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摘要:为了提高迭代学习控制方法在间歇过程轨迹跟踪问题中的收敛速度,本文将批次间的比例型迭代学习控
制与批次内的模型预测控制相结合,提出了一种综合应用方法. 首先根据间歇过程的线性模型,预测出比例型迭代
学习控制的系统输出,然后在批次内采用模型预测控制,通过极小化一个二次型目标函数来获得控制增量. 该方法
可使系统输出跟踪期望轨迹的速度比比例型迭代学习控制方法更快些. 最后通过仿真实例验证了该方法的有效性.
关键词: 迭代学习控制;模型预测控制;综合控制;间歇过程
中图分类号: TP273.3 文献标识码: A

An integrated predictive iterative learning control for batch process

CHEN Chen, XIONG Zhi-hua
(Department of Automation, Tsinghua University, Beijing 100084, China)

Abstract: In order to improve the convergence speed of iterative learning control (ILC), an integrated scheme for
tracking problem of batch process is proposed by combining batch-to-batch P-type ILC and within-batch model predictive
control (MPC). Based on a predefined batch-wise linear model of the process, the output of traditional P-type ILC can
be predicted, and then MPC is induced to minimize a quadratic objective function within the current batch. The input is
updated within the batch so that the output may approach the reference trajectory faster. An illustrative example is presented
to demonstrate the performance of the proposed scheme.
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1 Introduction
Iterative learning control (ILC), which was intro-

duced by Arimoto[1] in 1984, has been widely studied
and used in the repetitive industrial processes and batch
processes[2]. By using the input and tracking error infor-
mation of previous batches in the control law, an open-
loop control scheme is established to track the reference
trajectory. Various ILC methods have been proposed in
these years[3], and the convergence conditions have also
been proved to guarantee asymptotical convergence of
the methods[3–4].

Compared with other control methods, the key char-
acteri stic of ILC is that the convergence condition may
not be related to the system matrices. However, people
usually have some knowledge of the studied process, so
that it is reasonable to combine ILC with other control
methods, like model predictive control (MPC), in which
the input of the system is adjusted according to the fore-
cast outputs of the predefined dynamic model. Further-
more, the original ILC can be considered as a feedfor-
ward control scheme. When ILC is combined with other
feedback control method, better performance of track-
ing control can be obtained[3]. Chin et al[5] presented

a batch MPC (BMPC) technique by incorporating the
real-time feedback control into ILC, and later it is ex-
tended to the quadratic BMPC (QBMPC)[6]. Based on
the quadratic criterion-based ILC (Q-ILC)[7], Xiong et
al[8] also used shrinking horizon model predictive con-
trol (SHMPC) in the current batch to improve the track-
ing performance. Even so, integration of two different
control schemes should be done carefully due to incon-
sistent predictions of the future time, for example, it
is indicated that SHMPC may ‘undo’ the ILC correc-
tions[9].

In spite of these researches mentioned above, few
studies show that the integration strategy with the spe-
cial control structure contributes to the improved con-
vergence speed of the algorithm. Moreover, from litera-
tures[3–4], it can be found that convergence conditions in
most of ILC methods are only sufficient, and the conver-
gence speed is not usually concerned when these control
laws are utilized. In fact, when the learning rate satisfies
traditional convergence conditions, it cannot directly in-
duce the optimal convergent track. Xu and Tan[4] de-
fined a Q-factor to describe the convergence speed in
the nonlinear ILC, but it has been shown that the index
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is not very effective as expected.
In this paper, in order to improve the convergence

speed, an integrated predictive ILC (IPILC) method
for batch process is proposed. In this method, the in-
put within the current batch is re-adjusted by involving
MPC, while the traditional Proportion type (P-type) ILC
uses input from batch to batch. Based on the predefined
model of the process and the ILC outputs of the last
batch, MPC is implemented and the correction of in-
put in the current batch is determined by minimizing a
quadratic objective function. Effectiveness of this pro-
posed method is also verified by simulation.

The rest of the paper is organized as follows: Sec-
tion 2 describes the problem, and Section 3 introduces
the IPILC method for linear time-invariant (LTI) sys-
tem. A numerical simulation is given in Section 4. Fi-
nally the conclusions are drawn.
2 Problem description

In this study, we consider a single input single out-
put (SISO) discrete linear time-invariant (LTI) process,
which is operated over finite time duration in the batch
process. It is assumed that the process consist of N
sampling intervals and all batches run from the same
initial conditions. The process output and input se-
quences are defined respectively as follows:

Yk = [yk(1) yk(2) · · · yk(N)]T, (1)
Uk = [uk(0) uk(1) · · · uk(N − 1)]T, (2)

where the subscript k means the batch index. A conve-
nient description of the batch process is given by[8]

Yk = GUk + dk, (3)

where G is a model of the studied process and dk de-
notes the collective effects of disturbances, bias errors
and measurement noise. Here dk is supposed to be
bounded by a certain small positive constant such that[8]

|dk| < Bd. (4)

Due to the causality, the structure of model G is re-
stricted to the following lower-block triangular form

G =




g1,0 0 · · · 0
g2,0 g2,1 · · · 0

...
...

