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Synchronization criteria for singular complex dynamical networks with
delayed coupling and non-delayed coupling
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Abstract: By using Lyapunov-Krasovskii (LK) functional approach, we derive novel synchronization criteria in the
form of linear matrix inequalities (LMIs) for singular complex dynamical networks with delayed coupling and non-delayed
coupling. The convexity of matrix functions and the free-weighting matrix method are fully exploited to reduce the con-
servatism of the results we obtained. Numerical examples are presented to illustrate the efficiency and less conservatism of
the proposed method.
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1 Introduction
In recent years, complex networks have received in-

creasing attentions. Many practical systems can be mod-
eled by complex networks[1–14]. There are two kinds of be-
haviors in complex network: static and dynamical behav-
iors. Obviously, many of these networks show out com-
plexity in the overall topological and dynamical proper-
ties of the network nodes and the coupled units. Among
these properties, people especially pay their attentions to
the synchronization problem of complex dynamical net-
works[3–7]. The synchronization of general networks with
state time-delays and coupling time-delays has been con-
sidered extensively[8–14]. Very recently, in order to obtain
less conservative conditions, some new methods and tech-
niques have been used, such as the free matrix method,
delay decomposition, a piecewise analysis method, and so
on, see [15–21]. To the best of the authors’ knowledge,
the method of dividing delay is the best one to handle the
stability of system with delay, by which the result near an-
alytical delay limit can be obtained in [18–21]. However,
it should be noticed that most of the studies on synchro-
nization of dynamical network in the above articles were
actually performed under some implicit assumptions that

there exists the information communication of nodes by
the edges either at t or time t− h. The authors of [22–25]
pointed that in many circumstance, this simplification does
not match satisfactorily the peculiarities of real networks.
There exists the information communication of nodes not
only at t but also at time t−h, whereas the synchronization
of both delay-coupled and non-delay-coupled complex dy-
namical network almost been ignored in the literatures[25].
Therefore, synchronization of complex networks with non-
delayed and delayed coupling are extensively investigated
in [22–25].

In the past decades, the studies on singular systems
have been made great progress. It is well known that the
singular systems can describe physical systems better than
the regular (nonsingular) ones and they are extensive ap-
plied in control engineering: such as circuits, mechan-
ical systems, economics, etc.[26–35]. S. Y. Xu, et al.[28]

pointed that singular systems can be introduced to improve
the traditional complex networks describe the singular dy-
namic behaviors of nodes. Many results of regular sys-
tems have been extended to singular cases, e. g., [29–30],
where the robust stability and generalized quadratic stabil-
ity were investigated via LMI approach. Also, the singu-
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lar systems with time delay[31–32] were discussed very ex-
tensively. Moreover, the singular hybrid coupled network
systems are introduced to describe complex dynamical net-
works in [33], which give a more general description of
physical systems than the normal one. The synchroniza-
tion of singular complex dynamical networks with cou-
pling delays is considered in [33–35]. In [34] a sufficient
condition for global synchronization was derived by devel-
oping a strict linear matrix inequality (LMI) designed ap-
proach for singular complex dynamical network with cou-
pling constant time delays; and [35] proposed a synchro-
nization criterion based on LMI that are easily-solvable for
that with coupling time-varying delays. However, in view
of the analysis in the first paragraph, it is necessary to con-
sider the synchronization of both delay-coupled and non-
delay-coupled singular complex dynamical network. As
far as we know, few literatures involves in this topic yet.

This paper proposes a synchronization criterion for
delay-coupled and non-delay-coupled singular complex
dynamical network based on LMIs, which are easily-
solvable. In order to reduce the conservativeness of the cri-
teria, modified Lyapunov-Krasovskii functions and some
known-techniques, such as integral inequality and a piece-
wise analysis method, etc., are applied in this paper. Some
illustrative examples are provided to show the effective-
ness and advantage of the new criteria by comparing with
the recently reported results.

Notation Rn denotes the n-dimensional Euclidean
space, Rn×m is the set of all n × m real matrices, P ∈
Rn×n, P > 0(or P < 0) mean that P is a positive (or
negative) definite matrix, respectively. I and 0 are an iden-
tity matrix and a null matrix with appropriate dimension,
and diag{a1, a2, · · · , an} denotes a n-order diagonal ma-
trix. For a real matrix B and two real symmetric matrices

A and C of appropriate dimensions,
(

A B
∗ C

)
denotes a

real symmetric matrix, where ∗ denotes the entries implied
by symmetry, and ‖ · ‖ denotes 2-norm throughout the pa-
per.

