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Average consensus of second-order multi-agent systems with
time-delays and uncertain topologies

SONG Li†, WU Qing-he
(School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract: First, by employing variable substitution method, the original system is decomposed into several subsystems,
and then based on the Lyapunov-Krasovskii approach, some sufficient conditions in terms of linear matrix inequalities
(LIMs) are given for average consensus of the second-order multi-agent systems with time-varying delays. The communi-
cation topologies between the agents only need to be jointly-connected. Finally, simulation results are provided to prove
the effectiveness of the theoretical results.
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1 Introduction
The cooperative control of multi-agent systems has at-

tracted a considerable attention in recent years due to its
broad applications within physics and control community.
In the area of cooperative control of multi-agent systems,
an important issue is to design distributed communication
and control protocols based on local information to make
the group of dynamic agents reach an agreement on cer-
tain quantities of interest in presence of limited and unreli-
able information exchange, dynamically changing interac-
tion topologies as well as communication delays.

Recently, consensus problems have been investi-
gated by many scholars from various perspectives[1–8].
In [3], consensus problems of first-order multi-agents
are considered under three cases: 1) directed networks
with fixed topology; 2) directed networks with switch-
ing topologies; and 3) undirected networks with com-
munication time-delays and fixed topology. In [4], the
author considered the problem of information consen-
sus among agents in the presence of limited and unre-
liable information exchange with dynamically changing
interaction topologies. In [5], the distributed reduced-
order observer-based consensus protocols are proposed to
solve the consensus problems for both continuous- and
discrete-time linear multi-agent systems. By Lyapunov-
based approach and related space decomposition tech-

nique, the work in [7] studied a coordination problem of
a multi-agent system with jointly connected interconnec-
tion topologies.

In practice application, time-delays often arise natu-
rally due to the finite transmission speed, the congestion of
the communication channels and so on. It is well-known
that the time-delays often affect the stability of systems.
Moreover, due to the moving of the agents, the topolo-
gies between individual agents may change over time and
the system may also exist parameter uncertainties. In [9],
the consensus problem of networked Euler-Lagrange sys-
tems with unknown parameters was addressed, but it re-
quired the communication topology was fixed and had a
spinning tree. In [10], the average consensus of first-order
networks systems with time-delay and switching topolo-
gies was discussed. In [11], the average consensus prob-
lem in networks of dynamic agents with uncertain topolo-
gies and time-varying delays was addressed. In [12], the
leader-follower consensus problem for a class of high-
order multi-agent systems with existing external distur-
bances, model errors and time-delay was considered, here
the communication topology was also supposed to be fixed
and connected. In the study of variable topologies, joint
connection is an important condition because it does not
require the connection of the time-varying interconnec-
tion topology at any moment. The average consensus of
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first-order networks systems with time-delay and joint-
connected topologies was considered in [13], and the con-
sensus problems of second-order multi-agent system with
constant time-delay and jointly topologies were investi-
gated in [14].

In this paper, we consider the second-order net-
works systems with time-varying delays as well as
jointly-connected topologies. By employing variable
substitution method and Lyapunov-Krasovskii approach,
some sufficient conditions in terms of linear matrix in-
equalities (LMIs) are given for average consensus of the
networks systems. The conditions are composed of some
decoupled parts corresponding to each possible connected
component of the communication topology. In contrast
to [10–11], the topologies in this paper only require joint-
connected, so when the number of agents is large, the
corresponding calculation is much smaller than [10–11].
In contrast to [13–14], we consider the second-order net-
works systems in presence of both uncertainties and time-
varying delays.

Notation The following notation will be used
throughout this paper. Rm denotes the set of all m dimen-
sional real column vectors; Im denotes the m dimensional
unit matrix; ⊗ denotes the Kronecker product; 1n repre-
sents [1 1 · · · 1]T with dimension n; 0 denotes a zero
value or a zero matrix with appropriate dimensions; ‖ · ‖
refers to the standard Euclidean norm of vectors; the sym-
bol ∗ denotes the symmetric term of a symmetric matrix.