. . .
...

gN,0 gN,1 · · · gN,N−1


 ∈ RN×N . (5)

And model G can be found by identification from
process operating data or by linearizing a predescribed
mechanical model. Developing mechanical model is of-
ten difficult and time-consuming, while diverse numer-
ical methods can be used to identify the model, for ex-
ample, partial least squares (PLS), the Kalman filtering,
and so on[10].

The task of the proposed control method is for the
process (3) to track a given reference trajectory, which
is defined as

Yd = [yd(1) yd(2) · · · yd(N)]T. (6)
Define the tracking error as

ek(t) = yd(t)− yk(t), t ∈ [1, N ]. (7)
Notice that the model G can be partitioned as a

block column matrix according to the time index[10]

G = [gT
1 gT

2 · · · gT
N ]T, (8)

where
gi = (gi,0, gi,1, · · · , gi,i−1,︸ ︷︷ ︸

i

0, · · · , 0). (9)

It can be easily obtained that
yk(t) = gt · Uk(t− 1) + dk(t), t ∈ [1, N ], (10)

where Uk(k − 1) is defined as
Uk(t−1)=Uk with uk(t)= · · ·=uk(N−1)=0. (11)

So the tracking error can be represented as
ek(t)=yd(t)−gtUk(t− 1)−dk(t), ∀t∈ [1, N ]. (12)

3 Integrated predictive ILC for batch pro-
cess
In our previous work[8], the input within the current

batch is updated based on the control profile determined
by the ILC in the immediately completed batch. Here
the same idea is used, and the following control law is
given:

uk(t) = uILC
k (t) + uMPC

k (t), (13)

where uILC
k (t) presents the input decided by ILC from

batch to batch, and uMPC
k (t) denotes the input decided

by MPC within the batch, respectively.
The above control law to be determined is parti-

tioned in two parts, and their details are presented as
follows.
3.1 Batch-to-batch iterative learning control

The part of uILC
k (t) is decided by batch-to-batch tra-

ditional iterative learning control, which is defined as

uILC
k (t) = uk−1(t) + KILC · ek−1(t + 1). (14)

It is noted that in this traditional ILC, the learn-
ing rate can be designed as normal P-type ILC[3] or Q-
ILC[7] control law. According to the convergence con-
dition, KILC should satisfy the following inequality[2]:

‖I −G ·KILC‖ < 1. (15)

It is implied that all eigenvalues of the matrix
should be inside the unit circle.
3.2 Integrated batch-to-batch control and

within-batch control
Under the batch-to-batch ILC, the process output

of the current batch only depends on the recipe which
is already calculated before the beginning of the batch.
However, the convergence condition in Eq.(15) is a suf-
ficient condition, and the convergence speed is not indi-
cated and it may be optimal even if KILC is chosen as
‖I −G ·KILC‖ = 0.

Within the current batch, MPC is a suitable scheme
to improve the tracking performance because the pro-
cess outputs can be predicted based on a dynamic
model. Unlike the SHMPC[10], it is assumed here that
both prediction step and control step in the MPC law
are set to be m(m 6 N − t). And output prediction



No. 8 CHEN Chen et al: An integrated predictive iterative learning control for batch process 1071

ŷk(t + i|t) is calculated as follows:
ŷk(t + i|t) = gt+i · Uk(t + i− 1). (16)

It is noted that at time t of the current kth batch,
Uk(t−1) was already known. Thus the following equa-
tion for the time transition of output within the batch is
obtained:

Ŷ ILC
k (t+1

t+m|t) =

Gpt · Uk(t− 1) + Gmt · U ILC
k (t

t+m−1|t− 1), (17)
where
Fk(t1

t2
|t) = (fk(t1|t), · · · , fk(t2|t))T,

F ∈ {Y, U,E}, f ∈ {y, u, e}, (18)

Gpt =




gt+1,0 gt+1,1 · · · gt+1,t−1 0 · · · 0
gt+2,0 gt+2,1 · · · gt+2,t−1 0 · · · 0

...
...

. . .
...

...
...

gt+m,0 gt+m,1 · · · gt+m,t−1 0 · · · 0




m×N

,

(19)

Gmt =




gt+1,t 0 · · · 0
gt+2,t gt+2,t+1 · · · 0

...
...

. . .
...

gt+m,t gt+m,t+1 · · · gt+m,t+m−1




m×m

.

(20)

After the re-adjustment of input in Eq.(14) is used,
the system output can be estimated at time t(t + m 6
N)

Ŷk(t+1
t+m|t) =

Gpt · Uk(t− 1) + Gmt · (U ILC
k (t

t+m−1|t− 1) +

UMPC
k (t

t+m−1|t− 1)). (21)

When t(t + m > N), the predict step m should be
shrunk, and then Gpt and Gmt are changed as

Gpt =




gt+1,0 gt+1,1 · · · gt+1,t−1 0 · · · 0
gt+2,0 gt+2,1 · · · gt+2,t−1 0 · · · 0

...
...

. . .
...

...
...

gN,0 gN,1 · · · gN,t−1 0 · · · 0




(N−t)×N

,

(22)

Gmt =




gt+1,t 0 · · · 0
gt+2,t gt+2,t+1 · · · 0

...
...

