深空探测航天器姿态的自抗扰控制
ADRC for Attitude Control of Deep Space Explorer
摘要点击 335  全文点击 323  投稿时间:2019-07-04  修订日期:2020-01-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.90521
  2019,36(12):2027-2033
中文关键词  不确定系统;深空探测航天器  自抗扰控制  挠性附件  液体晃动  姿态控制
英文关键词  uncertain systems  deep space explorer  active disturbance rejection control(ADRC)  flexible appendages  fuel slosh  attitude control
基金项目  国家重点研发计划(批准号: 2018YFA0703800),中国科学院国家数学与交叉科学中心
作者单位E-mail
钟声 中国科学院数学与系统科学研究院 zhongsheng@amss.ac.cn 
黄一 中国科学院数学与系统科学研究院 yhuang@amss.ac.cn 
胡锦昌 空间智能控制技术国防科技重点实验室  
中文摘要
      本文针对一种带有挠性附件和液体晃动的深空探测航天器姿态控制问题, 提出了自抗扰控制律. 该控制律可以自主、有效地抑制弹性振动和液体晃动对姿态角运动的耦合作用以及处理大范围的扰动和系统不确定性. 基于四元数生成角速度跟踪指令, 把控制问题由姿态角控制转化为角速度控制. 通过设计扩张状态观测器实时估计并补偿角速度通道总扰动并结合角速度偏差反馈, 使得角速度快速跟踪指令, 进而实现控制目标. 仿真结果验证了控制律的有效性和鲁棒性.
英文摘要
      The paper proposes an active disturbance rejection control(ADRC) strategy for attitude control of a kind of deep space explorer with flexible appendages and fuel slosh. The control law has the ability to autonomously and effectively suppress the coupled influences of the elastic vibration of flexible appendages and liquid sloshing for the motion of attitude angle, as well as the capability of dealing with a vast range of external disturbances and uncertainties of system. The command input of angular velocity is generated based on the quaternion. Thus, the control problem is translated from the control of attitude angle into the control of angular velocity. By designing an extended state observer(ESO) to timely estimate and compensate for the total disturbance in the angular velocity channel and designing the error feedback of angular velocity, angular velocity can quickly track the command. As a result, the control objective is achieved. The validity and robustness of the controller are shown via simulations.