| 引用本文: | 张浪文,王中旭,魏海翔,谢巍.移动机器人轨迹跟踪的参数估计与原对偶神经网络预测控制[J].控制理论与应用,2026,43(2):278~286.[点击复制] |
| ZHANG Lang-wen,WANG Zhong-xu,WEI Hai-xiang,XIE Wei.Trajectory tracking of mobile robots based on parameter estimation and primal-dual neural network predictive control[J].Control Theory & Applications,2026,43(2):278~286.[点击复制] |
|
| 移动机器人轨迹跟踪的参数估计与原对偶神经网络预测控制 |
| Trajectory tracking of mobile robots based on parameter estimation and primal-dual neural network predictive control |
| 摘要点击 174 全文点击 25 投稿时间:2023-12-06 修订日期:2025-03-11 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.30790 |
| 2026,43(2):278-286 |
| 中文关键词 轮式移动机器人 轨迹跟踪 模型预测控制 原对偶神经网络 卷积神经网络 |
| 英文关键词 mobile robots trajectory tracking model predictive control primal-dual neural network convolutional neural network |
| 基金项目 国家自然科学基金项目(62473160), 广东省基础与应用基础研究基金项目(2023A1515030119, 2023A1515240070), 清远市科技计划项目(2023 DZX006)资助. |
|
| 中文摘要 |
| 本文针对轮式移动机器人的不确定参数估计与轨迹跟踪问题, 研究了基于卷积神经网络(CNN)的移动机器
人不确定模型参数估计方法, 提出了移动机器人的原对偶神经网络(PDNN)模型预测控制(MPC)轨迹跟踪控制算法.
对于轮式移动机器人而言, 轮胎侧偏刚度受到负载扰动、未建模动态和路况变化等不确定因素影响, 在实际行驶过
程中难以实时测量. 论文研究侧偏刚度的CNN回归模型, 以估计机器人运行过程中的不确定性. 考虑前轮偏角与加
速度等状态的约束条件, 研究基于CNN参数估计的移动机器人预测控制设计方法, 提出基于PDNN的移动机器人预
测控制问题求解算法, 并证明了所提出基于CNN参数估计的PDNN-MPC算法稳定性. 最后, 为了验证控制器的有效
性, 对所提出的PDNN-MPC算法进行验证. |
| 英文摘要 |
| This work focuses on the problem of uncertain parameter estimation and trajectory tracking for wheeled
mobile robots. A method for estimating uncertain model parameters of mobile robots based on the convolutional neural
network (CNN) is studied, and a primal-dual neural network (PDNN) model predictive control (MPC) tracking control
algorithm for mobile robots is proposed. For wheeled mobile robots, tire lateral stiffness is affected by load disturbance,
unmodelled dynamics and load changes, which is difficult to measure in real time during actual driving. CNN estimator
of lateral stiffness is designed to eliminate uncertainty during robot operation considering the constraint conditions of front
wheel deviation and acceleration. This work studies the design of predictive control for mobile robots based on CNN
parameter estimation and proposes a PDNN based algorithm with CNN parameter estimation for solving the predictive
control problem of mobile robots. The stability of the proposed PDNN-MPC algorithm is proved. Finally, to verify the
effectiveness of the controller, the proposed PDNN-MPC algorithm is validated. |
|
|
|
|
|