2 Singular complex dynamical networks
model and preliminaries
Consider time-varying delayed singular complex dy-

namical networks consisting of N identical nodes, in
which each node is an n-dimensional dynamical subsys-
tem:
Eẋi(t) = Axi(t) + f(xi(t), t) + c1

N∑
j=1

gijΓ1xj(t) +

c2

N∑
j=1

gijΓ2xj(t−h(t)), t>0, i=1, · · · , N,

(1)
where E ∈ Rn×n is a singular matrix, and rank(E) =
r(0 < r < n). xj(t) ∈ Rn is the i-th state vector, A ∈
Rn×n is a constant matrix, ck > 0(k = 1, 2) are
positive constant which are coupling strength, Γk =
diag{τk1, · · · , τkn}(k = 1, 2) are constant diagonal inner-
coupling matrices. G = (gij)N×N (i = 1, 2, · · · , N)
is the outer-coupling matrix representing the topological
structure of the complex networks, in which gij is de-

fined as follows: if there is a connection between node
i and node j(i 6= j), then gij = gji = 1; otherwise,
gij = gji = 0(i 6= j). The row sums of G are zero, i.e.,

N∑
j=1,j 6=i

gij = −gii, i = 1, · · · , N . The nonlinear function

f(xi(t), t) is globally Lipschitz, i. e.,

‖f(xi(t), t)− f(s(t), t)‖ 6
li‖xi(t)− s(t)‖, i = 1, 2, · · · , N, (2)

where li is a nonnegative constant.
Let C([−H, 0],Rn) be the Banach space of continu-

ous functions that map the interval [0, h] to Rn, with norm
‖ϕ‖ = sup

−h6θ60
‖ϕ(θ)‖. The initial conditions of the func-

tional differential Eq.(1) are given by xi(t) = ϕi(t) ∈
C([−H, 0],Rn). It is assumed that Eq.(1) has a unique
solution for these initial conditions[24].

Remark 1 Network (1) is a singular complex network
model with both non-delayed coupling and delayed coupling.
It means from [22–25] that the information of each node com-
municates with other nodes is at time t as well as at time t− h.
In fact, this phenomenon exists in real world, for example, in
the stock market, decision-making of trade-offs is impacted by
the information at time t as well as at time t−h. It is obviously,
the error considered the information communication with both
nodes at time t and at time t − h is much smaller than that
considered only one of them in [33–35].

The following definition and lemmas are indispensable
in deriving the proposed stability criterion, and they are
stated below:

Lemma 1[3] The eigenvalues of an irreducible ma-

trix G = (gij) ∈ RN×N with
N∑

j=1,j 6=i

gij = −gii, i = 1, 2,

· · · , N satisfy the following properties:
i) Real parts of all eigenvalues of G are less than or

equal to 0 with multiplicity 1;
ii) G has an eigenvalue 0 with multiplicity 1 and the

right eigenvector (1, 1, · · · , 1)T.
Definition 1[33] Dynamical network (1) is said to

achieve global (asymptotically) synchronization if

lim
t→∞

‖xi(t)− s(t)‖ = 0, i = 1, 2, · · · , N, (3)

where s(t) ∈ Rn may be an equilibrium point or a periodic

orbit with s(t) =
1
N

N∑
i=1

xi(t). Let the error be ei(t) =

xi(t)− s(t). One arrives at the error dynamical networks

Eėi(t) = Aei(t) + Fi(ei(t), t) + c1

N∑
j=1

gijΓ1ej(t) +

c2

N∑
j=1

gijΓ2ej(t− h(t)), (4)

where
Fi(e(t), t) = f(xi(t), t)− f(s(t), t),

f(s(t), t) =
1
N

N∑
i=1

f(xi(t), t).

Model (4) can be written as compact form:
Eė(t) = Ae(t) + F (e(t), t) + c1Γ1e(t)GT +
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c2Γ2e(t− h(t))GT, (5)
where
e(t) = (e1(t), e2(t), · · · , eN (t)),
F (e(t), t) = (F1(e(t), t),F2(e(t), t), · · · ,FN (e(t), t)).

By the properties of the out-coupling matrix G, there exists
an unitary matrix U = [U1 U2 · · · UN ] ∈ RN×N such
that UTG = ΛUT, with Λ = diag{λ1, λ2, · · · , λN} and
UUT = I . Using the nonsingular transform e(t)U =
z(t) = [z1(t) z2(t) · · · zN (t)] ∈ Rn×N , from Eq.(5), it
follows the matrix equation:

Eż(t) = Az(t) + F (e(t), t)U + c1Γ1z(t)Λ +
c2Γ2z(t− h(t))Λ. (6)

Equivalently, model (6) can be written as

Eżi(t) = (A + c1λiΓ1)zi(t) + gi(t) +
c2λiΓ2zi(t− h(t)), i = 1, 2, · · · , N. (7)

Here gi(t) = F (e(t), t)Ui.
Thus, we have transformed the synchronization prob-

lem of the singular complex dynamical networks 1 into
the synchronization problem of the N pieces of the cor-
responding error dynamical network (7). Note that λ1 = 0
and z1(t) = e(t)U1 = 0 from Lemma 1. Therefore, if the
following N − 1 pieces of the corresponding error dynam-
ical network

Eżi(t) = (A + c1λiΓ1)zi(t) + gi(t) +
c2λiΓ2zi(t− h(t)), i = 2, · · · , N (8)

are asymptotically stable, which implies that the synchro-
nized states 1 are asymptotically stable.