2 Preliminaries and problem formulation
2.1 Graph theory

It is natural to model information exchange among
agents by means of directed or undirected graphs. Let
G(V, E ,A) be an undirected graph of order n, where
V = {v1, · · · , vn} is the node set representing agents,
E ⊆ V × V is the set of edges of the graph, and A = [aij ]
is the weighted adjacency matrix. The node indices belong
to a finite index set I = {1, 2, · · · , n}. An edge of G is
denoted by eij = (vi, vj) representing that agents vi and
vj can exchange information with each other. Since the
graph is undirected, it means that the edges eij ∈ E and
eji ∈ E are considered to be the same. The weighted ad-
jacency matrix is defined as aii = 0 and aij > 0, where
aij = aji > 0 if and only if eij ∈ E . Obviously, A is
a symmetric nonnegative matrix. The set of neighbors of
node vi is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}. The
in-degree and out-degree of node vi are defined as

din(vi) =
n∑

j=1

aji = dout(vi) =
n∑

j=1

aij .

The Laplacian matrix corresponding to the undirected
graph G is defined as L = [lij ], where lii = dout(vi) and
lij = −aij , i 6= j. It’s easy to see that the Laplacian ma-
trix L is also symmetric. A path is a sequence of connected
edges of the form (vi, vi1), (vi1 , vi2), · · · , where ij ∈ `
and vij

∈ V . A graph is connected if there is a path be-
tween every pair of vertices. The union of a collection
of graphs Ḡ1, · · · , Ḡm, with the same node set V , is de-
fined as the graph Ḡ1−m with the node set V and edge set
equaling to the union of the edge sets of all of the graphs

in the collection. Moreover, these graphs Ḡ1, · · · , Ḡm are
jointly-connected if their union graph Ḡ1−m is connected.

Lemma 1[15] If the undirected graph G is con-
nected, then its Laplacian L has the following properties:

1) zero is a simple eigenvalue of L with an associated
eigenvector 1n satisfies L1n = 0;

2) all its other n− 1 eigenvalues are positive and real.
2.2 Problem statement

Suppose the ith agent has the dynamics as follows:
{

ẋi(t) = vi(t),
v̇i(t) = ui(t),

(1)

where xi(t) ∈ R is the position state, vi(t) ∈ R is the
velocity state, and ui(t) ∈ R is the protocol.

We use the following linear consensus protocol:

ui = −k1vi(t) +
∑

j∈Ni(t)

[aij(t) + ∆aij(t)] ·
[xj(t− τij)− xi(t− τij)]. (2)

To simplify the analysis, we make a model transfor-
mation. Let

v̄i(t) = 2vi(t)/k1 + xi(t),
ξ(t) = [x1(t) v̄1(t) · · · xn(t) v̄n(t)],

A =
[−k1/2 k1/2

k1/2 − k1/2

]
, B =

[
0 0

2/k1 0

]
. (3)

Suppose that there are r different time-delays, denoted
by τk(t) ∈ {τij , i, j ∈ I}(k = 1, 2, · · · , r). Under the
protocol (2), the closed-loop network dynamics is

ξ̇(t) = (In ⊗A)ξ(t)−
r∑

k=1

[(Lσk +

∆Lσk)⊗B]ξ(t− τk), (4)

where Lσk = [lkij ] is the matrix defined by

lkij =





−aij , j 6= i, τk(·) = τij(·),
0, j 6= i, τk(·) 6= τij(·),
n∑

j=1

lkij , j = i.

and ∆Lσk = [∆lkij ] is the uncertain matrix defined by

∆lkij =





−∆aij , j 6= i, τk(·) = τij(·),
0, j 6= i, τk(·) 6= τij(·),
n∑

j=1

∆lkij , j = i.

