引用本文:李锦键,王兴贵,李昱,丁颖杰,薛晟.基于波动量自适应补偿的HCSY-MG系统并网电流模型预测控制[J].控制理论与应用,2025,42(12):2517~2527.[点击复制]
LI Jin-jian,WANG Xing-gui,LI Yu,DING Ying-jie,XUE Sheng.Model predictive control of grid-connected current in HCSY-MG system based on adaptive compensation of fluctuating quantities[J].Control Theory & Applications,2025,42(12):2517~2527.[点击复制]
基于波动量自适应补偿的HCSY-MG系统并网电流模型预测控制
Model predictive control of grid-connected current in HCSY-MG system based on adaptive compensation of fluctuating quantities
摘要点击 97  全文点击 17  投稿时间:2024-07-19  修订日期:2025-11-10
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2025.40380
  2025,42(12):2517-2527
中文关键词  微电网  模型预测控制  并网电流  波动量补偿  改进青蒿素优化
英文关键词  microgrids  model predictive control  grid-connected current  volatility compensation  improved artemis inin optimization algorithm
基金项目  国家自然科学基金项目(51967011),甘肃省科技计划项目(联合科研基金重点项目)(24JRRA1205),甘肃省杰出青年基金项目(22JR5RA221)资助.
作者单位E-mail
李锦键 兰州理工大学电气工程与信息工程学院 lijinjian0326@163.com 
王兴贵* 兰州理工大学电气工程与信息工程学院 wangxg8201@163.com 
李昱 兰州理工大学电气工程与信息工程学院  
丁颖杰 兰州理工大学电气工程与信息工程学院  
薛晟 兰州理工大学电气工程与信息工程学院  
中文摘要
      在半桥变流器串联结构星型连接微电网(HCSY-MG)并网系统中,可再生能源功率的波动将会引起并网电 流中出现直流和基频波动量.为解决以上HCSY-MG系统存在的特殊问题,有针对性地提出一种基于波动量自适应 补偿的并网电流模型预测控制策略.在可再生能源存在随机波动的情况下,得到HCSY-MG系统的并网电流表达式, 并对其特性进行分析.从上述特性出发,将并网电流表达式作为预测模型,并使用混沌化和自适应思想对青蒿素优 化算法进行改进,提高滚动优化环节的寻优速度,同时降低并网电流中包含的波动量,提高控制效果与精度.最后与 现有方法进行仿真和实验对比,验证了本文所提控制策略的可行性、有效性和针对性.
英文摘要
      In the grid-connected system of a half-bridge converter series Y-connection microgrid (HCSY-MG), fluc tuations in renewable energy power will introduce DC and fundamental frequency fluctuation components in the grid connected current. To address this specific issue in the HCSY-MG system, a grid-connected current model predictive control strategy based on adaptive compensation of fluctuation components is proposed. Under the condition of stochas tic fluctuations in renewable energy, the grid-connected current expression of the HCSY-MG system is derived, and its characteristics are analyzed. Based on these characteristics, the grid-connected current expression is utilized as the predic tive model, and the artemisnin optimization algorithm is improved using chaotic and adaptive mechanisms to enhance the search speed in the rolling optimization process. This approach effectively reduces the fluctuation components in the grid connected current while improving control performance and accuracy. Finally, simulations and experimental comparisons with existing methods verify the feasibility, effectiveness, and specificity of the proposed control strategy.