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摘要:四旋翼飞行器作为无人机的一种,由于其简单气动布局和复杂的动力学模型,在控制领域获得了越来越
多的学术关注；本文首先分析了微机电系统惯性测量单元(MEMS IMU)传感器的误差, 给出了基于自回归(auto-
regressive, AR)噪声模型的卡尔曼滤波算法设计;然后根据加速度计和陀螺仪长短周期测量的不同特性,进一步对
姿态数据做互补融合,实验表明此算法可以实现良好的滤波效果;基于上面的姿态估计,本文又提出了一种双增益
的PD控制算法对飞行器进行姿态控制;最后将姿态估计算法和控制算法应用到实验平台中,可以实现四旋翼在支
架上的自主悬停等功能.
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Quadrotor aircraft attitude estimation and control based on
Kalman filter

WANG Shao-hua†, YANG Ying
(College of Engineering, Peking University, Beijing 100871, China)

Abstract: The quadrotor, as one type of unmanned aircraft vehicles, has gained increasing interests in the control
community, partially due to its simple aerodynamics and complex dynamics. In this work, a quadrotor system has been
constructed with commercial off-the-shelf products. The sensors of inertial measurement unit are micro-electro-mechanical
system, whose errors can be analyzed in an auto regressive model. A new attitude estimation scheme based on Kalman filter
is proposed, which conducts separate data fusion tasks in both short and long cycle. The proposed attitude sensing method
has been validated using the experimental system. In addition, a double-gain proportional differential controller has been
designed to regulate the attitude dynamics. A satisfactory control performance has been achieved in some test cases.
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1 Introduction
In recent years, due to the technological advances in

low cost micro-electro-mechanical system (MEMS) sen-
sor, micro-controller unit (MCU) and brushless direct cur-
rent (BLDC) motor, the architecture of quadrotor has
gained great development. Quadrotor has become an in-
creasingly significant research platform, partially due to its
simple aerodynamics and complex dynamics. They have
been employed from purely scientific research on civil-
ian tasks to military[1], such as rescue in complex envi-
ronments, inspection of civil engineering and exploration
of disaster areas[2]. The relatively simple structure and
‘vertical takeoff and landing’(VTOL) feature make them
much more advantageous among unmanned aircraft vehi-
cles (UAVs).

The quadrotor, as one nonlinear, multi-variable and
strong coupling system, has six outputs and four inputs.
Since the number of independent inputs is smaller than the
number of degrees of freedom, this mini-aircraft belongs

to the class of underactuated mechanical systems[3]. The
outputs include three positions (roll, pitch, and yaw) and
three attitudes (x, y and z), the inputs include four pro-
peller thrusts. In order to achieve the target of automatic
flight, it is necessary to design a closed loop negative feed-
back controller to hold attitude and position stable. Be-
cause the aircraft attitude and position keep the direct cou-
pling relationship, only precise attitude control can make
the whole attitude and position achieve pretty good con-
trol effect. In this work, we only concern ourselves with
attitude control.

The attitude can be observed by numerical integration
of angular velocity from MEMS gyroscopes or by three
axis MEMS accelerometer (ACC). However, MEMS iner-
tial measurement unit (IMU) sensors are mixed with large
amount of system noise, drift errors and vibrations induced
by the rotation of the rotors. Moreover, the attitude and
position errors would increase over time in sample period.
All these lead to great difficulties in quadrotor control and
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attitude estimation.
In this paper, an attitude estimation schedule based

on Kalman filter and a double-gain PD controller are pre-
sented. First of all, we theoretically analyze the noise of
MEMS IMU sensors, depict separately random process
characteristics: random dirft, angular random walk and
rate random walk, etc. On this basis, the Kalman filter
model is built, and the raw signals of MEMS IMU are pro-
cessed with the model. For higher estimation accuracy,
we carry out further data fusion and compensation. As we
known, the gyroscope measurement is more accuracy for
short-period while the accelerometer measurement is more
accuracy for long-period[4]. In our experiment, both 1 ms
for short-period and 400 ms for long-period are set up to
real-time fusing of post-filtered data. Next, a double-gain
PD feedback controller is designed to stabilize quadrotor
attitude. Although the non-linear control law can bring
about a very good simulation result, its effect usually is not
as good as PID control when the mathematical model of
quadrotor can’t be built and simplified effectively. Finally,
we design a quadrotor experiment platform to check the
estimation and controller result, the quadrotor can acheive
much acurate practical estimation results, and can hover
and VTOL on test-bench.

