基于lasso和elastic net的宽度学习系统网络结构稀疏方法
Sparsity method for network structure of broad learning system based on lasso and elastic net
摘要点击 510  全文点击 57  投稿时间:2020-03-31  修订日期:2020-08-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00178
  2020,37(12):2543-2550
中文关键词  宽度学习系统  网络结构  lasso  elastic net
英文关键词  broad learning system  network structure  lasso  elastic net
基金项目  国家自然科学基金项目(61973304, 61503384, 61702195, 61751202), 国家重点研发项目(2019YFA0706200, 2019YFB1703600), 江苏省六大人才 高峰项目(DZXX–045), 江苏省科技计划项目(BK20191339), 广州市科技重大专项项目(202007030006), 徐州市科技创新计划项目(KC19055), 矿 冶过程自动控制技术国家重点实验室开放课题项目(BGRIMM–KZSKL–2019–10)资助.
作者单位E-mail
褚菲 中国矿业大学 信息与控制工程学院 chufeizhufei@sina.com 
苏嘉铭 中国矿业大学 信息与控制工程学院  
梁涛 中国矿业大学 信息与控制工程学院  
陈俊龙 华南理工大学 计算机科学与工程学院  
王雪松 中国矿业大学 信息与控制工程学院  
马小平 中国矿业大学 信息与控制工程学院  
中文摘要
      本文提出了一种基于lasso和elastic net的宽度学习系统(BLS)网络结构稀疏方法, 将标准BLS目标函数中的 L2范数分别替换为lasso和elastic net, 利用这两种正则化技术来约束网络输出权重, 衡量每个网络节点输出权重对 预测的影响程度, 将多余的节点进行剔除, 提高了网络结构的稀疏性. 通过对一些回归数据集进行实验, 可以看到 本文提出的方法在不损失预测精度的前提下, 同时简化了网络结构.
英文摘要
      This paper proposes a sparsity method for network structure of broad learning system (BLS) based on lasso and elastic net. The L2-norm in the standard BLS objective function is replaced by the lasso and the elastic net respectively. These two regularization techniques are used to constrain the output weight of each network node, so as to measure the impact of each node’s output weight on the prediction. In this way, the redundant nodes are eliminated and the sparsity of network structure is improved. Through the experiments on some regression datasets, it can be seen that the proposed method can simplify the network structure without losing the prediction accuracy.