引用本文:高海涛,张利民,孙青林,孙明玮,陈增强,亢晓峰.基于伪谱法的翼伞系统归航轨迹容错设计[J].控制理论与应用,2013,30(6):702~708.[点击复制]
GAO Hai-tao,ZHANG Li-min,SUN Qing-lin,SUN Ming-wei,CHEN Zeng-qiang,KANG Xiao-feng.Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method[J].Control Theory and Technology,2013,30(6):702~708.[点击复制]
基于伪谱法的翼伞系统归航轨迹容错设计
Fault-tolerance design of homing trajectory for parafoil system based on pseudo-spectral method
摘要点击 2441  全文点击 1508  投稿时间:2012-09-14  修订日期:2013-01-16
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.20956
  2013,30(6):702-708
中文关键词  Gauss伪谱法  翼伞  归航轨迹  容错  容错设计
英文关键词  Gauss pseudo-spectral method  parafoil  homing trajectory  fault tolerance  optimal design
基金项目  国家自然科学基金资助项目(61273138); 天津市自然科学基金重点资助项目(10JCZDJC15900).
作者单位E-mail
高海涛 南开大学 信息技术科学学院 gc_0532@126.com 
张利民 南开大学 信息技术科学学院  
孙青林* 南开大学 信息技术科学学院 sunql@nankai.edu.cn 
孙明玮 南开大学 信息技术科学学院  
陈增强 南开大学 信息技术科学学院  
亢晓峰 航宇公司军代表室  
中文摘要
      针对翼伞系统在归航过程中, 控制电机工作异常致使控制性能发生变化, 无法按原有规划轨迹到达目标点的问题, 提出一种基于Gauss伪谱法的归航轨迹容错设计方法. 首先根据翼伞系统控制特性的不同, 分别建立了正常和单电机异常工作状态下的质点模型, 并根据伞形参数确定了两种工作状态下的约束条件和目标函数; 其次, 利用Gauss伪谱法分别对两种工作状态下轨迹规划的最优控制问题求解, 获得翼伞系统不同状态下的最优飞行轨迹. 仿真结果表明, 在约束情况下, 翼伞系统无论在正常和单电机异常工作时都可以顺利到达目标点, 获得高精度的飞行轨迹.
英文摘要
      Since faults in the control motor change control characteristics, the parafoil system in the homing process cannot reach the target point in the original planned trajectory. To deal with this problem, we propose a fault-tolerance design for the homing trajectory by using the Gauss pseudo-spectral method. According to the control characteristic of the parafoil system, we build a normal model and a faulty model with one faulty motor. The constraint conditions and objective functions are respectively defined for the two models, in terms of the parafoil parameters. Using the Gauss pseudo-spectral method, we solve the optimal trajectory programming problem for the two models. The optimal flight trajectories of the parafoil system under different conditions are also obtained. Simulation results show that the parafoil system can reach the target point successfully under certain constraints, and obtain high-precision flight trajectory in normal operating conduction as well as when a motor fails.