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Average consensus of second-order multi-agent systems with
time-delays and uncertain topologies

SONG Lif, WU Qing-he
(School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract: First, by employing variable substitution method, the original system is decomposed into several subsystems,
and then based on the Lyapunov-Krasovskii approach, some sufficient conditions in terms of linear matrix inequalities
(LIMs) are given for average consensus of the second-order multi-agent systems with time-varying delays. The communi-
cation topologies between the agents only need to be jointly-connected. Finally, simulation results are provided to prove
the effectiveness of the theoretical results.
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1 Introduction

The cooperative control of multi-agent systems has at-
tracted a considerable attention in recent years due to its
broad applications within physics and control community.
In the area of cooperative control of multi-agent systems,
an important issue is to design distributed communication
and control protocols based on local information to make
the group of dynamic agents reach an agreement on cer-
tain quantities of interest in presence of limited and unreli-
able information exchange, dynamically changing interac-
tion topologies as well as communication delays.

Recently, consensus problems have been investi-
gated by many scholars from various perspectives!!®.
In [3], consensus problems of first-order multi-agents
are considered under three cases: 1) directed networks
with fixed topology; 2) directed networks with switch-
ing topologies; and 3) undirected networks with com-
munication time-delays and fixed topology. In [4], the
author considered the problem of information consen-
sus among agents in the presence of limited and unre-
liable information exchange with dynamically changing
interaction topologies. In [5], the distributed reduced-
order observer-based consensus protocols are proposed to
solve the consensus problems for both continuous- and
discrete-time linear multi-agent systems. By Lyapunov-
based approach and related space decomposition tech-
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nique, the work in [7] studied a coordination problem of
a multi-agent system with jointly connected interconnec-
tion topologies.

In practice application, time-delays often arise natu-
rally due to the finite transmission speed, the congestion of
the communication channels and so on. It is well-known
that the time-delays often affect the stability of systems.
Moreover, due to the moving of the agents, the topolo-
gies between individual agents may change over time and
the system may also exist parameter uncertainties. In [9],
the consensus problem of networked Euler-Lagrange sys-
tems with unknown parameters was addressed, but it re-
quired the communication topology was fixed and had a
spinning tree. In [10], the average consensus of first-order
networks systems with time-delay and switching topolo-
gies was discussed. In [11], the average consensus prob-
lem in networks of dynamic agents with uncertain topolo-
gies and time-varying delays was addressed. In [12], the
leader-follower consensus problem for a class of high-
order multi-agent systems with existing external distur-
bances, model errors and time-delay was considered, here
the communication topology was also supposed to be fixed
and connected. In the study of variable topologies, joint
connection is an important condition because it does not
require the connection of the time-varying interconnec-
tion topology at any moment. The average consensus of
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first-order networks systems with time-delay and joint-
connected topologies was considered in [13], and the con-
sensus problems of second-order multi-agent system with
constant time-delay and jointly topologies were investi-
gated in [14].

In this paper, we consider the second-order net-
works systems with time-varying delays as well as
jointly-connected topologies. By employing variable
substitution method and Lyapunov-Krasovskii approach,
some sufficient conditions in terms of linear matrix in-
equalities (LMIs) are given for average consensus of the
networks systems. The conditions are composed of some
decoupled parts corresponding to each possible connected
component of the communication topology. In contrast
to [10-11], the topologies in this paper only require joint-
connected, so when the number of agents is large, the
corresponding calculation is much smaller than [10-11].
In contrast to [13—-14], we consider the second-order net-
works systems in presence of both uncertainties and time-
varying delays.

Notation The following notation will be used
throughout this paper. R denotes the set of all m dimen-
sional real column vectors; I,,, denotes the m dimensional
unit matrix; ® denotes the Kronecker product; 1,, repre-
sents [I 1 --- 1]T with dimension n; 0 denotes a zero
|l
refers to the standard Euclidean norm of vectors; the sym-
bol * denotes the symmetric term of a symmetric matrix.

