引用本文:魏伟,左敏,李伟,王小艺,刘载文.污水处理过程溶解氧浓度的自抗扰控制[J].控制理论与应用,2018,35(1):24~30.[点击复制]
WEI Wei,ZUO Min,LI Wei,WANG Xiao-yi,LIU Zai-wen.Control of dissolved oxygen for a wastewater treatment process by active disturbance rejection control approach[J].Control Theory and Technology,2018,35(1):24~30.[点击复制]
污水处理过程溶解氧浓度的自抗扰控制
Control of dissolved oxygen for a wastewater treatment process by active disturbance rejection control approach
摘要点击 2577  全文点击 1732  投稿时间:2017-04-06  修订日期:2017-09-13
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.70229
  2018,35(1):24-30
中文关键词  污水处理  溶解氧  底物浓度  抗扰控制
英文关键词  wasterwater treatment process  dissolved oxygen  substrate concentration  active disturbance rejection control
基金项目  国家自然科学基金项目(61403006), 北京市属高等学校青年拔尖人才培育计划项目(CIT&TCD201704044), 北京市自然科学基金项目(9162002), 北京市教委科技计划重点项目(KZ201510011011), 国家重点研发计划课题(2016YFD0401205)
作者单位E-mail
魏伟 北京工商大学 计算机与信息工程学院 weiweizdh@126.com 
左敏* 北京工商大学 计算机与信息工程学院 zuomin@btbu.edu.cn 
李伟 北京工商大学 计算机与信息工程学院  
王小艺 北京工商大学 计算机与信息工程学院  
刘载文 北京工商大学 计算机与信息工程学院  
中文摘要
      溶解氧是活性污泥法处理污水的一个关键变量, 它关系到污水中有机物的生物降解、微生物生长和出水水 质. 多数污水处理过程选择溶解氧为被控量. 然而, 溶解氧浓度受进水流量, 进水组分、浓度波动等诸多因素影响, 较难控制. 本文根据曝气量变化确定溶解氧浓度设定值, 以污水进水变化率为控制量, 设计线性自抗扰控制实现对 溶解氧浓度的跟踪, 进而获得对污水出水底物浓度的间接控制. 设计两组仿真实验, 分别模拟进水底物浓度固定和 变化时, 线性自抗扰控制对溶解氧浓度和出水底物浓度的控制; 同时, 设计仿真实验验证线性自抗扰控制对总扰动 的估计和补偿效果. 仿真结果表明, 线性自抗扰控制可获得良好的溶解氧浓度跟踪和出水底物浓度控制效果; 在进 水水质波动时, 线性自抗扰控制亦具有很强的干扰补偿能力, 可保证出水水质.
英文摘要
      Dissolved oxygen (DO) is a key parameter in activated sludge wastewater treatment processes. It relates to the biodegradation of organic compounds, the growth of microorganisms and the effluent quality. DO is always taken as a controlled variable in wastewater treament processes. However, DO concentration is sensitive to many factors, such as the rate of inflow, component of inflow, variation of concentrations. The control of DO concentration is a difficult problem in control engineering. Desired DO concentration is assigned by aeration rate, and dilution rate is taken as the control input. Linear active disturbance rejection control (LADRC) is designed to make DO concentration tracks the setpoints, and, indirectly, the substrate concentration is controlled within an acceptable level. Two cases, i.e. fixed and varied influent substrate concentrations, are considered in simulations. Additionally, in order to verify the disturbance rejection and compensation ability of LADRC, a group of numerical simulation is also performed. Numerical results show the fact that both DO concentration tracking and substrate concentration regulation can be realized effectively by LADRC, and LADRC is also able to reject the disturbance and guarantee the effluent quality even if the influent wastewater are fluctuated.