引用本文:李涛,张斌,乔建忠.执行机构部分失效的挠性航天器多界依赖容错控制[J].控制理论与应用,2017,34(3):383~392.[点击复制]
LI Tao,Zhang Bin,Qiao Jian-zhong.Multi-bound-dependent fault-tolerant control for flexible spacecraft under partial loss of actuator effectiveness[J].Control Theory and Technology,2017,34(3):383~392.[点击复制]
执行机构部分失效的挠性航天器多界依赖容错控制
Multi-bound-dependent fault-tolerant control for flexible spacecraft under partial loss of actuator effectiveness
摘要点击 2509  全文点击 1929  投稿时间:2016-07-15  修订日期:2017-03-12
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60514
  2017,34(3):383-392
中文关键词  容错控制  挠性航天器  输入时滞  执行器部分故障
英文关键词  fault-tolerant control  flexible spacecraft  input delays  partial loss of actuator effectiveness
基金项目  国家自然科学基金项目(61573189, 61603021), 江苏省杰出青年基金项目(BK20140045), 江苏省六大人才计划(2015--DZXX--013)资助.
作者单位E-mail
李涛* 南京信息工程大学 litaojia@163.com 
张斌 南京信息工程大学  
乔建忠 北京航空航天大学  
中文摘要
      针对挠性航天器在轨运行时受到的外部干扰, 输入时滞以及执行机构部分失效问题, 本文提出了一种基于不确定参数的鲁棒H1容错控制方法. 首先, 将执行机构部分失效容错控制问题转化为不确定参数的鲁棒控制问题.然后, 设计了一个新型的多界依赖状态反馈鲁棒H1控制算法. 此算法不仅依赖时滞积分不等式分割参数和时滞界信息, 还依赖部分失效因子. 因此, 本文设计的控制器能同时实现对输入时滞的敏感, 对部分失效故障的容错及对外部干扰的抑制. 最后, 通过一系列的仿真验证本文方法的有效性.
英文摘要
      A fault tolerant control based on robust H--infinity control with uncertain parameters is proposed for an onorbiting flexible spacecraft in the presence of partial loss of actuator effectiveness, external disturbance and input delays.Firstly, the fault tolerant control with loss of actuator effectiveness is transformed into robust control with uncertain parameters. Secondly, a new multi-bound-dependent robust state feedback H--infinity control algorithm is designed. This algorithm is not only dependent on the decomposition coefficient of the time delay integral inequality and time delay bounds, but also depends on the partial failure factor. Therefore, the controller designed in this paper can be sensitive to the input delays, be tolerant to actuator partial failure and be rejective to external disturbance. Finally, the effectiveness of the proposed design method is demonstrated in a spacecraft attitude control system subject to loss of actuator effectiveness.