Since the graph Gσ is undirected, it is easy to
see Lσk, ∆Lσk are symmetric matrices, and Lσk1 =

0, ∆Lσk1 = 0. Thus, 1T{(In ⊗ A)ξ(t) −
r∑

k=1

[(Lσk +

∆Lσk) ⊗ B]ξ(t − τk)} = 0, i.e.,
n∑

i=1

(ẋi(t) + ˙̄vi(t)) = 0,

which means α = (1/2n)
n∑

i=1

(xi(t)+ v̄i(t)) is an invariant

quantity. Let δ(t) = ξ(t) − α1. Then system (4) can be
transformed into

δ̇(t) = (In ⊗A)δ(t)−
r∑

k=1

[(Lσk +

∆Lσk)⊗B]δ(t− τk). (5)
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Obviously,
2n∑
i=1

= δi(t) = 0. Also, if lim
t→∞

δ(t) = 0, then

lim
t→∞

ξ(t) = α1, i.e., lim
t→∞

xi(t) = lim
t→∞

v̄i(t) = α, which

implies lim
t→∞

xi(t) = (1/n)
n∑

i=1

(xi(0) + vi(0)/k1) =

(1/n)
n∑

i=1

xi(0) and lim
t→∞

vi(t) = 0 for any i ∈ I . That

means average consensus is achieved.
In the following, we assume that time-varying delays

in Eq.(5) satisfy
A1) 0 6 τk(t) 6 hk, τ̇k(t) 6 dk for t > 0 and

k = 1, 2, · · · , r, where hk > 0 and dk > 0, or
A2) 0 6 τk(t) 6 hk, for t > 0 and k = 1, 2, · · · ,

r, where hk > 0. That is, nothing has been known about
the derivative of τk.

Consider an infinite sequence of nonempty, bounded
and contiguous time-intervals [ts, ts+1], s = 0, 1, · · · ,
with t0 = 0 and ts+1 − ts 6 T1 for some constant T1 >0.
In each interval [ts, ts+1), there is a sequence of subinter-
vals [ts0 , ts1), [ts1 , ts2), · · · , [tsmr−1 , tsmr

) with ts0 = ts
and tsmr

= ts+1 satisfying tsj+1 − tsj
> T2, 0 6 j 6

mr−1 for some integer mr > 0 and given constant T2 > 0
such that the communication topology Gσ switches at tsj

and it does not change during each subinterval [tsj
, tsj+1).

Evidently, there are at most s∗ = bT1/T2c subintervals in
each interval [ts, ts+1), where bT1/T2c denotes the maxi-
mum integer no larger than T1/T2.

Suppose that the (time-invariant) communication
graph G(t) on subinterval [tsj

, tsj+1) has lσ > 1 connected
components with the corresponding sets of nodes denoted
by ϕ1

sj
, ϕ2

sj
, · · · , ϕlσ

sj
. Then there exists a permutation ma-

trix Eσ such that
ET

σ LσEσ = diag{L1
σ, L2

σ, · · · , Llσ
σ },

ET
σ ∆LσEσ = diag{∆L1

σ,∆L2
σ, · · · ,∆Llσ

σ },
and

δT(t)Eσ = [δ1T
σ (t) δ2T

σ (t) · · · δlσT
σ (t)], (6)

where each block matrix Li
σ ∈ Rdi

σ×di
σ is a Laplacian

matix of the corresponding connected component with di
σ

denoting the number of nodes in ϕi
sj

. Then in each subin-
terval [tsj

, tsj+1) system (5) can be decomposed into the
following lσ subsystems:

δ̇i
σ(t) = (Idi

σ
⊗A)δi

σ(t)−
r∑

k=1

(L̃i
σk ⊗B) ·

δi
σ(t− τk), (7)

where δi
σ(t) = [δiT

σ1(t) · · · δiT
σdi

σ
(t)]T ∈ Rdi

σ and L̃i
σk =

Li
σk + ∆Li

σk is the coefficient matrix associated with
the variable δi

σ(t − tk). It is easy to see that Li
σk1 =

0, ∆Li
σk1 = 0, (Li

σk)T = Li
σk, (∆Li

σk)T = ∆Li
σk, Li

σ

=
r∑

k=1

Li
σk and ∆Li

σ =
r∑

k=1

∆Li
σk.

The following lemmas play an important role in the
proof of the main results.

