通信延迟条件下无人机编队重构的自主安全控制
Autonomous safety control of unmanned aerial vehicle formation reconfiguration under communication delay
摘要点击 2489  全文点击 2145  投稿时间:2012-08-14  修订日期:2013-05-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.20847
  2013,30(9):1099-1108
中文关键词  无人机编队重构  自主安全控制  分布式预测控制  纳什议价  通信延迟
英文关键词  UAV formation reconfiguration  autonomous safety control  distributed-mode prediction control (DMPC)  Nash bargain  communication delays
基金项目  中国航空科学基金资助项目(20115196018).
作者单位E-mail
魏瑞轩 空军工程大学 无人机运用工程系  
茹常剑 空军工程大学 无人机运用工程系 ruchangjian@126.com 
祁晓明 空军工程大学 无人机运用工程系  
中文摘要
      多架无人机协同执行任务是未来网络化战场上的一种重要作战要求, 然而复杂战场环境的变化极大地影响无人机编队的生存能力. 为了自主安全地实现复杂战场环境中存在通信延迟的无人机编队重构控制, 构建基于分层结构的无人机编队重构的自主安全控制架构. 然后, 提出一种基于纳什谈判的分布式预测控制(Nash bargaining solution-distributed model prediction control, NBS–DMPC)的新方法. 针对存在通信延迟的问题, 设计了基于信息滤波算法的信息补偿方法. 最后, 仿真实验表明所提算法能够自主安全地控制无人机编队重构并能有效降低问题的求解规模. 同时仿真结果也验证了所提信息滤波算法在通信时延下的有效性.
英文摘要
      One of important requirements in the future network battlefield is the cooperative performance of mission between multiple UAVs; however, the changes of complicate battlefield environment make great effect on the viability of the unmanned aerial vehicle (UAV) formation. In order to realize the UAV formation reconfiguration control autonomously and safely when the communication delay is existing in the complicate battlefield environment, we develop an autonomous and safe control architecture for the UAV formation reconfiguration based on a hierarchical structure. Then, a novel method of Nash bargain based on the distributed-mode prediction control (DMPC) is presented. To deal with the communication delay, we present an information-compensated method based on the information filter algorithm. Finally, simulation results show that this algorithm can autonomously and safely control the self-reconfiguration of UAV formation, and efficiently reduces the amount of work in solving this problem. Simulation results also demonstrate that the proposed information filter algorithm is efficient under the communication delay.