Remark 2 In this paper, all synchronization criteria are
derived based on the corresponding error dynamical network
(8). In this mean, the outer coupling matrix G is assumed to
satisfy Lemma 1, which may be some weak conditions, such as
symmetric and diagonalizable. The case of G being not suit-
able for Lemma 1 may be an interested topic in our future work.

Definition 2[36] 1) The pair (E,A+c1λiΓ1) is said
to be regular if det(aE − (A + c1λiΓ1)) is not identically
zero.

2) The pair (E,A+c1λiΓ1) is said to be impulse free
if deg(det(aE − (A + c1λiΓ1))) = rankE.

Lemma 2[37] The pair (E,A + c1λiΓ1) is regular
and impulse free if and only if there exist matries Pi such
that the following inequalities hold for i = 2, · · · , N :
ETPi = PiE > 0 and (A + c1λiΓ1)TPi + P T

i (A +
c1λiΓ1) < 0.

Lemma 3[38] If for any constant matrix R ∈ Rm×m,
R = RT > 0, scalar γ > 0 and a vector function
ϕ : [0, γ] −→ Rm such that the integrations concerned
are well defined, the following inequality holds:

−γ
w t

t−γ
ϕ̇T(s)Rϕ̇(s)ds 6

(
ϕ(t)

ϕ(t− γ)

)T (−R R
∗ −R

)
·
(

ϕ(t)
ϕ(t− γ)

)
.

Lemma 4 Suppose that h1 6 h(t) 6 h2, where
h(t) : R+ −→ R+. Then, for any R = RT > 0, sin-
gular matrix E, and free matrices X and Y , the following
integral inequality holds:

−
w t−h1

t−h2
ẋT(s)ETREẋ(s)ds 6

ζT(t)((h(t)− h1)×XR−1XT +
(h2 − h(t))Y R−1Y T + [X Y −X − Y ]E +
ET[X Y −X − Y ]T)ζ(t), (9)

where ζ(t) = (xT(t − h1)xT(t − h(t))xT(t − h2))T,

X = (XT
1 XT

2 XT
3 )T and Y = (Y T

1 Y T
2 Y T

3 )T.

Proof See Appendix I.

Lemma 5[39] Suppose that a 6 h(t) 6 b and Qi(i =
1, 2, 3) are some constant matrices with appropriate dimen-
sions. Then, Q1 +(h(t)−a)Q2 +(b−h(t))Q3 < 0 holds
if and only if the following inequalities hold Q1 + (b −
a)Q2 < 0 and Q1 + (b− a)Q3 < 0.

Lemma 6[40] Let F0, · · · ,Fp be quadratic function
of the variable x ∈ Rn: Fi(x) = xTTix + 2uT

i x + vi,
i = 0, · · · , p, where Ti = T T

i . We consider the following
condition on

F0, · · · ,Fp : F0(x) > 0, ∀x
s.t. Fi(x) > 0, i = 0, · · · , p. (10)

Obviously if there exist αi > 0(i = 0, · · · , p) s.t.

F0(x)−
p∑

i=1

αiFi(x) > 0, ∀x,

then Eq.(10) holds.

3 Synchronization criteria for singular com-
plex dynamical networks
In this section, we will investigate the stability prob-

lem of the error dynamical network system (8). Conse-
quently, several criteria will be derived to show the impacts
of the time-varying delay on the stability of the system.
The derived criteria are delay-dependent. Now, we define
that

ξT
i (t) =

[zT
i (t) zT

i (t− h(t)) zT
i (t− h

2
) zT

i (t− h) gT
i (t)],

(11)

ηi = [A + c1λiΓ1 c2λiΓ2 0 0 I], (12)

Eżi(t) = ηiξi(t). (13)

From inequality (2), the Lipchitz condition for the nonlin-
ear gi(t) satisfies that[35]

‖gi(t)‖ = ‖
N∑

k=1

[f(xk(t), t)− f(s(t), t)]uik‖ 6

N∑
k=1

‖[f(xk(t), t)− f(s(t), t)]‖|uik| 6
N∑

k=1

l‖xk(t)− s(t)‖ =
N∑

k=1

l‖ek(t)‖ =

N∑
k=1

l‖z(t)uT
k ‖ 6

N∑
k=1

l̄‖zk(t)‖ =

N∑
k=2

l̄‖zk(t)‖, (14)

where uik is the k-th element of Ui and l̄ = max lk. There-
fore, the following inequalities hold:
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N∑

i=2

(‖gi(t)‖ − l̄
N∑

k=2

‖zk(t)‖) =

N∑
i=2

‖gi(t)‖ − l̄
N∑

i=2

N∑
k=2

‖zk(t)‖ =

N∑
i=2

(‖gi(t)‖ − (N − 1)l̄‖zi(t)‖) 6 0, (15)

if the following inequalities are satisfied
‖gi(t)‖ − (N − 1)l̄‖zi(t)‖ 6 0, i = 2, · · · , N. (16)

From Eq.(11) and inequality (16), there exists a positive
diagonal matrix Si, such that

