引用本文:郭军,董新民,王龙.自主空中加油时变质量无人作战飞机非线性控制[J].控制理论与应用,2012,29(5):571~579.[点击复制]
GUO Jun,DONG Xin-min,WANG Long.Nonlinear control for unmanned combat air vehicle with time-varying mass in autonomous aerial refueling[J].Control Theory and Technology,2012,29(5):571~579.[点击复制]
自主空中加油时变质量无人作战飞机非线性控制
Nonlinear control for unmanned combat air vehicle with time-varying mass in autonomous aerial refueling
摘要点击 1966  全文点击 2095  投稿时间:2011-01-26  修订日期:2011-07-06
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.5.CCTA110118
  2012,29(5):571-579
中文关键词  自主空中加油  时变质量  飞行控制  局部化自适应边界  指令滤波反推  多输入多输出
英文关键词  autonomous aerial refueling  time-varying mass  flight control  localized adaptive bounds  command filtered backstepping  multiple-input-multiple-output
基金项目  航空科学基金资助项目(2008ZC01006).
作者单位E-mail
郭军* 空军工程大学 工程学院 gj_lockon@163.com 
董新民 空军工程大学 工程学院  
王龙 空军工程大学 工程学院  
中文摘要
      针对自主空中加油中无人作战飞机(UCAV)位置保持问题, 进行了时变质量UCAV的动力学建模与非线性控制设计. 综合考虑了燃油传输对UCAV的质量、惯性矩阵和质心位置的影响, 基于相对于惯性系的状态变量, 推导了UCAV时变质量动力学方程. 通过引入谱半径, 将局部化自适应边界指令滤波反推方法应用于UCAV的位置保持控制. 使用逼近器对未知模型不确定性进行在线逼近. 对于固有逼近误差和外部扰动, 采用局部化自适应边界进行补偿. 通过指令滤波反推, 设计了相对位置、速度、姿态角和角速度四个反馈回路来保证UCAV的稳定性. 最后, 三种不同加油方案下的非线性仿真验证了非线性飞行控制律的有效性.
英文摘要
      To keep the position of an unmanned combat air vehicle (UCAV) during autonomous aerial refueling, we develop the dynamic model and put forward a nonlinear controller for the UCAV with time-varying mass. By comprehensively considering the effect of fuel transfer on the UCAV mass, the inertia matrix and the center of mass, we derive the time-varying mass dynamic equations of UCAV based on state variables relative to inertial reference frame. By introducing the spectral radius, we apply the command filtered backstepping (CFBS) method based on localized adaptive bounds to control the UCAV in a desired position. The unknown model uncertainties are approximated online by using approximators. Localized adaptive bounds are used to compensate inherent approximation errors and external disturbances. Using CFBS, we design four feedback control loops for the relative position, airspeed, attitude angle, and angular rate to guarantee the stability of the UCAV. Nonlinear simulation demonstrates the effectiveness of the nonlinear flight control law in three different refueling cases.