2 Preliminaries and problem formulation
2.1 Graph theory

It is natural to model information exchange among
agents by means of directed or undirected graphs. Let
G(V,E, A) be an undirected graph of order n, where

= {v1, -+ ,v,} is the node set representing agents,
&€ CV x Vis the set of edges of the graph, and A = [a,;]
is the weighted adjacency matrix. The node indices belong
to a finite index set I = {1,2,--- ,n}. An edge of G is
denoted by e;; = (v;,v;) representing that agents v; and
v; can exchange information with each other. Since the
graph is undirected, it means that the edges e;; € £ and
eji € & are considered to be the same. The weighted ad-
jacency matrix is defined as a;; = 0 and a;; > 0, where
a;; = aj; > 0if and only if e;; € £. Obviously, A is
a symmetric nonnegative matrix. The set of neighbors of
node v; is denoted by N; = {v; € V : (v;,v;) € £}. The
in-degree and out-degree of node v; are defined as

din(vi) = > aji = dout(vi) = 3 aij.
j=1 j=1

The Laplacian matrix corresponding to the undirected
graph G is defined as L = [I;;], where l;; = dgy¢(v;) and
lij = —ay;, 1 # j. It’s easy to see that the Laplacian ma-
trix L is also symmetric. A path is a sequence of connected
edges of the form (v;,v;, ), (viy,vi,),- -+, where i; € ¢
and v;; € V. A graph is connected if there is a path be-
tween every pair of vertices. The union of a collection
of graphs Gl, -+, G, with the same node set V, is de-
fined as the graph G1_,, with the node set V and edge set
equaling to the union of the edge sets of all of the graphs

in the collection. Moreover, these graphs G, - - - , G, are
jointly-connected if their union graph G'1_,, is connected.

Lemma 15! If the undirected graph G is con-
nected, then its Laplacian L has the following properties:

1) zero is a simple eigenvalue of L with an associated
eigenvector 1,, satisfies L1,, = 0;

2) all its other n — 1 eigenvalues are positive and real.
2.2 Problem statement

Suppose the 7th agent has the dynamics as follows:

i(t) = vi(t),
0i(t) = ua(t),
where z;(t) € R is the position state, v;(t) € R is the
velocity state, and u;(t) € R is the protocol.
We use the following linear consensus protocol:

u; = —kvi(t) + >0 [aij(t) + Aag;(t)] -
JEN;(t

[ (t — 7i5) — x,(t 7ij)]- 2

To simplify the analysis, we make a model transfor-
mation. Let

vi(t) = 2v;(t) / k1 + (),
§(t) = [z1(t) 01(t) -+ zalt) Oa(t)],

A= [_klfl//; —klk;/f/z} » B = {2/()/{1 8} G

Suppose that there are r different time-delays, denoted
by 7(t) € {mj;,i,7 € I}(k = 1,2,---,r). Under the
protocol (2), the closed-loop network dynamics is

ey

€)= (1 © D0 — 3 [(Low +
ALO’]C) ® B]&(t - Tk)a (4’)

where Ly, = [lki;] is the matrix defined by
—Qgj, j # Z-aTIC(') = Tij('),
07 .7 7& i77—k(') 7& le()a

lkij =19 n o
> lkij, J=1.
£

and AL, = [Ali;] is the uncertain matrix defined by
—Aaj, j?él:ka('):Tij(')a
07 J # ZaTk(') # Tij(')v

Alkz = n
TS Ay, =i
j=1

Since the graph G, is undirected, it is easy to
see Lok, AL,k are symmetric matrices, and L,,x1 =

0, AL,x1 = 0. Thus, 1T{(I,, ® A)¢(t) — Zij[( ok +
vy (t

im( B+ 6i(t)) =

n
which means o = (1/2n) Z( i(t) 4+ 0;(t)) is an invariant
() = al. Then system (4) can be

ALJk) X B]f(t — Tk)} =

quantity. Let 6(¢) =
transformed into
> [(Lok +

k=1

ALgy) ® B)o(t — 7). (5)

T

® A)o(t) —
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2n

Obviously, Z 0;(t) = 0. Also, if tlim 4(t) = 0, then
1=1 —0

lim £(t) = al, ie., lim z;(t) = lim ©;(t) = «, which
t—o0 —00 t—oo

implies lim a;(t) = (1/n) 3 (2:(0) + vi(0)/k1) =

i=1
n

(1/n) 2

meanslaverage consensus is achieved.

In the following, we assume that time-varying delays
in Eq.(5) satisfy

Al) 0 < Tk(t) < hk, Tk() dk fOI‘t
k=1,2,---,7,where hy > 0and d; > 0, or

A2) 0 < 7(t) < hg,fort > 0and k = 1,2,-
r, where hy > 0. That is, nothing has been known about
the derivative of 7.