ξT
i (t)diag{−(N − 1)l̄Si, 0, 0, 0,Si}ξi(t) =

ξT
i (t)Φiξi(t) 6 0. (17)

Theorem 1 The singular error dynamical network
(8) is asymptotically stable with any time-varying delays
h(t) if there exist positive constants αi and matrices Pi >
0, Qij > 0, Rij > 0, Gi11 > 0, Gi22 > 0(j = 1, 2);
positive diagonal matrix Si and slack matrices Gi12, Xik,
Yik, Mik, Nik(k = 1, 2, 3) of appropriate dimensions
such that the following LMIs hold

ETPi = PiE > 0, (18)(
Gi11 Gi12

∗ Gi22

)
> 0, (19)




Πik + Σik + ΣT
ik Σi12 Σkj

i13

∗ Σi22 0
∗ ∗ −Rik


 < 0, (20)

i = 2, · · · , N, k = 1, 2,

Πi1 =




∆i11 c2λiPiΓ2 Gi12 0 Pi

∗ (hd − 1)Qi1 0 0 0
∗ ∗ ∆i33 ∆i34 0
∗ ∗ ∗ ∆i44 0
∗ ∗ ∗ ∗ −αiSi




,

Πi2 =




∆̄i11 c2λiPiΓ2 ∆̄i13 0 Pi

∗ (hd − 1)Qi1 0 0 0
∗ ∗ ∆̄i33 −Gi12 0
∗ ∗ ∗ ∆̄i44 0
∗ ∗ ∗ ∗ −αiSi




,

where

∆i11 = (A + c1λiΓ1)TPi + Pi(A + c1λiΓ1) +
Qi1 + Gi11 + αi(N − 1)l̄Si,

∆i33 = Qi2 + Gi22 −Gi11 − 2
h

ETRi2E,

∆i34 = −Gi12 +
2
h

ETRi2E,

∆i44 = −Qi2 −Gi22 − 2
h

ETRi2E,

∆̄i11 = (A + c1λiΓ1)TPi + Pi(A + c1λiΓ1) + Qi1 +

Gi11 + αi(N − 1)l̄Si − 2
h

ETRi1E,

∆̄i13 = Gi12 +
2
h

ETRi1E,

∆̄i33 = Qi2 + Gi22 −Gi11 − 2
h

ETRi1E,

∆̄i44 = −Qi2 −Gi22,

Σi12 = ηT
i [

√
h

2
Ri1

√
h

2
Ri2], Σ11

i13 =

√
h

2
Xia,

Σ12
i13 =

√
h

2
Yia, Σ21

i13 =

√
h

2
Mia, Σ22

i13 =

√
h

2
Nia,

Σi22 = diag{−Ri1,−Ri2},
Σi1 = [Xia Yia −Xia − Yia 0 0]E,

Σi2 = [0 −Mia + Nia Mia −Nia 0]E,

Xia = [XT
i1 XT

i2 XT
i3 0 0 0]T,

Yia = [Y T
i1 Y T

i2 Y T
i3 0 0 0]T,

Mia = [0 MT
i1 MT

i2 MT
i3 0 0]T,

Nia = [0 NT
i1 NT

i2 NT
i3 0 0]T.

Proof Construct a Lyapunov–Krasovskii functional
Vi(zi(t)) = Vi1(zi(t)) + Vi2(zi(t)) + Vi3(zi(t)), (21)

where
Vi1(zi(t)) =

zT
i (t)ETPizi(t) +

w t

t−h(t)
zT

i (s)Qi1zi(s)ds +

w t−h
2

t−h
zT

i (s)Qi2zi(s)ds,

Vi2(zi(t)) =

w t

t−h
2

(
zi(s)

zi(s− h

2
)

)T(
Gi11 Gi12

∗ Gi22

) (
zi(s)

zi(s− h

2
)

)
ds,

Vi3(zi(t)) =
w t

t−h
2

w t

θ
żT

i (s)ETRi1Eżi(s)dθds +

w t−h
2

t−h

w t

θ
żT

i (s)ETRi2Eżi(s)dθds.

The time derivative of Vi1(zi(t)) with respect to time along
the trajectory of Eq.(8) is as follows:

V̇i1 =
zT

i (t)(Pi(A + c1λiΓ1) + (A + c1λiΓ1)TPi)zi(t) +
2zT

i (t)c2λiΓ2zi(t− h(t)) + 2zT
i (t)Pigi(t) +

zT
i (t)Qi1zi(t)− (1− hd)zT

i (t− h(t))Qi1 ×
zT(t− h(t)) + zT

i (t− h

2
)Qi2z

T(t− h

2
)−

zT
i (t− h))Qi2z

T(t− h). (22)

While the time derivative of Vi2(zi(t)) and Vi3(zi(t)) are
as follows:

V̇i2 =

(
zi(t)

zi(t− h

2
)

)T(
Gi11 Gi12

∗ Gi22

)(
zi(t)

zi(t− h

2
)

)
−

(
zi(t− h

2
)

zi(t− h)

