| 引用本文: | 齐龙,李翔.网络分布式k路点覆盖的空间博弈方法[J].控制理论与应用,2026,43(2):239~248.[点击复制] |
| QI Long,LI Xiang.Spatial game approach for the distributed k-path vertex cover of networks[J].Control Theory & Applications,2026,43(2):239~248.[点击复制] |
|
| 网络分布式k路点覆盖的空间博弈方法 |
| Spatial game approach for the distributed k-path vertex cover of networks |
| 摘要点击 155 全文点击 23 投稿时间:2023-11-09 修订日期:2025-05-23 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.30734 |
| 2026,43(2):239-248 |
| 中文关键词 复杂网络 k路点覆盖 空间博弈 分布式优化 强纳什均衡 |
| 英文关键词 complex networks k-path vertex cover spatial game distributed optimization strong Nash equilibrium |
| 基金项目 |
|
| 中文摘要 |
| 作为网络覆盖问题的重要分支, 许多真实世界复杂系统的难题可以被视为网络k路点覆盖问题. 在分布式系统中,
如何设计个体自主决策的去中心化策略是实现网络覆盖优化的关键. 本文将k路点覆盖问题建模为网络空间博弈, 其中每
个节点被当作是仅与邻居进行通信的理性个体. 在非合作博弈框架下, 分析了强纳什均衡(SONE)与k路点覆盖之间的关系,
同时提出的基于博弈的同步期望驱动算法(GSAA)可以在有限时间内收敛到4人联盟SONE, 结合仿真结果验证了算法的有
效性. 本文围绕k路点覆盖问题, 从联盟视角建立覆盖解与博弈均衡之间的关系, 为博弈框架下解决具有网络局部耦合约束
的分布式优化问题提供了一种全新思路. |
| 英文摘要 |
| As a significant branch of covering problems on networks, many difficulties encountered in real-world complex
systems can be viewed as instances of the k-path vertex cover problem. In distributed systems, one of the crucial research issues
to achieve network covering optimization is how to design decentralized strategies for autonomous decision-making by agents. In
this paper, the k-path vertex cover problem is modeled as a spatial game on networks, where individual vertices act as rational
agents and communicate exclusively with their neighbors. This study analyzes the relationship between strong Nash equilibrium
(SONE) and the k-path vertex cover state within the context of non-cooperative games. Additionally, the proposed game-based
synchronous aspiration-driven algorithm (GSAA) is shown to converge to SONEs of the four-player coalitions within finite time.
The effectiveness of the algorithm is validated through numerical simulations. In the context of the k-path vertex cover problem, the
link between solutions and game equilibria is examined from a coalition-based perspective. This paper introduces a novel approach
for solving distributed optimization problems with local coupling constraints on networks within the framework of game theory. |
|
|
|
|
|