1.1 Principles of quadrotor dynamics
Generally, quadrotor layout mainly consists of a rigid

cross airframe as illustrated in Fig.1, which is propelled by
two pairs horizontal rotors that are attached to the frame
end. For the purpose of balancing the whole helicopter
spinning moments, two group propellors are equipped in
opposite direction, one pair (front and back) turning clock-
wise and the other (left and right) with counter-clockwise.
By changing the velocity of four propellers, we can acquire
different attitude and position of the quadrotor.

Fig.1(a) describes the quadrotor hovering state. To
achieve so, all propellors must attain the same spinning
speed. With speed increasing, when lift from the four
propellors is equal to quadrotor gravity, the quadrocopter
can hover steadily in the air. To be able to fly forward/

backward as shown in Fig.1(b), the back-propellor/front-
propellor has to turn faster while the corresponding oppo-
site propellor has to become slower, which we call ‘Pitch’.
The same principle also applies to the right/left motions
as shown in Fig.1(c), and we call this ‘Roll’. Fig.1(d) de-
scribes counter-clockwise yaw rotation, the front and back
propellors will turn faster and the left and right propellors
will slow down a little. Similarly, clockwise yaw rotation
is by the same principle.

Fig. 1 Quadrotor airframe

2 Attitude estimation schedule with Kalman
filter

Fig. 2 Attitude estimation architecture based on Kalman filter

In practice, low-cost MEMS inertial sensors are often
mixed with amounts of system noise and drift errors, and
also, attitude and position errors also increate over time
during sampling period. Real-time achieving accurate at-
titude (pitch, roll and yaw) is very important stage before
applying control algorithm. To reduce the noise and inte-
gral errors, the estimation scheme based on Kalman filter is
brought forward. Fig.2 describes the scheme architecture
of attitude estimation and fusion based on Kalman filter,

the following sections will analyze exhaustively the com-
ponents in the figure, respectively.

2.1 System noise
According to the noise feature of MEMS, the noise er-

ror sources can be categorized into two groups, determin-
istic part and stochastic part[5]. Deterministic noise mainly
include constant drift and vibration error, which can be
real-time compensated and calibrated easily. Stochastic
noise is not compensated easily because of its random fea-
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ture. For MEMS IMU, gyroscope and accelerometer have
different stochastic composition. The MEMS gyroscope
noise typically consists of the following terms[5]: random
dirft (bias instability): this is a stationary stochastic pro-
cess which may be considered as a low-order zero-mean
Gauss-Markov process; angular random walk (ARW): this
is an angular error process which is due to white noise in
angular rate; rate random walk (RRW): this is a rate error
due to white noise in angular acceleration; Quantization
error: this is an error representing the quantization noise.
Similarly, the MEMS accelerometer are composed by the
following items[5]: random dirft, velocity random walk, ac-
celeration random walk, quantization error. For MEMS
gyroscope:

GyroNoise=x+(Bias+ARW+RRW+Qe).
(1)

Here, x is the deterministic noise; ‘Bias’ is bias instability;
‘Qe’ is Quantization error.

For above stochastic noises, their process and mea-
surement variances can be analysized with‘Allen vari-
ance analysis method’[6]. Because of the noises statistical
independence, the total variance can be described by the
following expression:

σ2
all = σ2

bias + σ2
ARW + σ2

RRW + σ2
Qe. (2)

Here, σ2
bias, σ2

ARW, σ2
RRW and σ2

Qe are variance of bias
instability, ARW, RRW and Qe, respectively.

2.2 Auto-regressive modeling of random drift
noise for IMU

Among all of random noises of MEMS IMU, random
drift (bias instability) is a main factor affecting accuracy of
IMU. It is necessary to build a random drift noise model.
There are many ways used in modeling the drift signal:
time series analysis, power spectral density analysis (PSD)
and Allen variance analysis. In this work, we use auto-
regressive (AR) model to analyse random drift, which is
certified very effective to handling the colored feature of
the whole system noise[7].

