考虑导航误差和摄动影响的椭圆轨道最优交会制导
Guidance design with navigation errors for relative motion in noncircular perturbed orbits
摘要点击 49  全文点击 43  投稿时间:2017-11-30  修订日期:2018-08-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70887
  2018,35(10):1484-1493
中文关键词  非合作目标  交会制导  状态转移矩阵  导航误差  二阶锥规划
英文关键词  uncooperative target  rendezvous guidance  state transition metrics  navigation error  second order cone programming
基金项目  国家自然科学基金项目(61690210, 61690211)资助.
学科分类代码  
作者单位E-mail
靳锴 西北工业大学 nwpu_jinkai@163.com 
罗建军 西北工业大学 jjluo@nwpu.edu.cn 
郑茂章 西北工业大学  
方群 西北工业大学  
中文摘要
      论文提出了一种新的航天器最优交会制导方法. 该方法能够快速精确求解包含J2 项与大气阻力项摄动的椭圆轨道交会问题, 并充分考虑非合作目标存在的导航误差, 保证交会精度的同时实现所需速度增量最优. 首先, 论文采用了一种新的状态转移矩阵求解方法, 能够对考虑J2 项和大气阻力项摄动的任意偏心率下的相对运动进行描述, 得到考虑摄动与偏心率信息的状态约束. 其次, 建立了导航误差模型, 得到描述导航误差的状态约束, 并分析其对交会精度与所需速度增量的影响, 设计包含加权矩阵的性能指标实现在存在导航误差情况下所需速度增量最优. 然后, 通过引入松弛变量, 将最优交会问题转化为标准二阶锥规划问题进行求解. 再者, 为了进一步提高相对距离较大的交会任务精度, 构建了闭环制导框架. 最后, 论文通过仿真, 验证了设计方法在考虑J2 项与阻力项摄动情况下的有效性、针对椭圆轨道交会问题的精确性以及考虑导航误差情况下所需速度增量的最优性.
英文摘要
      This paper presents a new method to design the rendezvous trajectory with perturbations and navigation errors. Firstly, a new state transition matrices calculation method is used to model the relative motion of two spacecraft in arbitrarily eccentric orbits perturbed by J2, differential drag and the differential mass to area ratio. The state transition matrices are derived by first performing a Taylor expansion on the equations of relative motion and subsequently integrating resulting linear differential equations. Secondly, the navigation errors are taken into consideration and a weighting vector is chosen to generate a new objective function to minimize the propellant consumption with the navigation errors. Thirdly, the rendezvous trajectory problem are cast as second order cone programming problem. Finally, a series of simulations are carried out to verify the effectiveness of the new state transition matrices calculation method in eccentric orbits, with the J2, differential drag and the differential mass to area ratio for relative motion, and to prove the new objective function can be better in propellant use.