| 引用本文: | 陈辉,齐苗苗,刘佳彬,连峰,韩崇昭.压电作动器的多目标互补鲁棒控制方法研究[J].控制理论与应用,2026,43(2):227~238.[点击复制] |
| CHEN Hui,QI Miao-miao,LIU Jia-bin,LIAN Feng,HAN Chong-zhao.Research on multi-objective complementary robust control of piezoelectric actuators[J].Control Theory & Applications,2026,43(2):227~238.[点击复制] |
|
| 压电作动器的多目标互补鲁棒控制方法研究 |
| Research on multi-objective complementary robust control of piezoelectric actuators |
| 摘要点击 216 全文点击 22 投稿时间:2023-08-06 修订日期:2025-03-28 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.30532 |
| 2026,43(2):227-238 |
| 中文关键词 压电作动器 鲁棒控制 相关性辨识 Youla参数化 卡尔曼滤波 多目标互补控制 |
| 英文关键词 piezoelectric actuators robust control relevance recognition Youla parameterization Kalmen filter multiobjective complementary control |
| 基金项目 国家自然科学基金项目(62363023, 62163023, 61873116, 62366031), 甘肃省基础研究创新群体项目(25JRRA058), 中央引导地方科技发展资金 项目(25ZYJA040), 甘肃省重点人才项目(2024RCXM86), 甘肃省军民融合发展专项资金项目资助. |
|
| 中文摘要 |
| 针对存在模型不确定性、外界干扰和测量噪声下的压电作动器(PEA)高精度跟踪控制问题, 本文提出多目
标互补鲁棒控制方法. 首先, 建立基于Hammerstein模型结构的率相关迟滞非线性模型, 其中系统的静态迟滞非线性
环节采用Prandtl-Ishlinskii(PI)模型描述, 动态线性环节则由改进的相关性辨识法得到. 然后, 在此模型基础上, 提出
用多目标互补鲁棒控制方法来实现压电作动器的高精度跟踪控制, 该控制器应用PID控制理念实现闭环系统的最
优性能, 并采用鲁棒控制策略达到闭环系统的鲁棒稳定, 同时融合了Youla参数化的思想解决系统最优性能与鲁棒
性之间的矛盾. 最后, 通过实验验证系统的跟踪精度及抗干扰能力, 证明了本文所提出方法的有效性. |
| 英文摘要 |
| To address the challenge of achieving high-precision tracking control for piezoelectric actuators (PEAs) in the
presence of model uncertainty, external interference, and measurement noise, a novel multi-objective complementary robust
control method is proposed in this paper. First, a rate-dependent hysteresis nonlinear model, structured upon the Hammerstein model, is formulated. This model represents the static hysteresis nonlinear component using the Prandtl-Ishlinskii
(PI) model, while the dynamic linear component is characterized by an enhanced correlation identification method. Then,
a multi-objective complementary robust control method is employed to achieve the precise tracking control of the piezoelectric actuator. This approach integrates PID control principles to optimize the closed-loop system’s performance, incorporates robust control strategies to ensure the stability of the closed-loop system, and utilizes Youla parameterization
to address the conflict between the system’s optimal performance and robustness. Finally, the system’s tracking accuracy
and anti-interference capabilities are verified through experiments, providing empirical evidence for the effectiveness of the
proposed methodology in this paper. |
|
|
|
|
|