A scalar AR process of p-order is given by

x(n) =
p∑

k=1

akx(n− k) + e(n), (3)

where e(n) is assumed to be a sequence of independent and
normal distributed random variables with zero expectation
and a variance of σ2

n
[7]. This variable can be interpreted

as the uncertainty of the prediction of the next signal value
by regressing the previous observations with the AR coef-
ficients[8]. AR(1) is more suitable and effective for most
MEMS IMU, which is shown as following:

xn = −axn−1 + εn. (4)

Here, εn ∼ N(0, σ2
n).

2.3 Kalman filter design based on AR modeling
The Kalman filter is not only an efficient autoregres-

sive filter but also an optimal recursive mathematical pro-
cessing method, which can predict and estimate the cur-
rent system state under a series of incomplete and Gaus-
sian noisy measurements for linear dynamic systems. The
discrete-time Kalman filter model is defined as follows[9]:

The state model:
xk = Fk−1xk−1 + Bk−1uk−1 + Γk−1wk−1. (5)

The observation model:
zk = Hkxk + vk. (6)

Here, xk is called the true state value of the system; zk

is observation value at time k; uk−1 is the control vec-
tor; Fk−1 is the state transition matrix which is applied
to the previous state xk−1; Bk−1 is the control-input ma-
trix which is applied to the control vector uk−1; Hk is the
observation matrix which maps the true state space into
the observed space; wk−1 is the process noise which is
assumed to be zero mean Gaussian white noises with co-
variances Qk, wk ∼ N(0, Qk); vk is the observation noise
which is assumed to be zero mean Gaussian noises with
covariances Rk, vk ∼ N(0, Rk); the Kalman filter is most
often conceptualized as two distinct phases: ‘Predict’ and
‘Update’ as shown in Fig.3. The predict phase uses a state
estimate from previous timestep to produce a state estimate
at the current timestep. In the update phase, current predic-
tion is combined with current information to refine state
estimate. This improved estimate is termed the a posteriori
state estimate[10].

Fig. 3 ‘Predict’ and ‘Update’ of Kalman filter

Predict phase:
x̂k|k−1 = Fkx̂−k + Bkuk−1, (7)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk. (8)

Update phase:
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + Rk)−, (9)

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1), (10)

Pk|k = (I −KkHk)Pk|k−1. (11)

The Kalman filter requires that process and measure-
ment noises must be zero mean, constant variance and be
unrelated to other white noise process. However, both pro-
cess noise and measurement noise often are colored in real-
ity. Before the Kalman filter estimates, colored noise must
be processed to be suitable for Kalman filter mathemati-
cal model conditions. If the process noise is colored and
the measurement noise be white, a method often used is
augmenting the state vector, which is to make wk a part of
state vector[7]. Assume that the process noise wk have the
relation as follows:

wk = Lwk−1 + ξk−1. (12)

Here ξk is zero mean white noise Gaussian process, L is
the parameter of the AR model for random drift of gyro-
scope.

Augment the colored noise to state vector, and then,
the state vector, process equation and measurement equa-
tion will be shown in [7, 9]:

The state model:
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Xk = F̄k−1Xk−1+B̄k−1Uk−1+Γ̄k−1Wk−1. (13)

The observation model:

zk =
[
Hk 0

]
Xk + vk. (14)

Here,

F̄k−1 =
[
Fk−1 Γk−1

0 L

]
, Xk =

[
xk

wk

]
, B̄k−1 =

[
Bk−1

0

]
,

Uk−1 = [uk−1], Γ̄k−1 =
[
0
1

]
, Wk−1 = [ξk−1].

Through above analysis, Kalman filter state models
with gyroscope and accelerometer can be given as follow-
ing:

Gyroscope equation:

Xk =
[
1−dt
0 1

]
Xk−1+

[
dt
0

]
Uk−1+

[
0
1

]
Wk−1, (15)

zk = [1 0]Xk + vk. (16)

Here,

Xk =
[

PredictAngle
RandomDrift

]
=

[
θ
bθ

]
, Uk−1 =[AngularRate],

Wk−1 is process noise, dt is the sampling period, zk =
[MessageAngle], vk is measurement noise.

