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摘要:本文提出了一种求解旅行商问题的离散状态转移算法,设计了交换、平移、对称等3种转移算子,讨论了算
法的收敛性和时间复杂度等问题,研究了参数对算法的影响.实验结果表明,与模拟退火算法及蚁群算法等经典组
合优化算法相比,该算法具有耗时短、寻优能力强等优点,这也表明了状态转移算法的适应性很好.
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A discrete state transition algorithm for traveling salesman problem
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Abstract: A discrete version of state transition algorithm is proposed to solve the traveling salesman problem. Three
special operators named swap, shift and symmetry transformations are presented for discrete optimization problem. Con-
vergence analysis and time complexity of the algorithm are also considered. To make the algorithm efficient, a parametric
study is investigated. Experiments are carried out to test its performance, and comparisons with simulated annealing and
ant colony optimization have demonstrated the effectiveness of the proposed algorithm. The results also show that the dis-
crete state transition algorithm consumes much less time and has better search ability than other traditional combinatorial
optimization methods, indicating that state transition algorithm has strong adaptability.
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1 Introduction
As one of the most significant combinatorial optimiza-

tion problems, traveling salesman problem (TSP) has been
paid great attention and extensively studied, due to its im-
portance in manufacturing, distribution management and
scheduling[1–2]. Traveling salesman problem can be de-
scribed as: given a set of n nodes and distances for each
pair of nodes, find a roundtrip of minimal total length vis-
iting each node exactly once, and according to whether
the distance from node i to node j is the same as the dis-
tance from node j to node i, a TSP can be symmetric or
asymmetric[3]. For an n nodes asymmetric TSP, there ex-
ist (n− 1)! possible solutions; while for the corresponding
symmetric TSP, (n−1)!/2 solutions are possible. Because
of its NP-hard property, emphasis has shifted from the aim
of finding a global optimal solution to the goal of obtain-
ing ‘good solutions’ in reasonable time and establishing
the ‘the degree of goodness’[4–5].

Taking the impractical exhaustive search for TSP into
consideration, heuristic algorithms are introduced to speed
up the process of finding a satisfactory solution, of which,

simulated annealing (SA), tabu search (TS), genetic al-
gorithm (GA), ant colony optimization (ACO), particle
swarm optimization (PSO) have found widest applications
in the field[6–10]. In terms of the concepts of state and state
transition, a new heuristic search algorithm named state
transition algorithm (STA) is proposed recently, and it ex-
hibits good search performance in continuous space[11–13].
In the initial version of state transition algorithm, a spe-
cial transformation matrix named general elementary ma-
trix was also proposed to solve the discrete optimization
problem. In this paper, we will continue to develop its de-
tails to promote a deep study of STA for solving traveling
salesman problem.

The paper is organized as follows: In Section 2, we
review the unified form of the state transition algorithm,
and establish the discrete version of STA. Then details and
implementations of three special transformation operators
are put forward in Section 3, and a parametric study is also
investigated. In the next section, some experiments are ex-
ecuted to test the performance of the proposed algorithm.
Conclusion is derived in the end.
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2 State transition algorithm in discrete ver-
sion
As stated in [11], a solution to a specific optimization

problem can be described as a state, and the process to up-
date solutions will become a state transition process. With-
out loss of generality, the unified form of state transition
algorithm can be described as follows:

{
xk+1 = Akxk + Bkuk,
yk+1 = f(xk+1),

(1)

where, xk ∈ Rn stands for a state, corresponding to a solu-
tion to a optimization problem; Ak, Bk ∈ Rn×n are state
transition matrixes, which are usually transformation oper-
ators; uk ∈ Rn is the function of xk and historical states;
f is the cost function or evaluation function.

As for traveling salesman problem, the cost f is usu-
ally expressed as the function of a sequence, which corre-
sponds to an ordered traveling route. That’s to say, after a
transformation using Ak or Bk, a new state xk+1 should be
a sequence too. Due to the particularity of TSP, only a state
transition matrix is considered, avoiding the complexity of
‘adding’ one sequence to another.