Lemma 2 Let Ψ i
σ = (Idi

σ
⊗ A)− Li

σ ⊗ B with A
and B as defined in Eq.(3) and satisfy k2

1 > 4dmax, where
dmax denotes the largest diagonal entry of all possible Lσ ,
then, we can get that −Ψ i

σ is a Laplacian matrix with the

same structure as Li
σ = [lij ], i.e., if the graph of the Lapla-

cian matrix Li
σ is connected, then, rank(−Ψ i

σ) = 2di
σ − 1.

Proof Through directly calculate, we can get that

−Ψ i
σ =




k1

2
−k1

2
· · · 0 0

−k1

2
+

2
k1

l11
k1

2
· · · 2

k1
l1di

σ
0

...
...

...
...

0 0 · · · k1

2
−k1

2
2
k1

ldi
σ1 0 · · · −k1

2
+

2
k1

ldi
σdi

σ

k1

2




.

Obviously, Ψ i
σ1 = 1TΨ i

σ = 0, and −k1

2
+

2
k1

lii 6 0, i =

1, · · · , di
σ since k2

1 > 4dmax. This means the off-diagonal
entries of matrix −Ψ i

σ are nonpositive. Then, we can say
that −Ψ i

σ is a Laplacian matrix. It is not hard to see that
the graph of the Laplacian −Ψ i

σ is the extension of graph
of the Laplacian Li

σ by the following method: add a new
node to each node of the graph of the Laplacian Li

σ and
connect them. Then, the new graph has the same structure
as the original graph.

Lemma 3 [10] Assume that G with the Laplacian
matrix L is a strongly connected and balanced digraph,
then we have

ET(L + LT)E > 0,

where

E =
[
In−1

E0

]
, E0 = (−1,−1, · · · ,−1).

Lemma 4 (Schur complement)[16] Let S = ST

=
[
S11 S12

∗ S22

]
be a given symmetric matrix, then the fol-

lowing three conditions are equivalent:
1) S < 0;
2) S11 < 0, S22 − ST

12S
−1
11 S12 < 0;

3) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

Lemma 5 [11] For any real differentiable vector
function x(t) ∈ R and any constant matrix 0 < W =
W t ∈ Rn×n and 0 6 τk(t) 6 hk, we have the following
inequality:

h−1
k [x(t)−x(t−τk(t))]TW [x(t)−x(t−τk(t))]6
w t

t−τk(t)
ẋT(s)Wẋ(s)ds, t > 0. (8)

Lemma 6 [17] Let Q = QT, R, H, F (t) be a matri-
ces with appropriate dimensions, and matrix F (t) satisfied
FT(t)F (t) 6 I , then

Q + HF (t)R + HTFT(t)RT < 0,

satisfied if and only if there exists a positive constant ε > 0
satisfied

Q + ε−1HHT + εRTR < 0.

3 Main result
Theorem 1 Consider a network of agents with

time-delay satisfies A1), and the communication topolo-
gies graph is jointly-connected in each interval [ts, ts+1)
and satisfies (∆Li

σ⊗B)T(∆Li
σ⊗B) 6 a2I and (∆Li

σk⊗
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B)T(∆Li
σk ⊗B) 6 a2I, i = 1, · · · , lσ, k = 1, · · · , r. If

there exist some constants α, β, γ, ε such that the follow-
ing LMIs is satisfied for each subinterval [tsj

, tsj+1):

Φi
σ =




Φ11 + ∆11 Φ12 Φ13 Φ14

∗ Φ22 + ∆22 Φ23 0
∗ ∗ Φ33 Φ34

∗ ∗ ∗ −εI


 < 0, (9)

where

Φ11 = ET(α(Ψ i
σ + Ψ iT

σ ) + γ
r∑

k=1

dkI)E,

∆11 = εa2ETE,

Ψ i
σ = (Idi

σ
⊗A)− Li

σ ⊗B,

Φ12 = [ET(α(Li
σ1 ⊗B) + β(1− d1)I)E · · ·

ET(α(Li
σr ⊗B) + β(1− dr)I)E],

Φ13 = ETΨ iT
σ ,

Φ14 = [ET · · · ET 0],

Φ22 = diag{−ET(
γ

h1
I + β(1− d1)I)E, · · · ,

− ET(
γ

hr
I + β(1− dr)I)E},

∆22 = diag{εa2ETE, · · · , εa2ETE},
Φ23 =

[
(Li

σ1 ⊗B)E · · · (Li
σr ⊗B)E

]T
,

Φ33 = −(γ
r∑

k=1

hk)−1,

Φ34 = [I · · · I 0].