Fig.4 shows the transform principle of accelerometer.

Fig. 4 Basic trigonometry

Attitude tilt angle can be obtained with the help of the
acceleration from the accelerometer and the math function:
arctan(·)[4]. Accelerometer equation:

Xk =
[
1 − dt
0 1

]
Xk−1 +

[
0
1

]
Wk−1, (17)

zk = [1 0]Xk + vk. (18)

Here, Xk =
[

PredictAngle
RandomDrift

]
=

[
θ
bθ

]
, Wk−1 is process

noise, dt is the sampling period, zk =[MessageAngle], vk

is measurement noise.
Fig.5 describes the raw signal and Kalman filter signal

of the acceleration.

Fig. 5 Raw signal and Kalman filter signal

2.4 Data fusion and compensation
Although Kalman filter can eliminate a great major-

ity of MEMS stochastic noises, the classic Kalman filter
model requires sufficient prior knowledge from signal and
noise statistics. In actual situations, it is difficult to meet
the requirements. With the change of work environment,
the noise characteristics would also correspondingly vary
in the actual IMU system. In addition, due to the actual
environment complexity, the progress noise and measure-
ment noise would have random and time-variability statis-
tical properties.

To improve the accuracy of attitude estimation, we
propose further data fusion and compensation with long-
period and short-period. According to the IMU engineer-
ing theory[4]: gyroscope measurement is more accuracy for
short cycle while the accelerometer measurement is more
accuracy for long cycle. Short cycle is configured using
1 ms while long cycle is 400 ms. The two cycles are used
to real-time fuse the data after Kalman filter. The value
which is re-compensated and re-fused, is a more accurate
approximation to ture angle. Finally, we can get more pre-
cise estimate attitude.

Fig.6 shows the raw signal and Kalman filter signal
with zero degree of reference value, it is apparent that noise
variance has been reduced, but there still are some distur-
bances.

Fig. 6 Raw signal and signal after Kalman filter

Fig.7 shows the further compensation and fusion re-
sult after Kalman filter. By comparing, we can find more
precise estimate attitude result from Fig.7.
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Fig. 7 Raw signal and fusion signal based on Kalman filter

3 Double-gain PD controller design
After further data fusion based on Kalman filter, a PD

negative feedback controller is designed to stabilize the
quadrotor attitude.

The control algorithm of the PID controller is given as
follows:

u(t) = Kpe(t) + Ki

w t

0
e(τ)dτ + Kd

de(t)
dt

. (19)

Here, Kp is the proportional gain parameter; Ki is the inte-
gral gain; Kd is the derivative gain; t is instantaneous time;
e(t) is error (e.g. eAngle(t) = Reference - KalmanAngle,
Reference is the known reference value, KalmanAngle is
the value after Kalman filter).

Fig. 8 Double-gain PD controller

Concerning the proportional gain, larger deviation can
bring about the bigger control effect. However, the control
effect sometimes is not enough strong when using single
proportional gain. For instance, in our experiment, we find
that when attitude angle (e.g., pitch angle) deviation is too
large, the propellers can not provide enough lift to return
to reference value quickly, this would cause quadrotor to
shake severely and be out of balance. The target that the
proportional gain can become larger with the deviation in-
creasing is fulfilled. It can draw the quadrotor back to ref-
erence value quickly, and further strengthen corrective ef-
fort for the large deviations. When the deviation is small,
we need very little corrective effort, it would enhance sta-
bility in the near of reference value.

In this work, we designed a double-gain PD controller
for above control target. When attitude angle deviation is
more than 20 degree, we set proportional gain as 1.5 while
proportional gain is 0.8 for attitude angle deviation of less
than 20 degree, as shown in Table1 and Table2. Fig.8
shows the double-gain PD controller.