According to the theory of linear algebra, we know
that the special matrix must have only one position with
value 1 in each column and each row. The special ran-
dom matrix is called general elementary matrix, since it is
generated from the identity matrix and has the function of
transforming a sequence into another one. For simplicity
and specificity, Gk is denoted in state transition algorithm
for discrete optimization problem as follows:

{
xk+1 = Gkxk,
yk+1 = f(xk+1),

(2)

where, xk = [x1k xik · · · xnk]T, xik ∈ {1, 2, · · · , n} is
a sequence, and the Gk is general elementary matrix with
only one position value 1 in each column and each row.
For instance, Gk has the following styles[11]




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0




,




0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0




,




0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0




.

If an initial sequence is {1, 2, 3, 4, 5}, after transformation
by the above general elementary matrices, it will becomes
{1, 2, 5, 4, 3}, {4, 2, 3, 5, 1}, {4, 2, 1, 5, 3}, respectively.

3 State transition operators and corre-
sponding adjusting strategies
As can be seen from above, the general elementary

matrix can behave in various types, but arbitrary types may
have neither validity nor efficiency for discrete optimiza-
tion problem. To make the state transition process control-
lable and efficient, three special transformation operators
for traveling salesman problem are designed.

3.1 Three transformation operators
1) Swap transformation

xk+1 = Gswap
k (ma)xk, (3)

where, Gswap
k ∈ Rn×n is called a swap transformation

matrix; ma is a constant called swap factor to control the
maximum number of random positions to be exchanged.
For example, if n = 5, ma = 3, the swap transformation
matrix has the following styles:




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0




.

If an initial sequence is {1, 2, 3, 4, 5}, then after the
above swap transformation matrices, it will becomes
{3, 2, 1, 4, 5}, {1, 3, 2, 4, 5}, {1, 5, 3, 2, 4}, respectively. It
can be found that the 1th and 3th rows are exchanged, the
2th and 3th rows are exchanged, and the 2th, 4th, and 5th
rows are interchanged, respectively, which indicates that
the maximum number of positions exchanged is 3.

2) Shift transformation

xk+1 = Gshift
k (mb)xk, (4)

where, Gshift
k ∈ Rn×n is called a shift transformation ma-

trix; mb is a constant called shift factor to control the max-
imum length of consecutive positions to be shifted. By the
way, the selected position to be shifted after and positions
to be shifted are chosen randomly. To make it more clearly,
let n = 5, mb = 2, then the shift transformation matrix
has the following styles:



1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1




,




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1




,




1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1




.

If an initial sequence is {1, 2, 3, 4, 5}, then after the
above shift transformation matrices, it will becomes
{1, 3, 2, 4, 5}, {1, 3, 4, 2, 5}, {1, 4, 2, 3, 5}, respectively. In
the first two cases, the position to be shifted is {2}, and the
positions to be shifted after are {3} and {4}, while in the
third case, the positions to be shifted is {2, 3}, and the po-
sition to be shifted after is {4}. In the last case, the length
of consecutive positions to be shifted is 2.

3) Symmetry transformation

xk+1 = Gsym
k (mc)xk, (5)

where, Gsym
k ∈ Rn×n is called a symmetry transformation

matrix; mc is a constant called symmetry factor to control
the maximum length of subsequent positions as a center.
By the way, the components before the subsequent posi-
tions and consecutive positions to be symmetrized are both
created randomly. For instance, n = 5, mc = 1, then the
symmetry transformation matrix has the following styles:




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




,




1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0




,




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0




.

If an initial sequence is {1, 2, 3, 4, 5}, then after the
above symmetry transformation matrices, it will becomes
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{1, 2, 4, 3, 5}, {1, 5, 4, 3, 2}, {1, 2, 5, 4, 3}, respectively.
All of the three cases, the component before the subsequent
positions is {3}. In the first two cases, the subsequent posi-
tion (or the center) is {∅}, while the consecutive positions
to be symmetrized are {4} and {4, 5}, respectively. In the
third case, the subsequent position (or the center) is {4},
while the consecutive position to be symmetrized is {5}.
It is not difficult to find that the length of subsequent posi-
tions is 1 in the last case, which is the maximum length of
subsequent positions as indicated by mc.

We propose the above three transformation operators
due to their geometrical significance. In geometry, swap,
shift and symmetry operators have different topological
structures, that is to say, they possess various functions,
which play significant roles in perturbing current solutions.
By the way, it should be noted that the swap operator with
ma = 2 is also widely used in simulated annealing.

