自抗扰控制器稳定域与鲁棒稳定域计算及工程应用
The calculation of stability and robustness regions for active disturbance rejection controller and its engineering application
摘要点击 195  全文点击 222  投稿时间:2018-04-24  修订日期:2018-10-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.80296
  2018,35(11):1635-1647
中文关键词  自抗扰控制  稳定域  鲁棒稳定域  二次风系统
英文关键词  active disturbance rejection control  stability regions  robustness regions  secondary air system
基金项目  国家重点研发计划项目(2016YFB0901405), 国家自然科学基金项目(51876096), 电力系统国家重点实验室项目资助.
学科分类代码  
作者单位E-mail
吴振龙 清华大学能源与动力工程系 WZLsongshanshan@163.com 
何婷 清华大学能源与动力工程系  
李东海 清华大学能源与动力工程系 lidongh@mail.tsinghua.edu.cn 
薛亚丽 清华大学能源与动力工程系  
中文摘要
      为提高自抗扰控制(active disturbance rejection control, ADRC)技术在工程应用中的整定效率和降低参数整 定带来的可能风险, 本文从工程实际应用出发, 提出了一种基于D–分割法的n阶ADRC参数稳定域的求解方法和基 于Ms约束的鲁棒稳定域求解方法, 并给出了各自的计算步骤. 通过数字仿真和水箱实验台实验验证了计算方法的 有效性. 基于上述工作, 将基于该方法整定的ADRC应用于实际火电机组二次风控制系统中, 获得比原有比例–积分 (proportional-integral, PI)控制器在大负荷变化范围内具有更快响应速度和更强鲁棒性的效果, 这为ADRC的大规模 工业化应用提供了一种简单有效的参数稳定域和鲁棒稳定域的计算方法, 具有实际的工程意义.
英文摘要
      In order to improve the tuning efficiency of active disturbance rejection control (ADRC) in engineering application and reduce the possible risk of parameter tuning, a calculation method of stability regions based on D–partition and robustness regions based on Ms-constrained are proposed and both calculation steps are provided from the view of the practical engineering application. Digital simulations and an experiment on a water tank verify the effectiveness of the proposed calculation method. Based on the above work, ADRC whose parameters are tuned by the proposed method is applied to the secondary air control system of a boiler unit and the system obtains a quicker response speed and a stronger robustness than the original Proportional-Integral (PI) controller in a large load change range, and this offers simple but effective calculation methods of stability and robustness regions for the large-scale industrial application and the calculation methods have a practical engineering significance.