Table 1 PD parameters for little deviation

Gain Kp Kd

Pitch 0.8 0.3
Roll 0.8 0.3

Table 2 PD parameters for large deviation

Gain Kp Kd

Pitch 1.5 0.2
Roll 1.5 0.2

4 Experimental platform and results
The experimental platform is called ‘Quadrotor hover

test-bench system’, consisting of three major subsysterms:
‘Mechanical test-bench’, ‘Quadrotor helicopter’ and ‘PC
Ground Test Station’. Meanwhile, two wireless Xbee-Pro-
ZB modules are separately assembled to ‘Quadrotor heli-
copter’ and ‘Ground Test Station’ for communication.

4.1 Mechanical test-bench
The test-bench stand is used to support the whole

quadrotor helicopter for simulating the actual flight. It can
perform three attitude motions (pitch, roll and yaw) and
vertical movement of the quadrotor. When the whole test-
bench has been assembled, it is free for the yaw motion, up
to 70 degree roll/pitch rotation and 80 cm vertical motion.

4.2 Quadrotor helicopter hardware
The quadrotor mainly includes fight controller board,

motor driver boards and four BLDC motors. As is shown
in Fig.9, the light grey parts describes interactive relation-
ship of the quadrotor components. Fight controller board
is the carrier of controller algorithm, which mainly com-
prises MCU, IMU sensors and some peripheral circuit. We
implement the controllers algorithm in C language with
avr studio IDE. Each of BLDC motor is controlled and
driven by pulse width modulation (PWM) signals and six
MOSFETs from motor driver board. Using inter-integrated
circuit (I2C) interface, the motor driver board can real-
time communicate with flight controller board. With C
programming, we have achieved the following functions:
real-time collect gyroscope, accelerometer and other sen-
sors data by the analog to digital converter (ADC) inter-
face; real-time process raw signal value with Kalman filter
and further fusion to estimate the attitude; transmit data
to ‘Ground Test Station’ using Xbee-Pro-ZB; receive and
parse protocol frame from ‘ground test station’ and handle
command parameters.

4.3 Ground test station
The ‘ground test station’ is an upper computer (PC

machine). The dark grey region in Fig.9 describes the
structure, AADC is the main software which is coded with
C++ language, mainly consisting of two blocks: a graphi-
cal user interface (GUI) block and a communication block.
The communication block is used to transmit, receive and
parse sensor data from the quadrotor. The GUI block can
real-time draw IMU signal curve data. ‘ground test station’
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fuctions have been achieved as follows: Real-time monitor
the quadrotor status include attitude and motor information
by Xbee serial interface by Xbee; real-time download the
quadrotor parameters and commands into the flight control
chip by Xbee; dynamically real-time show the sensor data
and parameters with curve for further data analysis.

4.4 Experimental results
When the lift from the four propellers (corresponding

every motor PWM value is 100) equals the whole weight

of the quadrotor, the quadrotor would hover on the test-
bench.

Figs.10 and 11 show pitch and roll angle curves, re-
spectively. Here, the balance position is zero degree. Al-
though there are several disturbances, the attitude (pitch
or roll) can still return to reference value quickly and can
maintain the value around zero degree ultimately.

Fig. 9 Quadrotor system

Fig. 10 Double-gain PID pitch hold at reference is zero degree

Fig. 11 Double-gain PID roll hold at reference is zero degree

(a) Pitch angle

(b) Motor PWM

Fig. 12 Pitch angle and motor PWM value response
after disturbance
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Fig.12 shows pitch angle and the corresponding motor
thrust curve.

5 Conclusion and ongoing work
In this paper, an attitude estimation scheme based on

Kalman filter, and also the double-gain PD controller are
presented. Firstly, in order to build the Kalman filter model
of MEMS IMU, we theoretically analyze their random pro-
cess characteristics. On this basis, the Kalman filter model
is built, and the raw signals of MEMS IMU are processed
with the model. For higher estimation accuracy, we carry
out further data fusion and compensation. Secondly, the
double-gain PD feedback controller is designed to stabi-
lize quadrotor attitude at a sample rate of 400 Hz. Finally,
the quadrotor can hover and VTOL on test-bench.

Although hovering on test-bench platform and atti-
tude stablization control are successful, experiment and
controller results still need to be improved. Future work
contains hovering in the air, tracking control based on vi-
sion as shown in the light region of Fig.9.
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