3.2 Adjusting strategies
To accept a new solution, ‘greedy criterion’ is com-

monly adopted, in other words, only a solution better than
previous one is accepted. However, in SA, a bad solution
is accepted probabilistically. Although the strategy in SA
can jump out of a stagnant solution and it creates a big per-
turbation to current solution, to guarantee the convergence
of SA becomes difficult. In state transition algorithm for
discrete optimization problem, ‘greedy criterion’ is inher-
ited in this paper. The main procedure of the STA for TSP
can be outlined in pseudocode as follows:

State ← initiation(SE, n);
[Best, fBest] ← fitness(State, cities, SE);
k ← 0
repeat

[Best, fBest] ← op swap(cities, Best,
fBest, SE, n, ma)

[Best, fBest] ← op shift(· · · , mb)
[Best, fBest] ← op symmetry(· · · , mc)
k ← k + 1

until the maximum number of iterations is met
where, in initiation, a set of states are created randomly;
cities is the information about the TSP; the SE is the times
of transformation, called search enforcement. As for more
detailed explanations, op swap function of above pseu-
docode is also given in MATLAB scripts

for i = 1: SE
Tranf = swap matrix(n, ma);
State(i,:) = (Tranf*Best’)’;

end
[newBest, fGBest] = fitness(State, cities, SE)

if fGBest < fBest
Best = newBest;
fBest = fGBest;

end
function y = swap matrix(n, ma)
y = eye(n);
R = randperm(n);
T = R(1:ma);
S = T(randperm(m));
y(T, :) = y(S, :);

4 Theoretical analysis of discrete STA
Next, we analyze the convergence performance, the

global search ability, and time complexity of the discrete
state transition algorithm.

4.1 Convergence properties of discrete STA
Firstly, we define the concept of convergence for dis-

crete STA

|f(xk)− f(x∗)| 6 ε, ∀ k > N, (6)

where, x∗ is the global minimum solution of a traveling
salesman problem, ε is a small constant, and N is a natural
number. If ε > 0, we can say that the algorithm converges
to an ε-optimal solution; if ε = 0, we can say that the al-
gorithm converges to a global minimum. However, if x∗

is a local minimum solution, then we can say that the al-
gorithm converges to a ε-suboptimal solution and a local
minimum for ε > 0 and ε = 0, respectively.

Theorem 1 The discrete STA can at least converge
to a local minimum.

Proof Let suppose the maximum number of itera-
tions (denoted by M ) is big enough, then there must ex-
ist a number N(N < M) such that if k > N , no up-
date of the current solution will happen. That is to say,
f(xk) = f(xbest), ∀ k > N , where xbest is the solution
at the N th iteration. The xbest is just the local minimum
solution denoted as x∗, and |f(xk)− f(xbest)| = 0.

4.2 Global search ability of discrete STA
It is not difficult to find that whether the discrete STA

converges to a global minimum depends on the xbest in the
N th iteration. If the xbest is the global minimum, then ac-
cording to the ‘greedy criterion’ used to update the Best
in pseudocode, when k > N , Best will always be xbest.
In other words, the global convergence performance has
much to do with the three operators we have designed.

Theorem 2 The discrete STA can converge to a
global minimum in probability.

Proof Let suppose x∗ = (a1, · · · , an) is the global
minimum solution, and xk = (b1, · · · , bn) is the kth best
solution. Then we discuss separately that how the state xk

can be transformed to the best state x∗.
If there exists the same sub-sequence in both xk and

x∗, for instance, xk = (an, a2, · · · , an−1, a1), then both
swap transformation with small swap factor and appropri-
ate shift transformation have the probability to swap or
shift components an, a1 in the sequence so that xk can be
transformed exactly to the corresponding positions in the
x∗.

If there exists no same sub-sequence in xk and x∗, for
instance, xk = (an−1, an−2, · · · , a2, a1), then swap trans-
formation, shift transformation or proper symmetry trans-
formation have the probability to swap, shift or symmetrize
proper positions in the sequence so that xk can be trans-
formed exactly to the corresponding positions in the x∗.

