打滑状态下的多移动机器人编队自适应控制
Adaptive control of multiple mobile robot formation under slip condition
摘要点击 112  全文点击 139  投稿时间:2019-02-20  修订日期:2019-10-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.90091
  2020,37(2):139-445
中文关键词  机器人编队, 打滑, 未知信息, 自适应控制, 非线性参数逼近
英文关键词  Robot formation, slipping, unknown information, adaptive control, nonlinear parameter approximation
基金项目  
学科分类代码  
作者单位E-mail
彭滔 重庆理工大学两江人工智能学院 pengtaoscut@163.com 
陆群 盐城工学院电气工程学院  
苏春翌 康考迪亚大学Gina Cody工程与计算机科学学院 chun-yi.su@concordia.ca 
中文摘要
      本文针对由领航跟随控制策略协调运动的多移动机器人编队, 研究跟随机器人存在打滑状态的自适应控制器设计问题. 首先, 通过移动机器人打滑状态的运动学特性分析, 建立`距离-角度’编队控制模型. 然后, 利用径向基函数神经网络(RBF NN)对系统中由打滑引起的未知信息, 构建非线性逼近器; 并根据李雅普诺夫稳定性理论和非线性有界扰动稳定性理论, 证明了设计的嵌入了RBF NN的自适应控制器能保证闭环控制系统状态的收敛和有界. 通过分析编队误差控制模型, 可将不打滑状态视为系统的一种特殊情况, 而嵌入控制器中的RBF NN能自适应打滑和不打滑两种状态, 从而使得控制器在两种状态下均有效. 最后利用仿真研究, 验证了本文所提方法的正确性和有效性.
英文摘要
      This paper investigates adaptive control of multiple mobile robot formation, which is coordinated by the leader-follower method, under a slip condition of the follower robot. Firstly, a `distance-angle'' formation control model is deduced by the kinematics characteristics analysis under slipping. Secondly, a radial basis function neural network (RBF NN) is used to approximate the unknown information of the control system caused by slipping, and convergence and boundedness of the system states are proved according to the Lyapunov stability theory and stability of perturbed systems. In the process of controller analysis and design, it is found that the non-slip condition can be considered a special case of the system, and the RBF NN nonlinear approximator is adaptive for the slip and non-slip, which makes that the designed controller is correct and effective for both slip and no-slip conditions. Finally, simulation studies are included to demonstrate the correctness and effectiveness of the proposed approach.