Consider an infinite sequence of nonempty, bounded
and contiguous time-intervals [ts,ts11],8 = 0,1,--+,
withtg = 0and t;41 — t; < T} for some constant 77 > 0.
In each interval [t,ts1), there is a sequence of subinter-
vals [tsg, b, )y [tsysten )y 5 [tsp, _1sts,,, ) With tg, =
and ¢ = tsq1 satisfying ¢5,,, —t5;, =2 T2, 0 < j <
m,.—1 for some integer m,. > 0 and given constant 7, > 0
such that the communication topology G, switches at ¢,
and it does not change during each subinterval [t ,ts, ).
Evidently, there are at most s, = |7 /7% | subintervals in
each interval [ts,ts11), where |17 /15| denotes the maxi-
mum integer no larger than T} /T5.

Suppose that the (time- invariant) communication
graph G/(t) on subinterval [t ,t,, ) hasl, > 1 connected
components with the correspondlng sets of nodes denoted
by @i, 2, -+ ¢k . Then there exists a permutation ma-
trix E, such that

EYL,E, = diag{L}, I2,--- L'},
ETALLE, = dlag{AL},, ALZ,-.. ALY,

x;(0) and 75lim v;(t) = 0 for any ¢ € I. That

0 and

Smy

and
ST () E, = [057(t) 627 (1) -+~ 55T (@®)],  (6)

where each block matrix L € R%*9 is a Laplacian
matix of the corresponding connected component with d’,
denoting the number of nodes in @2} Then in each subin-
terval [ts,,ts,,,) system (5) can be decomposed into the
following [, subsystems:

G20 = (1, © A05() = X (T 0 B)-
5;(1‘,—7%) (7
where 8} (t) = (075 (t) -+ 82, (1)]T € R% and L}, =

Li, + ALY, is the coefficient matrix associated with
the variable 6 (¢ — t). It is s easy to see that L', 1 =

0, ALffkl =0, (Lfm) = Lk (AU ) ALfﬂw Li
= > L', and AL} = Z ALY,
k=1 k=1

The following lemmas play an important role in the
proof of the main results.

Lemma2 Let¥ = (I ® A) — L, ® B with A
and B as defined in Eq.(3) and satlsfy kl > 4d,,ax, Where
dmax denotes the largest diagonal entry of all possible L.,
then, we can get that —W! is a Laplacian matrix with the

same structure as L:. = [l;;], i.e., if the graph of the Lapla-

cian matrix L? is connected, then, rank(—¥}) = 2d. — 1.
Proof Through directly calculate, we can get that
_ k 2 -
?1 _51 . 0 0
iy 2, h 2] 0
R ) oy
~Wl= : : : :
k k
0 0 --- ?1 _?1
2 1 0 B 2, o
L k%! 2 k%% 2
. . k 2
Obviously, ¥/1 = 1Tw! = 0, and —51 + i <00 =
. 1
1,---,d. since k% > 4dyax- This means the off-diagonal

entries of matrix —W! are nonpositive. Then, we can say
that —% is a Laplacian matrix. It is not hard to see that
the graph of the Laplacian —¥! is the extension of graph
of the Laplacian L? by the following method: add a new
node to each node of the graph of the Laplacian L? and
connect them. Then, the new graph has the same structure
as the original graph.

Lemma 3%  Assume that G with the Laplacian
matrix L is a strongly connected and balanced digraph,
then we have

EY(L+LYE >0,

where
E= | E =(-1,-1,---,-1)
- EO ) 0 — ) ) 9 .

Lemma 4 (Schur complement)'® ILet § = ST
— Sll 812
* Sag

lowing three conditions are equivalent:

1) S<0;

2) S < 0, Soo —

3) SQQ < O, 511 — 51252_215?2 < 0.

Lemma 5! For any real differentiable vector
function z(¢t) € R and any constant matrix 0 < W =
Wt e R™™ and 0 < 74(¢) < hy, we have the following
inequality:

i a(t) — (=i ()] "W (t) —(t -0 ()] <
Lim(t) 2T (s)Wi(s)ds, t > 0. (8)

Lemma 6" LetQ = Q"', R, H, F(t) be a matri-
ces with appropriate dimensions, and matrix F'(t) satisfied
FT(t)F(t) < I, then

Q+ HF(t)R+HTFT(t)RT <0,
satisfied if and only if there exists a positive constant £ > 0
satisfied

} be a given symmetric matrix, then the fol-

T8, S12 < 0;

Q+e'HHT +«RTR < 0.