)T(
Gi11 Gi12

∗ Gi22

)(
zi(t− h

2
)

zi(t− h)

)
, (23)

V̇i3 = żT
i (t)

h

2
ET(Ri1 + Ri2)Eżi(t)−

w t

t−h
2

żT
i (s)ETRi1Eżi(s)ds−

w t−h
2

t−h
żT

i (s)ETRi2Eżi(s)ds. (24)

Now, for any t > 0, h(t) ∈ [0,
h

2
], or h(t) ∈ [

h

2
, h], define

∆1 = {t : h(t) ∈ [0,
h

2
]}, ∆2 = {t : h(t) ∈ [

h

2
, h]}. In
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the following, we will discuss the variation of V̇i3 for two
cases:

Case 1 For t ∈ ∆1, by using Lemma 3 and Lemma
4 we have that

−
w t−h

2

t−h
żT

i (s)ETRi2Eżi(s)ds 6

2
h

(
zi(t− h

2
)

zi(t− h)

)T (−ETRi2E ETRi2E
∗ −ETRi2E

)
·

(
zi(t− h

2
)

zi(t− h)

)
, (25)

−
w t

t−h
2

żT
i (s)ETRi1Eżi(s)ds 6

ζT
i1(t)(h(t)XiR

−1
i1 XT

i + (
h

2
− h(t))YiR

−1
i1 Y T

i +

[Xi Yi−Xi −Yi]EET[Xi Yi−Xi −Yi]T)ζi1(t),
(26)

where

ζi1(t) = (zT
i (t), zT

i (t− h(t)), zT
i (t− h

2
)),

Xi = [XT
i1 XT

i2 XT
i3], Yi = [Y T

i1 Y T
i2 Y T

i3 ].

From Eqs.(17)(24)–(26), using Lemma 6, it follows that

V̇i 6 V̇i1 + V̇i2 + V̇i3 − αiξ
T
i (t)Φiξi(t) 6

ξT
i (t)(Πi1 + Σi1 + ΣT

i1 + ηT
i

h

2
(Ri1 + Ri2)ηi +

h(t)XiaR−1
i1 XT

ia + (
h

2
− h(t))YiaR−1

i1 Y T
ia )ξi(t).

(27)

From Eqs.(18)–(21), when k = 1; j = 1 and j = 2, using
Schur complement, we have that

Πi1 + Σi1 + ΣT
i1 + ηT

i

h

2
(Ri1 + Ri2)ηi +

h

2
XiaR−1

i1 XT
ia < 0,

Πi1 + Σi1 + ΣT
i1 + ηT

i

h

2
(Ri1 + Ri2)ηi +

h

2
YiaR−1

i1 Y T
ia < 0.

Using Lemma 5, one gets that V̇ (zi(t)) < 0.
Case 2 For t ∈ ∆1, following a similar line of argu-

ments as that in Case 1, we have

−
w t

t−h
2

żT
i (s)ETRi1Eżi(s)ds 6

2
h

(
zi(t)

zi(t− h

2
)

)T(−ETRi1E ETRi1E
∗ −ETRi1E

)(
zi(t)

zi(t− h

2
)

)
,

(28)

−
w t−h

2

t−h
żT

i (s)ETRi2Eżi(s)ds 6

ζT
i2(t)((h(t)− h

2
)MiR

−1
i2 MT

i +

(h−h(t))NiR
−1
i2 NT

i + (−Mi + NiMi −Ni)E +
ET(−Mi + NiMi −Ni)T)ζi2(t), (29)

where ζi2(t) = (zT
i (t− h(t)), zT

i (t− h

2
), zT

i (t− h)),

Mi = [MT
i1 MT

i2 MT
i3], Ni = [NT

i1 NT
i2 NT

i3].
From Eqs.(17)(24)(28)–(29), using Lemma 6, it fol-

lows that

V̇i = V̇i1 + V̇i2 + V̇i3 − αiξ
T
i (t)Φiξi(t) 6

ξT
i (t)(Πi2 + Σi2 + ΣT

i2 + ηT
i

h

2
(Ri1 + Ri2)ηi +

(h(t)− h

2
)MiaR−1

i2 MT
ia+(h− h(t))NiaR−1

i2 NT
ia)ξi(t).

(30)
From inequalities.(18)–(21), when k = 2, j = 1 and
j = 2, using Schur complement, we have that

Πi1 + Σi2 + ΣT
i2 + ηT

i

h

2
(Ri1 +

Ri2)ηi +
h

2
MiaR−1

i2 MT
ia < 0,

Πi1 + Σi2 + ΣT
i2 + ηT

i

h

2
(Ri1 +

Ri2)ηi +
h

2
NiaR−1

i2 NT
ia < 0.

