动态优化双估计器的多模型自适应混合控制
Dynamically optimized multiple model adaptive mixing control of dual estimators
摘要点击 75  全文点击 70  投稿时间:2017-12-04  修订日期:2018-05-18
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.70906
  2019,36(4):596-604
中文关键词  混合控制  多模型  自适应  双估计器  动态优化
英文关键词  mixing control  multiple model  adaptive control  dual estimators  dynamic optimization
基金项目  国家自然科学基金项目
学科分类代码  
作者单位E-mail
史善孟 华东理工大学 s-shanmeng@qq.com 
王昕 上海交通大学  
王振雷 华东理工大学  
中文摘要
      针对参数子集个数较多导致计算量较大和由于系统参数发生跳变造成系统暂态性能差的问题,本文提出了基于动态优化双估计器的多模型自适应混合控制方法。首先对多个参数子集进行动态优化得到最优参数子集,减少了需要计算的模型数量,提高了系统收敛速度;其次对被控对象设置一个固定初值的估计器和一个可重新赋值的估计器,固定估计器用于初始时刻对参数的估计,可赋值估计器动态调整估计初值用于减小估计误差,提高系统暂态性能。最后的仿真结果表明了该方法的有效性,并给出了系统的稳定性及收敛性分析。
英文摘要
      Aiming at the large number of parameter subset and the large amount of computation and transient performance due to the jump of system parameters, a multiple model adaptive mixing control method based on dynamic optimization and dual estimator is proposed in this paper. First, parameters of dynamic optimization to obtain the optimal subset of parameters, reduce the number of models of computation, improve the convergence rate of the system; secondly, set a fixed initial estimator and a reassignment estimator for the plant, with fixed estimator to the initial estimation of the parameters, you can assign the estimator of dynamic adjustment initial estimates for reducing the estimation error, improve the system transient performance. The final simulation results show the effectiveness of the proposed method, and the stability and convergence analysis of the system are given.