3 Main result

Theorem 1 Consider a network of agents with
time-delay satisfies Al), and the communication topolo-
gies graph is jointly-connected in each interval [t,ts11)
and satisfies (ALL @ B)T(ALY ® B) < a®I and (AL?, ®
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BYY(AL:, @ By <a®l,i=1,--,ly, k=1,---,r.If
there exist some constants «, 3, -y, € such that the follow-

ing LMIs is satisfied for each subinterval [t,, %, ,):
D11+ A Dia D13 Dy
i * Dog + Aoy Pa3 0
P = . y B By <0, (9
* * * 76[
where
D1 =EN (a(W +¥.7) +v X dD)E
k=1
All = EazETE,
i = (Lai ®A) - L! ® B,
D19 = [EY(a(L}, ® B) + B(1 —dy))E ---
E"(a(L}, ® B) + (1 —d,)I)E],
&3 = ETwiT
Oy, =[E" --- ET 0],
Doy = diag{—ET(h I+p(1—d)E,- -,
1
- ET(-1+ 51— d)DE},
Agy = diag{ca®’ETE,--- ,ca’ETE},

Doy = [(Ly ® B)E -+ (L), ® B)E]"

P33 = —(v Z hi) 7,
k=1
Gy =1 ---10].
Then the protocol (2) solves the average consensus prob-
lem.

Proof We first prove that Eq.(9) is always feasible
for any 0 < dj < 1 under the assumption of Theorem 1.
Rewriting Eq.(9) by using Lemma 4, we obtain that
ETaV!E oET (L ,® B)E --- aET (L}, ® B)E
* (ea® — h—)ETE 0 0
1 +
* * ’

* *

™ . ETE (1—dy)E'E ---
% (di—1)ETE 0

* * * * O

(3 hi)R*R+e'HHT <0, (10)
k=1

vl =

o

where R=[WV!E (L, ® B)E --
(Wl + WiT) + a1 and

- (L., ®B)E]T,

ETET... ET0
0 0.--- 00
H=|: : :
0 0 - 00
I 1 - 10

Choosing appropriate a, €, a, 3, v and Ay, it is easy
to see that the inequality inequality (10) holds if BT (#iT +
Wi)E < 0. It is apparent satisfied by Lemma 2 and
Lemma 3. Hence, inequality (10) is always feasible for
any 0 < dj, < 1 and appropriate a, €, a, 3, v and hy,.

Next, we prove that system (4) achieves average con-
sensus under assumption A1l). Define a common Lyapunov
function for system (5) as follows:

V(t) = adT ()3t +ﬂzj (s)6(s)ds +
j [ 8™()b(s)dsdo.
k 1 T Jt+60
From Eq.(6), V (¢) can be rewritten as
V(l‘) =
Z{WT( LAONEDS f 0 7 () ()5 +

5 k; j . jw 5T (5)8% (5)dsd6}.

Letn’, (t) = 6%(t) — 6% (t — 71,). Rewrite system (7) as the
following equivalent form:

0L(t) = [(Iyx ® A) — (L + ALL) ® B] 6L(t) +
];1 [(Lfrk +ALL) ® B] nee(t) =
WESL(t) + X (Li, ® B)ny(t), (11)
k=1
where ¥} = (I;; ® A) — (L, + AL,) ® B, Li, =L +

AL, . Calculating V(t) along the trajectories of Eq.(11),
we get

V() = 3 {adT (1) + TN (1) +
=1

5i() +y 3 b ()6 (s) +

k=1

Le @ Bk (t) +

5 i 5T (1)

&
ﬁél(dk ~ STt = )8 (¢ - 7)

1Y [ AT (s <
SO+ 50 +5 S Al 0 +
2077(1) 32 0(Lhy © B) — Aldy — DIlnu(t) +
13 mlTLA ) + 3 (L © Bl (o))"
T255(0) + 3 (L © Bl (1)) -
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T

+7(> he)RTR, (12)

k=1

dji

g

2 4'112
BT, Doy

&), = a(iﬁ ‘*‘WT) +8 > dil
k=1

B1p = [a(Lhy ® B) + B(1 — di)T -
a(L,, ® B) + B(1 — d,)1],
Boy = diag{—hllz B —d)I, -,

— oI —dT,
r
R=W I',®B --- L\ ©B.
Noting that 1767 = 0, we can rewrite 5. = E4", and

E is defined as in Lemma 3 with 2d¢ dimensional. Thus,
by Eq.(12), we have
. lo
V<
i=1
where yT(t) = [6:T(t) iy -
St(t—7p) fork=1,---
R2d2(1+7')'

IEEWTES: W (1), (13)

ﬁjrrL ﬁ;k(t) = 6;(t) -
,roand W = diag{FE,--- ,E} €

By straightforward computation and Lemma 4, we get
that WT&L W < 0 if and only if
&+ aHF(t)G +aGTFT(t)HT <0, (14)
where F(t) = a~ldiag{AL! ® BT, AL}, ® BT,
AL ® BT AL! ® BT} satisfying FT(t)F(t) <
t > 0, H is defined in inequality (10) and
P11 P12 Pis

L= | x Dy Poz|,
* * @33

G =diag{—E,E,---

I for

JE,0}.