The local property indicates that at each iteration, the
current solution in STA is always feasible and better than
or the same to previous solutions. The global property indi-
cates that whether the STA can capture the global solution
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depends on the current solution as well as the three special
transformation operators.

4.3 Time complexity of discrete STA
Because of the NP-hard property of TSP, it is impossi-

ble to solve the problem in polynomial time. As described
in the Section 1, to obtain a ‘good solution’ in reasonable
time is a optional choice, and this is the same case to the
discrete STA, which aims at getting a satisfactory solution
in as short time as possible. In the pseudocode as described
above, we can find that in the outer loop, there are M it-
erations, and in the inner loop, there exist three times of
SE transformations. It is not difficult to find that the time
complexity of the discrete STA is O(M · SE), that is to
say, the discrete STA can achieve the global optimum in
polynomial time with probability.

Traditional methods to solve combinatorial optimiza-
tion problems are based on the branch-and-bound frame-
work[4], and they are essentially in exponential time. For
the majority of heuristic algorithms, like STA, a procedure
terminates when the maximum number of iterations is met;
therefore, the time complexity is polynomial, although at
then the global solution may not be captured.

5 Experimental results and discussion
From the MATLAB scripts in Section 3, we can find

that as the ma increases, the swap transformation matrix
becomes less efficient. The same phenomenon can be ob-
served in other two transformations, and repetition of the
transformation matrices occurs frequently (for example, if
ma = 3, the transformation matrices happen the same to
that of ma = 2 with a high probability).

To investigate the effect of these parameters on the per-
formance of the discrete STA, a parametric study is con-
ducted. Different groups of (ma, mb) are tested on some
TSPLIB[3] instances. and the experiment results are given
in Tables 1–3.

From the below results, it indicates that for a fixed ma,
as mb increases, the performance of STA becomes worse,
and for a fixed mb, the performance becomes worse as
well when ma increases. The results confirm the specu-
lation we have mentioned before (by the way, additional
tests have testified the same phenomenon for mc). As a
result, ma = 2,mb = 1,mc = 0 are specified as a good
choice in the remaining of this paper.

Table 1 A parametric study for the instance ulysses16

mb
ma Statistic

1 2 3

best 73.9876 73.9876 73.9876
mean 74.0779 74.5528 74.68582
st.dev. 0.1626 0.4306 0.5465

best 73.9876 73.9876 73.9876
mean 74.2369 74.3590 74.42543
st.dev. 0.2766 0.4362 0.4575

best 73.9876 73.9998 73.9876
mean 74.3344 74.3893 74.34274
st.dev. 0.4287 0.4421 0.4521

Table 2 A parametric study for the instance att48

mb
ma Statistic

1 2 3

best 3.3724e4 3.4787e4 3.4557e4
mean 3.4872e4 3.5707e4 3.6137e42
st.dev. 668.7553 640.9893 910.9418

best 3.4337e4 3.4763e4 3.5193e4
mean 3.5459e4 3.6392e4 3.6521e43
st.dev. 902.6357 965.4966 933.0365

best 3.4695e4 3.5131e4 3.5384e4
mean 3.6040e4 3.7340e4 3.7242e44
st.dev. 1.0757e3 1.2148e3 1.3545e3

Table 3 A parametric study for the instance berlin52

mb
ma Statistic

1 2 3

best 7.5444e3 7.8739e3 8.0072e3
mean 8.2472e3 8.5904e3 8.5888e32
st.dev. 273.4509 259.1225 326.3185

best 7.7934e3 8.1545e3 8.3861e3
mean 8.4674e3 8.6732e3 8.8258e33
st.dev. 320.0697 294.7743 275.5957

best 8.0510e3 8.3657e3 8.4120e3
mean 8.5308e3 8.9084e3 8.9106e34
st.dev. 253.1811 342.2800 358.0091

In order to test the performance of the proposed al-
gorithm, SA, ACO, which are recognized as distinguished
algorithms for TSP, are used for comparison with STA.
In SA, we set initial temperature at 5000, cooling rate at
0.97, and in ACO, α = 1, β = 5, ρ = 0.9, where, α, β
are used to control the relative weight of pheromone trail
and heuristic value, and ρ is the pheromone trail decay
coefficient. In ACO and STA, the number of ants or the
search enforcement is 20, and the maximum number of it-
erations is fixed at 200. Considering that SA is usually not
a population-based algorithm, the maximum iterations is
extended especially for fairness. Therefore, the threshold,
or the total number of iterations in SA is set at 4000.