Then the protocol (2) solves the average consensus prob-
lem.

Proof We first prove that Eq.(9) is always feasible
for any 0 6 dk < 1 under the assumption of Theorem 1.
Rewriting Eq.(9) by using Lemma 4, we obtain that



ETαΨ̄ i
σE αET(Li

σ1⊗B)E · · · αET(Li
σr ⊗B)E

∗ (εa2 − γ

h1
)ETE 0 0

∗ ∗ . . . 0
∗ ∗ ∗ (εa2 − γ

hr
)ETE




+

β




r∑
k=1

dkETE (1−d1)ETE · · · (1−dr)ETE 0

∗ (d1−1)ETE 0 0 0

∗ ∗ . . . 0
...

∗ ∗ ∗ (dr−1)ETE 0
∗ ∗ ∗ ∗ 0



·

γ(
r∑

k=1

hk)RTR + ε−1HHT < 0, (10)

where R = [Ψ i
σE (Li

σ1⊗B)E · · · (Li
σr⊗B)E]T, Ψ̄ i

σ =
α(Ψ i

σ + Ψ iT
σ ) + εa2I and

H =




ET ET · · · ET 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
I I · · · I 0




.

Choosing appropriate a, ε, α, β, γ and hm, it is easy
to see that the inequality inequality (10) holds if ET(Ψ iT

σ +
Ψ i

σ)E < 0. It is apparent satisfied by Lemma 2 and
Lemma 3. Hence, inequality (10) is always feasible for
any 0 6 dk < 1 and appropriate a, ε, α, β, γ and hm.

Next, we prove that system (4) achieves average con-
sensus under assumption A1). Define a common Lyapunov
function for system (5) as follows:

V (t) = αδT(t)δ(t) + β
r∑

k=1

w t

t−τk(t)
δT(s)δ(s)ds +

γ
r∑

k=1

w 0

−τk

w t

t+θ
δ̇T(s)δ̇(s)dsdθ.

From Eq.(6), V (t) can be rewritten as

V (t) =
lσ∑

i=1

{αδiT
σ (t)δi

σ(t)+β
r∑

k=1

w t

t−τk(t)
δiT
σ (s)δi

σ(s)ds +

γ
r∑

k=1

w 0

−τk

w t

t+θ
δ̇iT
σ (s)δ̇i

σ(s)dsdθ}.

Let ηi
σk(t) = δi

σ(t)−δi
σ(t−τk). Rewrite system (7) as the

following equivalent form:

δ̇i
σ(t) =

[
(Idi

σ
⊗A)− (Li

σ + ∆Li
σ)⊗B

]
δi
σ(t) +

r∑
k=1

[
(Li

σk + ∆Li
σk)⊗B

]
ηi

σk(t) =

Ψ̃ i
σδi

σ(t) +
r∑

k=1

(L̃i
σk ⊗B)ηi

σk(t), (11)

where Ψ̃ i
σ = (Idi

σ
⊗A)− (Li

σ +∆Li
σ)⊗B, L̃i

σk = Li
σk +

∆Li
σk. Calculating V̇ (t) along the trajectories of Eq.(11),

we get

V̇ (t) =
lσ∑

i=1

{αδiT
σ (t)(Ψ̃ i

σ + Ψ̃ iT
σ )δi

σ(t) +

β
r∑

k=1

δiT
σ (t)δi

σ(t) + γ
r∑

k=1

τk δ̇iT
σ (s)δ̇i

σ(s) +

2αδiT
σ (t)