Using Lemma 5, one gets that V̇ (zi(t)) < 0.
Note that ETPi = PiE > 0, one cannot obtain

the stable result via the Lyapunov stability theory because
the rank of ETPi in the Lyapunov function Vi1(zi) is
r < n. According to Lemma 2, it is obvious that the
pair (E,A + c1λiΓ1) is regular and impulse free if the
inequalities (18)–(21) hold[20, 30]. Then, there exist ma-
trices Hi1 ∈ Rr×n, Hi2 ∈ R(n−r)×n, Ki1 ∈ Rn×r,
Ki2 ∈ Rn×(n−r), such that Hi = [HT

i1 HT
i2] and

Ki = [KT
i1 KT

i2]
T are two nonsingular matrices and the

following standard decomposition holds:

HiEKi = diag{Ir, 0},
Hi(A + c1λiΓ1)Ki = diag{Āi, In−r}, (31)

where Āi ∈ Rr×r, i = 2, · · · , N . The network system (8)
is equivalent to



ż
(1)
i =Āiz

(1)
i +Hi1gi+c2λiHi1Γ2rKi1z

(1)
i (t−h(t)),

0=z
(2)
i +Hi2gi+c2λiHi2Γ2(n−r)Ki2z

(2)
i (t−h(t)),

i = 2, · · · , N,

(32)

where yi(t) = K−1
i zi(t) =

(
z

(1)
i (t)

z
(2)
i (t)

)
, Γ2r = diag{τ1,

· · · , τr} and Γ2(n−r) = diag{τr+1, · · · , τn}.

Let H−T
i PiKi =

(
P

(1)
i P

(2)
i

P
(3)
i P

(4)
i

)
. Then according to

Eqs.(18) and (31), it is easy to see that P
(1)
i = P

(1)T
i and

P
(2)
i = 0[28]. Hence,

Vi1(zi(t)) =

(z(1)
i (t))TP

(1)
i (z(1)

i (t)) +
w t

t−h(t)
zT

i (s)Qi1zi(s)ds +

w t−h
2

t−h
zT

i (s)Qi2zi(s)ds. (33)

From V̇i(zi) < 0, z
(1)
i (t) of system (8) is asymptotically
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stable, i.e., lim
t→∞

‖z(1)
i (t)‖ = 0, i = 2, · · · , N . In the fol-

lowing, we show that z
(2)
i (t) are also asymptotically sta-

ble. From Eqs.(32) and similar with [30], choosing Hi2

such that Hi2H
T
i2 = In−r which implies that ‖Hi2‖ = 1

and using Lemma 1, we have

‖z(2)
i ‖ =

‖Hi2gi + c2λiHi2Γ2(n−r)Ki2z
(2)
i (t− h(t))‖ 6

‖Hi2gi‖+ ‖c2λiHi2Γ2(n−r)Ki2z
(2)
i (t− h(t))‖ 6

‖Hi2‖‖gi‖+ c2max(λi)‖Hi2‖‖Ki2‖‖Γ2(n−r)‖ ·

‖z(2)
i (t− h(t))‖ 6

N∑
i=2

l̄‖Ki‖(‖z(1)
i ‖+ ‖z(2)

i ‖). (34)

Then,
N∑

i=2

‖z(2)
i ‖6(N−1)

N∑
i=2

l̄‖Ki‖(‖z(1)
i ‖+‖z(2)

i ‖), i.e.,

N∑
i=2

(1−(N−1)l̄‖Ki‖)‖z(2)
i ‖ 6 (N−1)l̄

N∑
i=2

‖Ki‖‖z(1)
i ‖.

Therefore, one can obtain lim
t→∞

‖z(2)
i (t)‖ = 0, i = 2, · · · ,

N , if we choose Ki such that 1−(N−1)l̄‖Ki‖ > 0. This
completes the proof.

Remark 3 In this paper, by using the delay decompo-
sition method and for convenience, the delay interval [0, h] is

divided into two equivalent subintervals [0,
h

2
] and [

h

2
, h]. And

in estimating an upper bound of V̇i3(zi(t)), the term

−
w t

t−h
2

żT
i (s)ETRi1Eżi(s)ds and the term −

w t−h
2

t−h
żT

i (s) ·
ETRi2Eżi(s)ds are computed in two cases respectively,
where different free-weighting matrix variables are fully used
at each cases. These can give an improved feasible region for
delay-dependent stability criterion. In fact, to further reduce
the conservation, we should divide the delay interval [0, h] into
N (N > 3) parts for generalization[25, 39].

Remark 4 Recently, the synchronization of singular
complex dynamical networks with coupling delays is investi-
gated in [34–35]. It is obvious that in our paper, the synchro-
nization problem reduces to that in [34–35] when Γ1 = 0, i.e.,
it is assumed that there exists the information communication
of nodes only by the edges at time t−h(t). However, some ex-
amples in Section 4 show that our results are less conservative
than the previous result.