Then, by Lemma 6, we get that Eq.(14) satisfied if and only
if there exits a positive € > 0 satisfied

P +e'HHT +2a’GTG < 0. (15)
By Lemma 4 again, we get that Eq.(9) is equivalent to
Eq.(15), therefore, V(t) < 0

Therefore, there exist some positive constants f;,¢ =
1,--- 1%, u = min{y,} such that

—ullda (D) <

o

- Zlui\lgfr(t)l\ <

—(n/n)ll65 @)]]-

This implies that the zero solution of system (7) is asymp-
totically stable by Theorem 2.1 in [18] Chapter 5, i.e.,

di
Jim 55(0) = Jim € 6) — (/)15 55 bl =0,
here £ (t) corresponding to 0% (t).

(1/di)1% 3 &, is an invariant quantity in subinterval
7 i=1

It is easy to get that

[ts; ts,,,). Due to the solution of the system (7) is abso-
lutely continuous, the states £%(¢) are continuous. Thus,
the states of the agents tend to be equal to the average of
theirs initial state as t5;, — oo if the topologies are jointly-
connected in every two contiguous subintervals [t,,, ;. ,)

and [ty .t ,,). Then by induction, the state of all agents
tend to be equal to the average of their initial states. as
t — 00, since the topologies are jointly-connected in each
interval [ts,t541). This completes the proof.

When dj, > 1 or nothing has been known about the 7y,
we can obtain the following result.

Theorem 2 Consider a network of agents with
time-delay satisfies A2), and the communication topolo-
gies graph is jointly-connected in each interval [ts,ts41)
and satisfies ALTALL < @I and ALTAL, <
a?l, i =1,---,l,, k = 1,---,r. If there exist some
constants «, 3, 7y, € such that the following LMIs is satis-

fied for each subinterval [t,, ¢, ):

Mi+An o (s (s
* 2904+ A99 §203 0O

Qo - * * 933 934 < 0’
* * * —el
(16)
where

21 =aEY (W +¥NE,
19 = [@EY(L{, ® B)E ---
(3 = D13, 214 = D1y,

aB"(L;, © B)E],

Doy = dlag{——ETE . —hlETE},
(253 = D3, 933 = P33, 234 = P3y.

Then the protocol (2) solves the average consensus prob-
lem.

Proof we construct the Lyapnunov function as
V(t) = adT(t)s(t) +

k 1\[ ‘rkJ;+0

The rest part of proof is similar to the analysis in Theorem
1.

4 Simulation

Numerical simulations will be given to demonstrate
the effectiveness of the theoretical results. Consider a
multi-agent systems consisting of six agents and the com-
munication topologies are given in Fig.1. All graphs in this
figure are not connected and the weight of each edge is 1
and AL(t) = 0.1sin ¢ x L. The communication topologies
switches every 0.1s in the sequence of G; — G2 — G3 —
G4 — G1 --- and the initial position vector is (—2, —5, 2,
—1,3, —3). We assume that the time-delays corresponding
to the edges (1,2), (1,6), (2,3), (3,4), (4,5) and (5,6)
are 0.3s, 0.3s, 0.2s, 0.3s, 0.2, 0.2, respectively. We
choosing k; = 2, it is solved that one solution for Eq.(9) is

a=1.0133, 8 =0.5778, v =1, ¢ = 8.7067.

s)dsd#.

Fig.2 shows the corresponding position trajectories of
all agents. All agents asymptotically achieved to the aver-
age value of their initial positions —1.

Fig.3 shows the corresponding velocity trajectories of
all agents. It is clear that average consensus can be asymp-
totically achieved, although the velocity trajectories are not
perfectly smooth due to the switching of the network topol-

ogy.
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Fig. 1 Possible interaction topologies for six agents

,5 1 1 1 1 1
0 5 10 15 20 25 30

t/s

Fig. 2 Position trajectories of all agents
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Fig. 3 Velocity trajectories of all agents

5 Conclusion

This paper has investigated the average consensus
problem in networks of dynamic agents with multiple
time-varying delays as well as uncertain topologies. By us-
ing Lyapunov-Krasovskii theory and decomposition tech-
nique, some sufficient conditions in terms of linear matrix
inequalities (LMIs) have been given for the average con-
sensus of the networks systems, where the communication
topologies are only required jointly-connected. Finally,
simulation results have been provided to demonstrate the
effectiveness of our theoretical results.
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