引用本文:刘金平,桂卫华,唐朝晖,朱建勇.基于泡沫大小动态分布的浮选生产过程加药量健康状态分析[J].控制理论与应用,2013,30(4):492~502.[点击复制]
LIU Jin-ping,GUI Wei-hua,TANG Zhao-hui,ZHU Jian-yong.Dynamic bubble-size-distribution-based health status analysis of reagent-addition in froth flotation process[J].Control Theory and Technology,2013,30(4):492~502.[点击复制]
基于泡沫大小动态分布的浮选生产过程加药量健康状态分析
Dynamic bubble-size-distribution-based health status analysis of reagent-addition in froth flotation process
摘要点击 3008  全文点击 1553  投稿时间:2012-08-03  修订日期:2012-11-22
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.20850
  2013,30(4):492-502
中文关键词  泡沫浮选过程  过程监控  气泡尺寸动态分布  核密度估计  最远邻聚类
英文关键词  froth flotation process  process monitoring  dynamic distribution of bubble sizes  kernel density estimation  farthest neighbor clustering
基金项目  国家自然科学基金重点资助项目(61134006); 国家自然科学基金面上项目资助项目(61071176, 61171192, 61272337).
作者单位E-mail
刘金平 中南大学 信息科学与工程学院 ljp202518@163.com 
桂卫华 中南大学 信息科学与工程学院  
唐朝晖* 中南大学 信息科学与工程学院 ljp202518@163.com 
朱建勇 中南大学 信息科学与工程学院  
中文摘要
      针对矿物浮选过程泡沫大小分布随着药剂量的改变而动态变化的特点, 提出一种基于泡沫大小动态分布特征的具有自学习功能的浮选生产过程加药量健康状态统计模式识别方法. 首先, 通过泡沫图像分割、气泡尺寸分布核密度估计获得浮选气泡大小的概率密度分布函数, 采用无监督的最远邻聚类方法获得典型药剂量添加状态下的气泡尺寸统计分布特征集; 然后, 采用简单的贝叶斯推理方法获得测试时间段对应的药剂添加健康状态分析识别结果, 并根据浮选生产工况状态的动态变化对各典型药剂状态下的气泡大小统计分布特征集进行在线学习修正.实验结果表明, 所提出方法能实时获取泡沫尺寸分布的动态变化, 实现浮选药剂操作健康状态的自动识别与评价, 为进一步实现浮选生产过程的加药量优化控制奠定了基础.
英文摘要
      Since the statistical distribution of bubble sizes varies with the dynamic change of the reagent operation in froth flotation process, a statistical pattern recognition method for the health condition analysis of the reagent-addition is presented based on the adaptive learning of the dynamic distribution features of the froth bubble sizes. After the segmentation of the bubble image and the kernel density estimation of the statistical bubble size distribution, the statistical feature sets of the bubble size distribution under typical operating conditions are first leaned by the unsupervised farthest neighbor clustering; the health status of the reagent operation in the flotation process during the period of testing is subsequently inferred by Bayesian inference. Furthermore, the bubble size distribution feature sets under typical dosage-addition conditions are revised online in accordance with the drift of the operation conditions. The experimental results demonstrate that this method is capable of capturing the dynamic variation of the statistical distribution of the bubble sizes and effectively achieving the accurate recognition results of the health conditions of the reagent-addition, which lays a foundation for the realization of the optimal control of reagent-addition in the flotation process operation.