r∑
k=1

(L̃i
σk ⊗B)ηi

σk(t) +

β
r∑

k=1

(dk − 1)δiT
σ (t− τk)δi

σ(t− τk)−

γ
r∑

k=1

w t

t−τk

δ̇iT
σ (s)δ̇i

σ(s)ds} 6

lσ∑
i=1

{δiT
σ (t)[α(Ψ̃ i

σ + Ψ̃ iT
σ ) + β

r∑
k=1

dkI]δi
σ(t) +

2δiT
σ (t)

r∑
k=1

[α(L̃i
σk ⊗B)− β(dk − 1)I]ηi

σk(t) +

γ
r∑

k=1

hk[Ψ̃ i
σδi

σ(t) +
r∑

k=1

(L̃i
σk ⊗B)ηi

σk(t)]T ·

[Ψ̃ i
σδi

σ(t) +
r∑

k=1

(L̃i
σk ⊗B)ηi

σk(t)]−
r∑

k=1

(γ/hk + β(1− dk))ηiT
σk(t)ηi

σk(t)} =

lσ∑
i=1

yT
i (t)Φ̃i

σyi(t),

where yT
i (t) = [δiT

σ (t) ηi
σ1(t) · · · ηi

σr(t)], and
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Φ̃i
σ =

[
Φ̃11 Φ̃12

Φ̃T
12 Φ̃22

]
+ γ(

r∑
k=1

hk)RTR, (12)

Φ̃11 = α(Ψ̃ i
σ + Ψ̃ iT

σ ) + β
r∑

k=1

dkI,

Φ̃12 = [α(L̃i
σ1 ⊗B) + β(1− d1)I · · ·

α(L̃i
σr ⊗B) + β(1− dr)I],

Φ̃22 = diag{− γ

h1
I − β(1− d1)I, · · · ,

− γ

hr
I − β(1− dr)I},

R̃ = [Ψ i
σ L̃i

σ1 ⊗B · · · L̃i
σr ⊗B].

Noting that 1Tδi
σ ≡ 0, we can rewrite δi

σ = Eδ̃i
σ , and

E is defined as in Lemma 3 with 2di
σ dimensional. Thus,

by Eq.(12), we have

V̇ 6
lσ∑

i=1

ỹT
i (t)WTΦ̃i

σWỹi(t), (13)

where yT
i (t) = [δ̃iT

σ (t) η̃i
σ1 · · · η̃i

σr], η̃i
σk(t) = δ̃i

σ(t) −
δ̃i
σ(t− τk) for k = 1, · · · , r, and W = diag{E, · · · , E} ∈
R2di

σ(1+r).
By straightforward computation and Lemma 4, we get

that WTΦ̃i
σW < 0 if and only if

Φ̄i
σ + aHF (t)G + aGTFT(t)HT < 0, (14)

where F (t) = a−1diag{∆Li
σ ⊗ BT, ∆Li

σ1 ⊗ BT, · · · ,

∆Li
σr ⊗ BT, ∆Li

σ ⊗ BT} satisfying FT(t)F (t) 6 I for
t > 0, H is defined in inequality (10) and

Φ̄i
σ =




Φ11 Φ12 Φ13

∗ Φ22 Φ23

∗ ∗ Φ33


 ,

G = diag {−E, E, · · · , E, 0} .

Then, by Lemma 6, we get that Eq.(14) satisfied if and only
if there exits a positive ε > 0 satisfied

Φ̄i
σ + ε−1HHT + εa2GTG < 0. (15)

By Lemma 4 again, we get that Eq.(9) is equivalent to
Eq.(15), therefore, V̇ (t) < 0,

Therefore, there exist some positive constants µi, i =
1, · · · , liσ, µ = min{µi} such that

V̇ 6 −
lσ∑

i=1

µi‖δ̃i
σ(t)‖ 6 −µ‖δ̃σ(t)‖ 6 −(µ/n)‖δσ(t)‖.