Remark 5 When Γ1 = 0, the system (8) reduces to the
following corresponding system[34–35]:

Eżi(t) = Azi(t) + gi(t) + c2λiΓ2zi(t− h(t)),

i = 2, · · · , N. (35)

Then similar to the proof of Theorem 1, the follow-
ing much less conservative synchronization criterion can
be derived:

Corollary 1 The singular error dynamical network
(35) is asymptotically stable with any time-varying de-
lays h(t) if there exist positive constants αi and matrices
Pi > 0, Qij > 0, Rij > 0, Gi11 > 0, Gi22 > 0,
(j = 1, 2); positive diagonal matrix Si and slack matri-
ces Gi12, Xik, Yik, Mik, Nik, k = 1, 2, 3 of appropriate
dimensions such that the following LMIs hold:

ETPi = PiE > 0, (36)

(
Gi11 Gi12

∗ Gi22

)
> 0, (37)




Π̃ik + Σik + ΣT
ik Σi12 Σkj

i13

∗ Σi22 0
∗ ∗ −Rik


 < 0,

i = 2, · · · , N ; k = 1, 2.

(38)

Here, Π̃i1 and Π̃i2 are defined as: replacing ∆i11, ∆̄i11

in Πi1 and Πi2 of Theorem 1, respectively by: ∆̃i11 =
ATPi + PiA + Qi1 + Gi11 + αi(N − 1)l̄Si, ˜̄∆i11 =

ATPi+PiA+Qi1+Gi11+αi(N−1)l̄Si− 2
h

ETRi1E.

4 Numerical examples
In this section, some numerical examples are used to

illustrate the effectiveness of the proposed synchronization
criteria given in this paper.

Example 1 Consider the following time-varying de-
layed singular complex network system

Eẋi(t) =

Axi(t) + f(xi(t), t) + c1

6∑
j=1

gijΓ1xj(t) +

c2

6∑
j=1

gijΓ2xj(t− h(t)), t > 0, i = 1, · · · , 6. (39)

Here,

E =
(

8 0
0 0

)
, A =

(−2 1
1 − 2

)
, Γ1 =

(
θ1 0
0 θ2

)
,

Γ2 =
(

1 0
0 1

)
, xi(t) = (xT

i1(t),x
T
i2(t))

T,

G =




−5 1 1 1 1 1
1 − 4 1 1 1 0
1 1 − 4 1 0 1
1 1 1 − 4 1 0
1 1 0 1 − 4 1
1 0 1 0 1 − 3




,

and f(xi(t), t) =
1
15

(tanh(xi1(t), t), tanh(xi2(t), t))T.

It is obvious that l̄ =
1
15

, G is an irreducible symmetric

matrix, and the eigenvalues of G are λ1 = 0, λ2 = −3,
λ3 = −4, λ4 = −5, λ5 = λ6 = −6.

If we set Γ1 = 0, then the system reduces to that in
[33–35]. And using Corollary 1, we can compute the cor-
responding maximum allowable delay bounds (MADBs) h
for different c2 and hd. In Table 1, the MADBs h with dif-
ferent c2 and hd by using Corollary 1 and method in [35]
are compared. From Table 1, one can see that the proposed
method presented in this paper provides less conservative
result than the previous result when Γ1 = 0.

If we set Γ1 6= 0, for simplicity, let Γ1 = 0.1Γ2,
c1 = c2 = c, then by Theorem 1, the corresponding re-
sults are listed in Table 2. Fig.1 and Fig.2 depict the errors
state response of zi1(t) for the random initial conditions
with Γ1 = 0, c2 = 0.1, h = 19.905 and Γ1 = 0.1Γ2, c =
0.1, h = 20.339, respectively. We can see that the syn-
chronization errors converge to zero.
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Table 1 MADBs h for Γ1 = 0 in Example 1

hd
c2 Methods

0 0.1 0.2

0.1
[35] 15.020 13.766 12.594

Corollary 1 here 19.905 18.282 16.902

0.2
[35] 2.708 2.038 1.139

Corollary 1 here 3.796 2.888 1.655

Table 2 MADBs h for Γ1 = 0.1Γ2 in Example 1

hd
c Methods

0 0.1 0.2

0.1 Theorem 1 20.339 17.825 15.715
0.2 Theorem 1 3.178 2.383 1.343

Fig. 1 The errors state response of zi1(t) of Eq.(A1) with
Γ1 = 0, c2 = 0.1, h = 19.905

Fig. 2 The errors state response of zi1(t) of Eq.(A1) with
Γ1 = 0.1Γ2, c = 0.1, h = 20.339

Example 2 Consider the following time-varying de-
layed singular complex network system:

Eẋi(t) = Axi(t) + c1

5∑
j=1

gijΓ1xj(t) +

c2

5∑
j=1

gijΓ2xj(t− h(t)), t > 0,

i = 1, · · · , 5, (40)
where

E=




1 0 0
0 1 0
0 0 0


, A=



−1 0 0
0 −2 0
0 0 −3


, Γ1 =




θ1 0 0
0 θ2 0
0 0 θ3


,

Γ2 =




1 0 0
0 1 0
0 0 1


 , xi(t) = (xT

i1(t),x
T
i2(t),x

T
i3(t))

T,

G =




−2 1 0 0 1
1 − 3 1 1 0
0 1 − 2 1 0
0 1 1 − 3 1
1 0 0 1 − 2




.