Programs are run independently for 20 trails for each
algorithms in MATLAB R2010b (version of 7.11.0.584)
on Intel(R) Core(TM) i3-2310M CPU @2.10GHz under
Window 7 environment, and comparison results for STA
with SA and ACO are listed in Table 4. Some statistics
and the run time are utilized to evaluate the performance
of algorithms. The best means the minimum of the results,
and then it follows the mean, st.dev. (standard deviation).
The run time is the average time used in 20 trails, which is
measured in seconds.

As can be seen from the Table 4, STA outperforms SA
and ACO in almost every performance index. Taking the
burma14 for instance, all of these algorithms can achieve
the same best solution. But as indicated by the mean, only
STA can gain the best solution in a random run. The posi-
tion location of ulysses16 and ulysses22 is similar, but the
best results are quite different.
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Table 4 Results for benchmark test problems

Instances Statistic SA ACO STA

best 30.8785 30.8785 30.8785
mean 31.1483 32.0654 30.8785burma14
st.dev. 0.3360 0.5476 7.9022e−15
time/s 1.9482 9.2727 1.0965

best 73.9998 74.6287 73.9876
mean 74.4481 76.0864 74.0779ulysses16
st.dev. 0.4105 1.1062 0.1626
time/s 2.9975 11.3038 1.2223

best 75.6525 76.1971 75.3097
mean 76.3843 78.9508 76.1147ulysses22
st.dev. 0.5118 1.5545 0.8561
time/s 7.0002 21.6290 1.5883

best 3.5266e+4 3.7015e+4 3.3724e+4
mean 3.9667e+4 3.8449e+4 3.4872e+4att48
st.dev. 2.7453e+3 862.4546 668.7553
time/s 14.7605 102.4784 3.0462

best 455.0951 465.2753 432.0332
mean 481.2016 501.2494 451.1813eil51
st.dev. 15.5326 18.0181 9.6923
time/s 134.5754 114.3018 3.2173

best 8.1864e+3 8.2404e+3 7.5444e+3
mean 8.9838e+3 8.7776e+3 8.2472e+3berlin52
st.dev. 380.1004 267.1124 273.4509
time/s 139.8399 118.0948 3.3438

To be more specific, the details of some benchmark
problems are discussed separately in the following:

ulysses16.tsp: The best of the results are obtained by
STA, with the sequence of {7, 6, 14, 13, 12, 16, 1, 3, 2, 4,
8, 15, 5, 11, 9, 10}, which gets the best length of route at
73.9876, and the best route is plotted in Fig.1. To be more
careful, we can find that the mean solution gained by STA
is even better than the best of ACO, which indicates the
strong search capability of STA. The st.dev. of STA is al-
most approaching zero, and it shows that STA is also stable
for this test problem. By the way, the STA consumes the
half time of SA, and 1/9 time of ACO. The curves of the
average fitness are illustrated following in Fig.2. The data
created by SA are condensed to the same iterations (the
same method is applied to other three results obtained by
SA). It is interesting to find that the ups and downs in the
curve of SA at the early stage, because SA accepts a rela-
tively worse solution in probability. Taking the condensed
data of SA into consideration, we can perceive that SA
needs quite a long time for its steadily descending trend.
However for ACO, after quickly to reach a good fitness, it
is trapped into a stagnation point. But for STA, neither of
the phenomena occurs, and it keeps decreasing before not
a short time.

att48.tsp: STA also acheives the best, with the se-
quence of {9, 40, 15, 12, 11, 23, 3, 22, 16, 41, 34, 48,
5, 29, 2, 42, 26, 4, 35, 45, 10, 24, 32, 39, 25, 14, 13, 21,
47, 20, 33, 46, 36, 30, 43, 17, 27, 19, 37 , 6, 28, 7, 18,
44, 31, 38, 8, 1} and length of route at 3.3724e+4, which
is illustrated in Fig.3. The same situation is observed in
the results between ACO and STA, that is, the mean so-

lution gained by STA is better than the best of ACO. SA
outperforms ACO in the best, but mean in ACO is better
than that of SA. In this case, the st.dev. of STA is not very
satisfactory, although it is better than its competitor. The
time consumed by STA is much shorter than other two al-
gorithms, only around 1/4 and 1/30 time of that of SA and
ACO, respectively. From Fig.4, we can find low degree
of ups and downs in the curve of SA, and SA keeps good
descending trend at the first stage. ACO is confronted the
premature convergence again, few changes happen in the
late process. For STA, the fitness decreases sharply at the
early stage, but can still keep decreasing in the later, which
indicates the excellent performance of the designed opera-
tors in the discrete STA.

