we(t)| <e VE=T.

Proof We define two compact sets:

2 = {2 o520, 16y,

A 1
a(r= ! (M(On+6)))
2 ={(z,m): Vi < fo 4L(s)ds +
2(0, + 9)}
a )

where @(-) is defined in Assumption 1. Then, for all
(

(z(t),n(t))T € £21, we have
a(ZE(t) + -+ 22(t) < O, + 6.
Using the monotone property of ¥(||n||), we deduce
In(®)] < ¥~HA(On +6)).
By the definition of Vj and noting A > 1, one can get
Vo < J«O@(W’I(A(9n+9)))

A
From Proposition 3, we can conclude

SWe <2 22(0).
k=1 k=1

4L(s)ds.

Using above inequalities, the following inequality can be
obtained

L(s)ds + i) @),

a

a(@ r(\(O,+6
v, <I ( (A( )))4

which implies 2, C (2. As a result, it is immediate
to deduce from inequality (25) that V,, < 0 for all
(2(t),n(#)T € R"™ — (5. Therefore, the state
trajectories (z(t),n(t))T of the closed-loop system en-
ter {25 in a finite time and stay in (2, thereafter, in
other words, the state (2(t),7n(t))T is globally bounded.
Then by the transforming relationship between x(¢) and
z(t), we can immediately deduce all the state (z(t),n(t),
K (t))T is globally bounded.

Finally, it is not difficult to prove that K (t) is uni-
formly continuous with respect to ¢, since z1(t) is uni-
formly continuous. Moreover,

lim " K(r)dr = K(oo) — K(0) < +oc.

t—oo JO

By Lemma 4, we can finally get tlim K(t) = 0. This and

Eq.(12) imply the existence of a finite 7" > 0, such that
y(t) — ()| < eVt =T

Remark 3 It is necessary to emphasize that \ greater
than 1 is mainly used to dominate unknown zero dynamics and
all unknown parameters coming from the system to be inves-
tigated. Specifically, compared with the reference [20], a re-
markable feature of this paper is the existence of zero dynam-
ics n(t). To effectively deal with them, we first separate 7(t)
from z(t) by the idea of changing supply functions. Then,

in light of the delicate choice of L(-), and including the term
a? a(r='(20))
2¢2 Jo

implement the domination of ¥(||n||). On the other hand, the
actual control u(t) can’t stabilize some positive terms com-
posed of unknown parameters, and one can see Step k for de-
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tails. To overcome this obstacle, we introduce the term ‘—2
€
1

3

4L(s)ds’ in the expression of A, one can

s

into A.

4 Simulation
Consider the following higher-order uncertain nonlin-
ear system:
N =—n>+0insin(l + z122),
i?l = 92(2 — O7Slnt)l’§ + 21,
To = O3u + 04212,

where 6;, ¢ = 1, -- ,4 are unknown positive constants. It
is easy to verify that the system satisfies Assumptions 1-3
with 1302 < d1 = 92(2 - 07smt) < 2.792, d2 = 93,
)\1 = M1 = /\2 = U2 = 1. Choose a = min{1.361,03},
1y, = sint. Based on the above design procedure, we get
the actual controller

25
uw= —K((1+ 233z + 2.722% + 34%@%(1 +
427) +AK* (14+4K?) (23 +4K2%2%)) + 2) 2o,

where z1 = x1 — sint, 2o = :c% + 2K 2.

In simulation, choose 8; = 0.3, 8 = 1, 03 =
0.2, 4 = 1, ¢ = 0.2 and set the initial conditions as
7n(0) = 1, 1(0) = 0.4, 22(0) = 0.7, K(0) = 1. Figs.1
and 2 demonstrate the effectiveness of the adaptive prac-
tical tracking controller, i.e., the tracking error satisfies
ly(t) — y:(t)] < 0.2, and the gain K (¢) is monotone non-
decreasing and bounded on [0, c©).

1.5
1.0 7
0.5:'. )
. 0.0
-0.5
-1.0
,15 1 1 1 1 1 1 1

t/s
Fig. 1 The trajectories of y(¢) and yr (¢)

4.0 . . .
35F .
30F .

NO25F .
20f .
1.5+ .

1 0 1 1 1
0 50 100 150 200

t/s
Fig. 2 The trajectory of K (¢)

5 Conclusions

In this paper, a systematic approach has been devel-
oped to design a continuous partial-state adaptive con-
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troller for a class of higher-order nonlinear system with
uncertain control coefficients and zero dynamics.
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