Similar to Example 1, if we set Γ1 = 0, then the sys-
tem reduces to that in [9, 20–21, 35]. We can compute the
corresponding MADBs of h for different c2 and hd. The
MADBs of h with different c2 and hd by using Corollary 1
and method in [35] are compared in Table 3. One can see
that the proposed method presented in this paper provides
less conservative result than the previous result. If we set
Γ1 6= 0, for simplicity, Γ1 = 0.1Γ2, c1 = c2 = c, then by
Theorem 1, the corresponding results are listed in Table 4.
Fig.3 depicts the errors state response of zi1(t) for the ran-
dom initial conditions with Γ1 = 0, c2 = 0.3, h = 2.214.
We can see that the synchronization errors converge to zero
under the conditions.

Table 3 MADBs h for Γ1 = 0 in Example 2

hd
c2 Methods

0 0.1 0.2

0.3
[35] 2.066 1.894 1.740

Corollary 1 here 2.214 2.020 1.849

0.4
[35] 1.191 1.130 1.071

Corollary 1 here 1.257 1.188 1.122

0.5
[35] 0.852 0.817 0.782

Corollary 1 here 0.892 0.853 0.814

0.6
[35] 0.666 0.642 0.618

Corollary 1 here 0.695 0.668 0.641

Table 4 MADBs h for Γ1 = 0.1Γ2 in Example 2

hd
c Methods

0 0.1 0.2

0.3 Theorem 1 here 2.786 2.436 2.156
0.4 Theorem 1 here 1.430 1.333 1.242
0.5 Theorem 1 here 0.988 0.836 0.886
0.6 Theorem 1 here 0.760 0.721 0.691

Fig. 3 The errors state response of zi1(t) of Eq.(A2) with
Γ1 = 0, c2 = 0.3, h = 2.214

It is important to note that the obtained maximum de-
lay bound h = 2.214 by Corollary 1 is very close to the
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true value of the maximum delay bound beyond which
the synchronized states is not asymptotically stable. To
show this, we assume the time-delay in the network to be
h = 2.49. Fig.4 depicts the errors state response of zi1(t)
for the random initial conditions with Γ1 = 0, c2 = 0.3,
h = 2.49. We can see that the errors between the synchro-
nized states do not converge to zero under the above con-
ditions. Fig.5 depicts the errors state response of zi1(t) for
the random initial conditions with Γ1 = 0.1Γ2, c = 0.3,
h = 2.786. We can see that the synchronization errors
converge to zero.

Fig. 4 The errors state response of zi1(t) of Eq.(A2) with
Γ1 = 0, c2 = 0.3, h = 2.49

Fig. 5 The errors state response of zi1(t) of Eq.(A2) with
Γ1 = 0.1Γ2, c = 0.3, h = 2.786

5 Conclusions
In this paper, some new synchronization stability cri-

teria are proposed for singular complex dynamical net-
works with non-delayed and delayed coupling. The delay-
dependent synchronization criteria are derived in the form
of linear matrix inequalities. With applying some effective
techniques, the proposed criteria are less conservative than
the existing results. Numerical examples are used to il-
lustrate the effectiveness of the proposed criteria and their
improvements over the existent methods.

There are still a number of related interesting problems
deserving further investigation. For instance, it is desirable
to study synchronization problem for singular complex dy-
namical networks with stochastic disturbances, uncertain-
ties, sampled data, switching topology, and so on, some of
which will be investigated in the near future.
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Appendix Proof of Lemma 4
For any R = RT > 0, the following inequality holds:
w t−h1

t−h(t)
(XTζ(t) + REẋ(s))TR−1(XTζ(t) +

REẋ(s))ds > 0, (A1)

w t−h(t)

t−h2
(Y Tζ(t) + REẋ(s))TR−1(Y Tζ(t) +

REẋ(s))ds > 0. (A2)

Hence
−2ζT(t)X

w t−h1

t−h(t)
Eẋ(s)ds 6

ζT(t)(h(t)− h1)XR−1XTζ(t) +
w t−h1

t−h(t)
ẋTETREẋ(s)ds,

−2ζT(t)Y
w t−h(t)

t−h2
Eẋ(s)ds 6

ζT(t)(h2 − h(t))Y R−1Y Tζ(t) +
w t−h(t)

t−h2
ẋT(s)ETREẋ(s)ds.

By Newton-Leibniz formula, we have that

−
w t−h1

t−h2
ẋT(s)ETREẋ(s)ds =

−
w t−h1

t−h(t)
ẋT(s)ETREẋ(s)ds−

w t−h(t)

t−h2
ẋTETREẋ(s)ds + 2ζT(t)X ×

(Ex(t−h1)−Ex(t− h(t))−
w t−h1

t−h(t)
Eẋ(s)ds) +

2ζT(t)Y (Ex(t−h(t))−Ex(t−h2)−
w t−h(t)

t−h2
Eẋ(s)ds)6

ζT(t)((h(t)− h1)XR−1XT + (h2 − h(t))Y R−1Y T +

(X Y −X −Y )E+ET(X Y −X −Y )T)ζ(t).

(A3)
The proof of Lemma 4 is completed.
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