Fig. 1 The best route of ulysses16.tsp obtained by STA

Fig. 2 Curves of the average fitness for ulysses16.tsp

Fig. 3 The best route of att48.tsp obtained by STA
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Fig. 4 Curves of the average fitness for att48.tsp

eil51.tsp: The best results are obtained by STA, with
the sequence of {32, 11, 38, 5, 37, 17, 4, 18, 47, 12, 46,
51, 27 , 6, 48, 23, 7, 43, 24, 14, 25, 13, 41, 40, 19, 42, 44,
15, 45, 33, 39, 10, 49, 30, 34, 21, 50, 9, 16, 2, 29, 20, 35,
36, 3, 28, 31, 26, 8, 22, 1}, and the corresponding length
of route is 432.0332, which can be found in Fig.5. We can
see that, in this case, the statistical performance of SA is
a little better that that of ACO, but the average time con-
sumed is in a opposite way. Anyway, the time cost by STA
is extraordinary short, when compared with SA and ACO,
just around 1/40 and 1/35 time of them, respectively. In
Fig.6, it is also observed that the curve of SA floats quite
a long time before its rapid descending. In this case, the
curve in STA is similar to that in the att48 instance, with a
continued decline.

Fig. 5 The best route of eil51.tsp obtained by STA

Fig. 6 Curves of the average fitness for eil51.tsp

berlin52.tsp: The STA wins the best again, with the
best sequence of {3, 17, 21, 42, 7, 2, 30, 23, 20, 50, 29,
16, 46, 44, 34, 35, 36, 39, 40, 37, 38, 48, 24, 5, 15, 6, 4,
25, 12, 28, 27 26, 47, 13, 14, 52, 11, 51, 33, 43, 10, 9,
8, 41, 1945, 32, 49, 1, 22, 31, 18} and length of route at
7.5444e+3, which can be observed in Fig.7. At this time,
ACO exhibits much better than SA in other performance
except for the best. But, STA achieves the best results on
the whole, especially for the computational time. For the
problem, STA consumes 1/40 and 1/35 of the time cost by
SA and ACO, respectively. As for TSP, the time complex-
ity is really important, so the results gained by STA shows
again that the discrete STA is really promising. In Fig.8,
we can find that SA need quite a long time to reach a rela-
tively good fitness, and then it becomes stagnated. On the
contrary, the fitness of STA can decease quickly and keep
descending till the end of the process.

Fig. 7 The best route of berlin52.tsp obtained by STA

Fig. 8 Curves of the average fitness for berlin52.tsp

6 Conclusion
Different from continuous search space, the space for

traveling salesman problem is discrete, which corresponds
to a permutation of a sequence. In discrete version of state
transition algorithm, three special state transition opera-
tors are designed to manipulate the permutation. First, we
investigate a parametric study of the discrete STA. With
the gained parameters, then some experiments are done to
evaluate the proposed algorithm, and the results show that
the discrete version of STA has much better performance
not only in the search ability but also in the time consum-
ing.
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Premature phenomenon is extensively existing in
heuristic algorithms. To escape from a stagnation point,
this paper focuses on the designing of operators. Accepting
a relatively bad solution is a good idea, as can be seen in
SA; however, it increases the computational time and risks
the non-convergence. It is really excited to see the fantas-
tic performance of discrete STA only with ‘greedy crite-
rion’, due to the excellent operators designed. On the other
hand, difficulties are still existing when confronted with
large size problems, so other strategies are necessary to
be introduced to improve its performance. By the way, in
current version of STA, three transformations are only for
local permutation, and effective global permutation need
to be found in our future work as well as the equilibrium
between them.
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