. . .
...

gN,t gN,t+1 · · · gN,N−1




(N−t)×(N−t)

.

(23)

The tracking error based on the model prediction is
then estimated by

Êk(t+1
t+m|t) = Yd(t+1

t+m|t)−Gpt · Uk(t− 1)−
Gmt(U ILC

k (t
t+m−1|t− 1) +

UMPC
k (t

t+m−1|t− 1)). (24)
For the MPC method in the current batch, the fol-

lowing quadratic objective function is considered:
min

UMPC
k (t

t+m−1|t−1)
Jk(t

t+m|t) =

(Êk(t+1
t+m|t))TQÊk(t+1

t+m|t) +

(UMPC
k (t

t+m−1|t− 1))TRUMPC
k (t

t+m−1|t− 1), (25)

where Q and R are positive definitive matrices.
The unconstrained case is considered here, then an

analytical solution to the objective function (25) can be
obtained as
UMPC

k (t
t+m−1|t− 1)=P ·GmtQÊILC

k (t+1
t+m|t), (26)

where



P = [GT
mtQGmt + R]−1,

ÊILC
k (t+1

t+m|t)=Yd(t+1
t+m|t)−GptUk(t− 1)−

Gmt · U ILC
k (t

t+m−1|t− 1).
(27)

At each time t within the current batch, the objec-
tive function (25) is solved, the first element uMPC

k (t)
of input (26) is implemented to the process.
3.3 Summary of the algorithm

The procedure of the proposed integrated control
scheme is as follows:

Step 1 Base on the historical batch operation data
and appropriate method, obtain the dynamic model
G. According to convergence condition (15), the ILC
learning rate KILC is selected. Set k = 1.

Step 2 Before the beginning of a new batch, up-
date the ILC control input uILC

k (t) according to equa-
tion (14). Set time step t = 1.

Step 3 At time t in the kth batch, obtain the es-
timated output according to Eq.(17), and calculate the
re-adjusted input uMPC

k (t) according to Eq.(26). Imple-
ment the uk(t) according to Eq.(13).

Step 4 If t < N , set t = t + 1 and go back to
Step 3, else set k = k + 1 and go to Step 2.
3.4 Analysis of the algorithm

The convergence of the traditional ILC algorithm
is presented and proved directly in previous works[10].
In this paper, the process outputs are predicted based
on the predetermined model of the process. Then by in-
volving the MPC method within the batch, a re-adjusted
input can approach the reference input much faster. The
most important advantage of the proposed method is
that the algorithm can improve the convergence speed
and tracking performance while the convergence condi-
tion is not changed.

However, the convergence speed and tracking per-
formance are still affected by the matrices Q and R in
the quadratic objective function in MPC. A larger eigen-
value of Q and a smaller one of R may cause faster
convergence which is more sensitive to disturbances. A
smaller eigenvalue of Q and a larger eigenvalue of R
depict the opposite. The robustness are still worthy of
study[11].

The tracking performance also depends on the ac-
curacy of model G[10]. And it is also shown that perfect
tracking will be obtained when the term dk in the pro-
cess (3) is a repetitive disturbance for all batch index
k[8].
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4 Numerical simulation
Consider the following linear time-invariant dis-

crete system to illustrate the IPILC algorithm
yk(t) = 0.8uk(t) + 0.5uk(t− 1)−

0.3uk(t− 2) + dk(t), (28)

where the initial condition are uk(0) = 0 and yk(0) =
0. The initial input sequence of IPILC is set as u1(t −
1) = 0 for all t = 1, 2, · · · , 21. The disturbance dk

is uniformly distributed between [−0.05, 0.05]. Ref-
erence trajectory is set as yd(t) = 0.1(t − 1) for all
t = 1, 2, · · · , 21.

The P-type ILC is used while the learning rate is
chosen as KILC, which satisfies the convergence con-
dition in Eq.(15). After some simulations, the positive
matrices Q and R are determined to be set as Q = R =
I . The prediction step in MPC is set as m = 3.

The sum-square-error (SSE) of tracking error is
used to illustrate the tracking performance, which is de-
fined as

Err =
N∑

t=1

[yd(t)− yk(t)]2. (29)

Fig.1 shows the tracking performance of the system
output at different time steps and batches when the IP-
ILC is used. It can be seen in Figure 1 that outputs can
quickly converge to reference profile under the IPILC
method.

Fig. 1 Tracking performance of the system output at different
time steps and batches under IPILC

Fig. 2 Tracking performance of IPILC compared with
the traditional ILC

Fig.2 shows the SSE of tracking error under IPILC
compared with the traditional ILC, in which the learn-
ing rate is also set. It can be also found that the conver-
gence speed of the proposed IPILC algorithm is faster
than the traditional ILC.
5 Conclusions

By involving within-batch MPC into traditional
batch-to-batch P-type ILC, the input can be updated
within the batch so that the output may approach the
reference trajectory faster. The proposed scheme is il-
lustrated on a linear time-invariant system, and simula-
tion results demonstrate that the convergence speed of
tracking performance is improved.
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