无轴承同步磁阻电机逆系统的解耦控制
Decoupling control based on inverse system for bearingless synchronous reluctance motor
摘要点击 1431  全文点击 1514  投稿时间:2009-10-21  修订日期:2010-04-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2011.4.CCTA091329
  2011,28(4):545-550
中文关键词  无轴承电机  同步磁阻电机  逆系统  解耦控制
英文关键词  bearingless motor  synchronous reluctance motor  inverse system  decoupling control
基金项目  国家自然科学基金资助项目(60974053); 江苏省自然科学基金资助项目(BK2009204); 高校博士点基金资助项目(20093227110002).
作者单位E-mail
张婷婷 江苏大学 电气信息工程学院 yiyou103@sohu.com 
朱熀秋 江苏大学 电气信息工程学院  
中文摘要
      为了有效解决无轴承同步磁阻电机这一非线性、强耦合的多输入多输出系统的动态解耦问题, 提出了基于α阶逆系统理论的无轴承同步磁阻电机解耦控制策略. 本文在阐述了无轴承同步磁阻电机径向悬浮力产生机理的基础上, 推导出其数学模型, 采用α阶逆系统方法将原系统解耦并线性化为一个一阶线性积分子系统和两个二阶线性积分子系统, 并应用线性系统理论设计了闭环控制器. 最后采用MATLAB软件环境构建了仿真系统, 针对系统的阶跃响应、转子起浮、解耦性能等进行了仿真和分析. 仿真试验表明这种解耦控制策略能够实现无轴承同步磁阻电机电磁转矩与径向悬浮力之间的动态解耦. 并且系统具有良好的动、静态性能.
英文摘要
      A decoupling control approach based on α-th order inverse system method has been developed for a bearingless synchronous reluctance motor(BSRM), which is a nonlinear, strong-coupled, multiple-input and multiple-output system. The working principle of radial suspension forces for the BSRM is explained and the mathematical models are derived in detail. Using α-order inverse system method, the original system is decoupled into one first-order linear integral subsystem and two second-order linear integral subsystems. The linear system theory is applied to design the closed-loop controllers. Simulation and analysis have been carried out for investigating the step response, rotor suspending forces, decoupling control, etc. Results validate the dynamic decoupling control among the electromagnetic torque and two radial suspension forces with desirable dynamic and static performances.