This implies that the zero solution of system (7) is asymp-
totically stable by Theorem 2.1 in [18] Chapter 5, i.e.,

lim
t→∞

δi
σ(t) = lim

t→∞
‖ξi

σ(t)− (1/di
σ)1T

di
σ

di
σ∑

i=1

ξi
σk‖ = 0,

here ξi
σ(t) corresponding to δi

σ(t). It is easy to get that

(1/di
σ)1T

di
σ

di
σ∑

i=1

ξi
σk is an invariant quantity in subinterval

[tsj
, tsj+1). Due to the solution of the system (7) is abso-

lutely continuous, the states ξi
σ(t) are continuous. Thus,

the states of the agents tend to be equal to the average of
theirs initial state as tsj

→∞ if the topologies are jointly-
connected in every two contiguous subintervals [tsj , tsj+1)

and [tsj+1 , tsj+2). Then by induction, the state of all agents
tend to be equal to the average of their initial states. as
t → ∞, since the topologies are jointly-connected in each
interval [ts, ts+1). This completes the proof.

When dk > 1 or nothing has been known about the τ̇k,
we can obtain the following result.

Theorem 2 Consider a network of agents with
time-delay satisfies A2), and the communication topolo-
gies graph is jointly-connected in each interval [ts, ts+1)
and satisfies ∆LiT

σ ∆Li
σ 6 a2I and ∆LiT

σk∆Li
σk 6

a2I, i = 1, · · · , lσ, k = 1, · · · , r. If there exist some
constants α, β, γ, ε such that the following LMIs is satis-
fied for each subinterval [tsj , tsj+1):

Ωi
σ =




Ω11+∆11 Ω12 Ω13 Ω14

∗ Ω22+∆22 Ω23 0
∗ ∗ Ω33 Ω34

∗ ∗ ∗ − εI


 < 0,

(16)

where
Ω11 = αET(Ψ i

σ + Ψ iT
σ )E,

Ω12 = [αET(Li
σ1 ⊗B)E · · · αET(Li

σr ⊗B)E],
Ω13 = Φ13, Ω14 = Φ14,

Ω22 = diag{− γ

h1
ETE, · · · ,− γ

hr
ETE},

Ω23 = Φ23, Ω33 = Φ33, Ω34 = Φ34.

Then the protocol (2) solves the average consensus prob-
lem.

Proof we construct the Lyapnunov function as

V (t) = αδT(t)δ(t) +

γ
r∑

k=1

w 0

−τk

w t

t+θ
δ̇T(s)δ̇(s)dsdθ.

The rest part of proof is similar to the analysis in Theorem
1.

4 Simulation
Numerical simulations will be given to demonstrate

the effectiveness of the theoretical results. Consider a
multi-agent systems consisting of six agents and the com-
munication topologies are given in Fig.1. All graphs in this
figure are not connected and the weight of each edge is 1
and ∆L(t) = 0.1 sin t×L. The communication topologies
switches every 0.1s in the sequence of G1 → G2 → G3 →
G4 → G1 · · · and the initial position vector is (−2,−5, 2,
−1, 3,−3). We assume that the time-delays corresponding
to the edges (1, 2), (1, 6), (2, 3), (3, 4), (4, 5) and (5, 6)
are 0.3 s, 0.3 s, 0.2 s, 0.3 s, 0.2 s, 0.2 s, respectively. We
choosing k1 = 2, it is solved that one solution for Eq.(9) is

α = 1.0133, β = 0.5778, γ = 1, ε = 8.7067.

Fig.2 shows the corresponding position trajectories of
all agents. All agents asymptotically achieved to the aver-
age value of their initial positions −1.

Fig.3 shows the corresponding velocity trajectories of
all agents. It is clear that average consensus can be asymp-
totically achieved, although the velocity trajectories are not
perfectly smooth due to the switching of the network topol-
ogy.



1052 Control Theory & Applications Vol. 30

Fig. 1 Possible interaction topologies for six agents

Fig. 2 Position trajectories of all agents

Fig. 3 Velocity trajectories of all agents

5 Conclusion
This paper has investigated the average consensus

problem in networks of dynamic agents with multiple
time-varying delays as well as uncertain topologies. By us-
ing Lyapunov-Krasovskii theory and decomposition tech-
nique, some sufficient conditions in terms of linear matrix
inequalities (LMIs) have been given for the average con-
sensus of the networks systems, where the communication
topologies are only required jointly-connected. Finally,
simulation results have been provided to demonstrate the
effectiveness of our theoretical results.
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